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Abstract. Wireless communication networks exploit positioning infor-
mation to deliver personalized, context-aware services. On the other side,
positioning information can improve the network performance through
location aware routing, coverage management, enhanced security, power
saving etc. Availability of position information strongly depends on ex-
isting infrastructure, such as cellular base stations and GPS satellites. In
order to enhance the performance of indoor localization systems, where
infrastructure is not available, the innovative solution presented in this
paper considers also the negative information.
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1 Introduction

The availability of positioning information is an enabler for location based ser-
vices as part of context aware applications. Especially in indoor environments,
where Global Positioning System (GPS) does not perform well because of the
absence of Line of Sight transmission between satellite and receiver, it is still a
challenge to design a system able to provide accurate positioning information. In
this paper, we address an indoor WiFi scenario, assuming that the access points
coordinates are known. Typically, positioning algorithms assume a fraction of
nodes that are aware of their own location, called anchor nodes. Those nodes
are used as references for other, unknown nodes to estimate their positions. Un-
known nodes estimate their distances to anchor nodes based on measurements of
received signal strength (RSS), time of arrival (TOA) or angle of arrival (AOA).
Since the RSS value is commonly available in any IEEE 802.11 interface, it is the
most appropriate measurement to use, although sophisticated models are needed
to translate the received power level into distance. Once a sufficient number of
distance estimates to anchor nodes are available (for n-dimensional space, n+1
distance estimates are required), the node can compute its position using least
squares (LS) algorithm. Besides the processing of measurements between nodes,
localization procedure can include the information of all available environment
information. Most algorithms ignore the negative information, i.e., information
gathered when nodes are not detected.
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In this paper, we propose a novel solution to increase the localization per-
formance. Basically, this is achieved by incorporating information about anchor
nodes that are not in range, which allows us to eliminate candidate solutions.

The rest of the paper is organized as follows: the next section gives an overview
on related work; in Section 3 we describe our model and the procedures of
collecting measurements and data fitting; in Section 4 we present the obtained
results; and finally Section 5 concludes the paper.

2 Related Work

Indoor localization has been a motivating research topic and many methods have
been proposed so far, including WiFi, RFID and UWB localization. The Active
Badge System was an early system developed to localize mobile devices within
a building[1]. Every badge identifies itself periodically, sending unique infrared
signals to the receivers. Although it provides accurate location, the drawbacks of
the system are poor scalability due to limited range of IR, and deployment cost.
The system RADAR[2], based on WiFi fingerprinting, uses signal strength infor-
mation from multiple receiver locations. The main idea is to record radio signals
and build models for the signal propagation during off-line analysis. However the
system’s main disadvantage is its dependence on empirical data. PlaceLab[3] uses
connectivity from GSM base stations and 802.11 access points. If the node den-
sity is high enough, the system achieves accuracy of 15-20 meters, which is even
lower than GPS, but unlike GPS it is capable to perform localization for both
indoor and outdoor environments. Both passive and active RFID devices have
been considered in [4] to provide connectivity based localization.

Cooperative positioning algorithms are widely used in indoor scenarios where
a line of sight connection to anchor nodes is not always available, due to short
communication range, obstacles and a harsh environment. For sparse sensor
networks the most widely used method is multi-dimensional scaling (MDS), a
statistical dimensionality reduction technique that uses pair-wise distance mea-
surements as input data[5,6]. Similarly, pair-wise distance measurements are
used as convex constraints[7], and linear and semi-definite programming (SDP)
techniques[8] are used to estimate locations of free nodes. Another broadly used
approach is the iterative multilateration scheme, where unknown nodes, once be-
ing localized, serve as virtual anchors for the rest of unknown nodes in subsequent
iterations[9,10,11]; one major drawback of this method is error propagation, re-
sulting from using erroneous virtual anchors. Moreover, in [10] the authors take
into account the channel behavior to provide accurate indoor positioning and im-
portantly reduce error propagation. In [11] the authors develop an error control
mechanism based on characterization of node uncertainties.

Negative information had few applications for localization in wireless net-
works. Most of the work targeted problems for mobile robot localization[12,13,14].
In Markov localization for mobile robots, the absence of an expected measure-
ment can be used to improve localization. One difficulty in implementing a sys-
tem that uses negative information is that there are two main reasons for the



208 M. Albano, S. Hadzic, and J. Rodriguez

lack of an expected measurement reading: the target may not be there or the
sensor may not be able to detect the target. To avoid false negatives, the model
needs to consider possible obstructions[12]. Nevertheless, even a false attempt
to detect a target can be exploited in tracking applications, based on Bayesian
approach to target tracking[13]. Negative information can be integrated by gen-
erating an artificial measurement. However, all these works only consider cases
where an expected observation is missing. In [14] the authors have shown how
negative information can be incorporated into FastSLAM, a system that is alter-
native to the complex Extended Kalman Filter approach for robot localization.
In wireless sensor localization, Monte-Carlo localization algorithms make use of
negative information[15]. However, it can be useful only in obstacle-free areas,
and leads to localization errors otherwise.

3 Proposed Technique

3.1 Composing Different Sources of (Negative) Information

This subsection proposes a technique to fuse different types of information to
perform the localization of a unit. The technique described is as abstract as
possible, since it aims only at showing the general idea. Subsection 3.2 will
refine the technique towards the implementation in a simple wireless scenario,
and Section 4 will provide information about the implemented system.

We propose a model where localization procedure makes use of different
sources of information, that can comprise sources of negative information. In
this respect, positive information means that some data is saying “you can be
here”, while data bearing negative information is saying “you can not be here”.
The main idea behind the system is to provide a framework to compose different
kinds of information that can contribute to the localization process. Instead of
applying only positive reasoning, an alternative way is to consider all the loca-
tions in the area, and provide a technique to evaluate how “unlikely” a mobile
unit to be located in a given position. At the end of the day, “when you have
eliminated the impossible, whatever remains, however improbable, must be the
truth”[18]. In fact the proposed system exploits all the available information
to all possible mobile locations, resulting in a normalized probability map of
probable locations.

For each possible location on the probability map, the predicted measurement
is computed, and then the predicted noise is applied to it, to get a probability
distribution function for the measurement. Let us describe the location by its
coordinates (x, y) in the plane, the error e we would need to match the prediction
with the measurement is:

e = Vx,y −m (1)

where Vx,y is the predicted signal in (x, y) and m is the measurement. Let us
now call F the pdf of the error and p the pdf for the localization, p is function
of the required measurement error e, and is parametric in (x, y):
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px,y(m) = Fx,y(e) = Fx,y(Vx,y −m) (2)

The composition of different types of information is done by considering all the
measurements with their own error, and by considering these errors as indepen-
dent. Given a measurement m1 taken from a source of information, for example
the RSS from an access point, the probability for a unit to be in a given location
(x, y) depends on the expected measurement μ1(x, y), the expected error of the
signal σ1(x, y), and the predicted distribution of the signal at the location (x, y).
Let us consider that p1 is the probability for a measurement to be m1. Since
we are considering independent information sources, if the probability to be in
the same location (x, y) given a measurement m2 from a different information
source is p2, the probability for that location is p1p2.

Now, for all possible mobile positions, we apply the same kind of reasoning to
check the “compatibility” of each measurement with the expected signal. If at
a given stage of the computation, the probability map is M(x, y), after a given
measurement is applied, the probability map is modified to M ′(x, y):

M ′(x, y) = M(x, y)px,y(m) = M(x, y)Fx,y(Vx,y −m) (3)

If we start from a probability map where all the probabilities are, for example,
equal to 1, we will end up with a map where a number of locations are ruled out,
while a set of locations are still quite probable. Now we apply the normalization
process, where all the probabilities are multiplied by the same number such that
the maximum value in the probability map is 1.

In principle, an approach could first display the probability distribution of a
node’s position based on signal strength measurements from all access points that
are in range. Afterwards, we update this distribution by incorporating negative
information: if a signal measurement is missing, we consider it as a signal that
is too weak to be received, and we set its value as some conventional value. The
fact that a node is not able to sense certain access points gives us the possibility
to update the probability distribution, by ruling out some potential solutions
to the localization problem. For visualization purposes, it is possible to apply a
threshold τ to the probability map, to consider that the mobile unit can be in
all the locations where the probability value is higher than τ , while it can’t be
in the locations where the probability is lower than τ .

The proposed technique is able to provide two main benefits:

– composition of information from multiple sources: every source of informa-
tion is considered with its error and its distribution, to evaluate the com-
patibility of the measurement with a given location (x, y). Moreover, the
probability of location (x, y) is just the multiplication of all the probabilities
that are extracted from the single measurements;

– exploitation of negative information: we are not giving value only to informa-
tion that validates a given location. On the opposite, we consider valuable all
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the information, for example the absence of the RSS from an access point. In
this case, the system would estimate the probability for the signal to be low
enough not to be received, and would exploit that probability for generating
the probability maps.

3.2 Implementing the Proposed Technique

This subsection proposes the design of a prototype for the localization system.
The scenario that we consider is a wireless scenario, where a mobile unit (e.g.:
a laptop) is in range with a number of IEEE 802.11 access points.

Fig. 1. Floor 2 of the Instituto de Teleco-
municações, and access points’ location

Fig. 2. Locations where data were taken
for the tuning of the mobility model

When a node is sensing available access points, some of them can be detected
and the others not. Our information is increased by knowing the fact that some
of the access points could not be sensed. The measurements of interest are the
RSS values, since these are readily available in IEEE 802.11 interfaces. During
the scanning phase, a node performs sensing to identify all the available access
points.

We limit the system to using a lognormal signal model[19] to translate the RSS
values to distances, and hence to probabilities for given locations. We are aware
of the limitations of this model in terms of predicting power for the RSS, but we
chose it on purpose to test our proposed technique against poor signal processing
techniques. If the system will be able to perform reasonably, we can conclude
that applying refined signal processing techniques and a more reasonable signal
propagation model, such as the ones described in [21] and [22], would further
improve the localization performance.
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We consider that a tuning phase has been executed in the area, with the goal
of finding the parameters of the lognormal signal model, and we consider that for
each access point, some of the area is behaving like a Line of Sight (LoS) signal
transmission, while the rest is behaving like a non Line of Sight (nLoS) signal
transmission. Thus, for the prediction of the signal RSS, we use two functions,
one for LoS distances and one for nLoS distances, with d the Euclidean distance
between the access point and the location (x, y). Both the functions are of the
form:

Vx,y = RSS0 − 10 ∗ np ∗ log(d/d0) (4)

where RSS0 is the received power at reference distance d0 (we assume the usual
value for reference distance d0 = 1m), np is the path loss exponent. The functions
for LoS and nLoS differ only for the values of RSS0 and np, and this translates
into considering two system-wide set of parameters for the signal propagation,
one set applied to all the access points with LoS access, and the other set applied
to access points with nLoS. In both cases, we consider that the error on the signal
has Gaussian statistics, with a width that is 5 dBm for the LoS signal, and 7
dBm for the nLoS signal, as suggested in [20]. When a signal is missing, we
consider it as a poor signal, and we set its RSS to the value of −70 dBm.

Although The tuning phase adds a setup time to our technique since it is
necessary to perform the tuning for every single scenario, one motivation for
the lognormal signal model is that it uses only 2 parameters to describe signal
propagation, and hence a limited number of measures can be sufficient for fitting
the wireless channel parameters.

4 Experiments

We illustrate our model based on measurements performed on the second floor
of the Instituto de Telecomunicações building (Figure 1). The dimensions of
the area are about 50 m by 50 m. There are three access points in an indoor
environment (represented on Figure 1 by a small thunder). We recorded mea-
surements from a laptop to the access points, at several locations in the building.
Communications are performed by using the WLAN 802.11b standard.

4.1 Tuning of the System

The first phase of the experiment was to collect 10 measurements from the 3 ac-
cess points that are in the area. The measurements were taken on the locations
shown in Figure 2. WiFi Hopper[16] was used as a tool to record the received sig-
nal strength at the mobile station from the infrastructure (access points). WiFi
Hopper is a WLAN utility with the ability to display network details like type
of network, network mode (infrastructure or ad-hoc), received signal strength
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Fig. 3. Fit for the lognormal parameters, access points in Line of Sight

Fig. 4. Fit for the lognormal parameters, access points NOT in Line of Sight
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indication (RSSI), frequency and channel, encryption type etc. We performed
several measurements inside the building. RSS values from all three access points
were collected, both with and without Line of Sight. As stated in Subsection 3.2,
to translate RSS values into distances d, we use the lognormal shadowing model,
shown in Equation 4, where RSS0 is the received power at reference distance d0
(we assume the usual value for reference distance d0 = 1m), np is the path loss
exponent.

Based on the collected data we estimated the values of the path loss exponent
np and reference power RSS0 (power at reference distance) for the lognormal
shadowing model using MATLAB curve fitting toolbox[17]. As we can see from
Figure 3, for the case when measurements were taken from access points that
have Line of Sight connection, the data fit returned values np = 1.738 and
RSS0 = −20.21dB. For the non Line of Sight case, we attained different values
for the parameters, namely np = 5.133 and RSS0 = 6.865dB (see Figure 4).

The small number of total measurements (7 measurements for 3 access points,
for a total of 9 measurement for the LoS signal propagation and 12 for nLoS prop-
agation) provided us a rough approximation of the parameters for the lognormal
model. In both cases, the fit that we used reported a pretty unprecise matching
with the values, hence we can predict that the localization system will not pro-
vide perfect localization, but will have to exploit the composition of all available
information, with the goal of providing a good localization of the mobile unit.

4.2 Localization of the Mobile Unit

The experiments involved measuring the RSS values from the three access points,
computing for each measurement the pdf, and multiplying these three probability
densities to find out the probability density of a given location. The visualization
process was performed by applying a mask to the floor plant, where the dark
areas refer to the possible mobile locations.

Figures 5, 6, 7 and 8 show the localization of the same mobile unit, represented
in the figures by a small white + sign. The first three figures represent the
probability maps for each of the access points (where + is the mobile unit, and
the small thunder is the access point). Even though the real location of the mobile
unit matched with the probability map, the localization was not precise since a
number of locations featured a high compatiblity with the RSS measurement.
Figure 8, on the other hand, constitutes the composition of the probability map
of all the access points. The result shows that the mobile unit is considered to
be in a well defined area, either in the corridor, which is its actual position, or
in the room nearby.

Figures 9, 10, 11 and 12, show more probability maps. In each of the figures,
all the three RSS measurements were used, and the real location is represented
by a small + sign. Figures 9 and 10 compare the localization results when a
mobile unit moves from a location where it has just one LoS access point, to
a location where it has two LoS access points. Figure 11 shows the behavior of the
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Fig. 5. Probability map when using only
the first access point

Fig. 6. Probability map when using only
the second access point

Fig. 7. Probability map when using only
the third access point

Fig. 8. Probability map when combining
all available information

technique when there are no access points in LoS, and it confirms the limitations
of the signal model we are using (lognormal). Finally, Figure 12 shows another
scenario with only one LoS access point, and the localization is quite precise.
We see that in some cases the method gives fairly good results. Nevertheless, we
have to keep in mind that the applied channel model is very simple, serving only
to illustrate the proposed scheme.
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Fig. 9. Localization with one access point
with LoS, two with nLoS

Fig. 10. Localization with two access
points with LoS, one with nLoS

Fig. 11. Localization with three access
points with nLoS

Fig. 12. Localization with one LoS access
point, two nLoS access points

5 Conclusions

Indoor localization is still a challenging research topic. One way to improve the
positioning procedure is to make use of all available environmental information.
In this paper we have shown how negative information (information about where
the mobile unit is not) can be incorporated into an indoor positioning scenario.
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The paper showed the merits of this novel localization technique, but is a
“work in progress”. Future work will focus on integrating more realistic indoor
channel models, as well as exploiting refined signal processing techniques with
the common goal to enhance positioning performance.

In this paper, for illustration purpose, we used a simple lognormal shadow-
ing model without taking into account spatial correlation. However, correlated
shadowing is shown to have significant impact on system performance in WLAN
networks[23]. If a signal in a certain direction is attenuated by an obstruction,
it is very likely that a received signal in close proximity is experiencing a similar
shadowing effect. The assumption that shadowing losses are correlated among
nearby links has been verified by experimental measurements[24]. Therefore is
it important to improve statistical propagation models and include them in lo-
calization algorithms, what we intend to do in our future work.
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