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Abstract. The energy consumption in mobile devices has been identified as a 
growing problem in network access. Maintaining devices connected to the 
network for long periods of time quickly depletes their already limited battery 
capacity. This problem gets worst in wireless ad hoc environments where 
devices besides the energy consumption associated with normal behavior, also 
support routing functions, consuming additional energy for packet relaying 
functions. In order o improve the lifetime and hence the performance of 
wireless ad hoc networks, this paper discusses the specification for an energy 
aware wireless routing protocol called E2DSR and describes the protocol 
implementation both in ns-2 and sensor hardware. E2DSR uses some 
mechanisms of Dynamic Source Routing (DSR) protocol, but defines a new 
structure for control packets, changes the routing behavior in nodes, implements 
a new “Energy Table” and creates a whole new algorithm for route cache and 
selection. 
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1 Introduction 

In pure wireless ad hoc networks there is no infrastructure and as such all nodes 
actively participate in packet routing. This approach makes these networks easy to 
implement at any place and at any time, independent from electrical power source 
availability. In order have a fully functional wireless ad hoc network, every node in 
the network is eligible to execute packet relaying functions, supporting routing for the 
network. However, packet relaying is not fairly distributed amongst nodes in a 
network, some nodes due to its position in the network, get unfairly burden with 
traffic, relaying packets to multiple nodes in the network. This load has two 
implications: traffic bottleneck and energy consumption for the node itself. Traffic 
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bottleneck means lower network performance, higher delay and eventually higher 
jitter. Energy consumption leads to earlier node failure in the overloaded nodes, 
causing an even higher unstable network topology that can lead to network 
partitioning, decreasing route reliability [1]. 

The authors didn’t found any wireless routing protocols capable of conveying these 
issues without causing drawbacks such as requiring global topology information, 
increase delay or even create a blocking issue [3,4,5,6] (the blocking issue happens 
for example, when a source node is impeded by a timeout timer to start a data 
transmission before receiving all replies for a route request message). 

Taking this in consideration, this paper discusses the Energy Efficient Dynamic 
Source Routing (E2DSR) protocol [7], an energy efficient routing protocol for 
wireless ad hoc networks. E2DSR uses some mechanisms of Dynamic Source 
Routing Protocol (DSR) [8], defines a new structure for control packets, changes the 
routing behavior in nodes, implements a new “Energy Table” and creates a whole 
new algorithm for route cache and selection. With this new approach, all known 
routes to a destination are evaluated with respect to three metrics: i) length of route; 
ii) freshness of route and iii) energy level. The route that better satisfies these metrics 
is the selected route to be used. Preliminary results from an early version of this 
protocol showed that performance metrics such as traffic balancing, power 
consumption balancing, and average end-to-end delay were improved when compared 
to other protocols [9,10]. 

The remainder of this paper is organized as follows: section 2 makes an overview 
of E2DSR; Section 3 describes current implementation work, both on network 
simulator 2 (ns-2) and hardware implementation in sensors; this section also presents 
the preliminary results of implementation work, finally Section 4 presents conclusions 
and future work. 

2 E2DSR Overview 

E2DSR is a hybrid source routing protocol. It’s hybrid because it uses source routing 
only to create and maintain a routing cache, data packets are forwarded according to 
destination address and not to source routing. The routing cache in E2DSR is 
basically similar to a routing table in routing protocols. The routing cache however 
does not contain only the best route to a destination, instead it contains all K better 
routes to a destination, being K a configurable variable, related to energy. Routing 
cache is populated with routes discovered in the route discovery phase of E2DSR. 

2.1 Route Discovery 

In E2DSR, routes to unknown destinations can be learned by two different strategies: 
(i) by overhearing routing control packets from neighbor nodes or (ii) by broadcasting 
(flooding) a Route Request (RREQ) control packet to neighbor nodes. If using the 
later, the RREQ includes the source address (S), destination address (D), a hop count 
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field and an energy field (in form of an array) that includes the energy level of every 
node in the path. In this case, the energy field will only include the energy level of S. 

Upon receiving a RREQ, each node needs to process it accordingly. In E2DSR 
there are three types of nodes, Source nodes, Intermediary nodes and Destination 
nodes. 

2.1.1   Behavior of Intermediate Nodes 
Contrary to DSR, in E2DSR the intermediate node forwards a maximum of K RREQs 
(from S to D). When the first RREQ from S arrives to an intermediate node it stores it 
in its request table (as in DSR), extracts the energy array to calculates the energy 
parameter of path (energy parameter is discussed in section 2.4.4), being E1 the 
energy parameter of first RREQ, and then processes it to check if it already knows a 
path to D. If a path is known, then the node creates a Route Reply (RREP) message 
back to S that includes its own address and the addresses of all other nodes in the path 
to reach D, and its own energy level as well as energy level for each node in the path 
to D.  

If this node doesn’t have any route to D, it will change the received RREQ packet 
by putting its own address and energy level in the correspondent address and energy 
fields of the RREQ message. The RREQ is then broadcasted to all of its neighbors, 
with the objective of reaching D (flooding process). 

The intermediate node then caches all subsequent received RREQs (during a 
configurable time window) and will choose the K-1 routes with the highest energy 
level to reply. To do that, the intermediate node will extract the energy array of every 
RREQ and then compares it to E1. Only the RREQs that have a better energy level 
than E1 should be forwarded. To achieve this goal, we save E value (which is E1 plus 
a threshold) in its request table (E is introduced in equation 1). The value of threshold 
is controlled by a coefficient which is set to a reasonable value Ce=0.2 in equation 1. 
A bigger coefficient yields a bigger threshold. The time at which the first RREQ is 
received (T1) will also be saved on the request table and a related timeout clock 
(TInter.Wait) will be started. ܧ ൌ ଵܧ  ሺ1ܥ െ ଵሻ 0ܧ  ܧ  1;  0  ଵܧ  1; Cୣ ൌ 0.2 

(1)

When the ith route request (RREQi) arrives, the intermediate node will again calculate 
Ei (energy parameter of RREQi) and if Ei > E then it forwards RREQi and also 
updates E by Ei

 (i.e. E=Ei) otherwise it simply drops RREQi. By using this RREQ 
processing mechanism, each intermediate node will forward K RREQ at maximum; 
also the intermediate node will not forward RREQs that have arrived after TInter.Wait 
timer expires. By varying K and TInter.Wait, the behavior of the protocol can be adjusted 
to be more efficient. The chosen value for K is 3. Higher values for K imply 
forwarding and processing more RREQs which have a significant impact in traffic 
overhead and energy consumption. A smaller value for K limits the number of 
redundant routes in a node’s routing cache, which can lead to higher delays and also 
to more traffic in the network, due to the discovery phase flooding mechanism.  
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Also, by default TInter.Wait is set to 2 seconds because it’s assumed that a RREQ which 
is received after this reasonable long time, has encountered problems inside its path 
(such as traffic congestion or interference), so it should be ignored.  

2.1.2   Behavior of Destination Nodes 
In E2DSR, destination nodes will immediately reply to the first received RREQ 
(avoiding the blocking problem described in Section 1) and also to the subsequent K’-
1 received RREQs, within time window TDest.Wait, that have the highest energy. By 
changing K’ and TDest.Wait, we can customize our protocol for most efficiency; for 
destination nodes their default values are K’=3 and TDest.Wait=4s. 

2.1.3   Behavior of Source Nodes 
After S receives first RREP to D, it immediately starts forwarding packets to D via 
that route. However, taking in consideration the behavior of Intermediate and 
Destination nodes in E2DSR, S can still receive other RREPs with higher energy 
level,  shortly after receiving the first RREP. After TSource.Wait seconds, S runs a new 
E2DSR function, called Route Priority Function, that calculates the priority of 
each discovered route (see section 2.4.1). The chosen route to a destination, to use 
for data communication, will be the one that has the highest priority. This 
(re)selection process doesn’t add additional delay since it can run in the 
background.  

For scenarios where the exchange of data between S and D takes too long, the 
energy of the nodes in the path will quickly change and some nodes will eventually 
reach a critical battery level. To avoid this, during the data transmission time 
window, S may need to change the route to D to an alternate route, one that has 
better energy.  

Source nodes should run Route Priority Function in the following cases: 

• The first run should happen after receiving the first RREP, at the beginning of 
the communication, ܶ௨ଵ ൌ 0. 

• The second run is at time ܶ௨ଶ ൌ ௌܶ௨.ௐ௧ ൌ  Note that during this .ݏ6
time, S has probably received other routes to D. 

• The next runs will take place each ܶ௧௩ ൌ  This number is chosen .ݏ180
for test setup and can be changed based on new results. 

By using this mechanism, source nodes will balance the energy consumption between 
the best routes they have to a specific destination. 

2.2 Control Packets in E2DSR  

Control packets are used by E2DSR in order to discover and maintain routes. Shows 
how these control packets are handled. 
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2.4 Route Selection 

In E2DSR a Route Priority Function is defined to determine the priority of each 
discovered route. For a specific source and destination pair, the route which has the 
maximum priority will be selected as the best route between candidate routes. The 
Route Priority Function has three input parameters with respect to each route: (i) 
length; (ii) freshness and; (iii) energy of path. These parameters have values 
normalized between 0 and 1 and are explained in the next subsections. 

2.4.1   Priority of a Path 
The PathPriority function  uses (2) to compute the priority of a path.  ܲܽݕݐ݅ݎ݅ݎ݄ܲݐሺ݅ሻ ൌ ிܭ · ሺ݅ሻܨ  ாܭ · ܭሺ݅ሻܧ · ሺ݅ሻܮ  (2)

Where KF, KE and KL are the coefficients for freshness, energy and length of route, 
respectively. Desirable values for these coefficients, obtained through simulation, are 
KF=1 KE=3 and KL=1. It’s possible to achieve a higher performance regarding a 
special metric by giving a higher weight to the related parameter in (2). For example, 
for end-to-end delay the PathPriority function can be customized by a higher 
coefficient for length parameter (KL), because delay is typically more dependent on 
the length of routes. 

2.4.2   Freshness Parameter 
Measuring the freshness of a route is especially important in wireless ad hoc networks 
due to its dynamic nature. Node’s movement constantly changes the validity of a 
route. Therefore every entry in the node’s routing cache should have information 
regarding how fresh that route is. A route can be old and fresh at the same time, if it 
was learned a long time ago but used recently. The F(i) parameter in (2), indicates the 
freshness of route i and can be measured according to (3): 

ሺ݅ሻܨ ൌ ݊ െ ݅  1݊  (3)

The freshest route (the one learned or used more recently) has a freshness value of 1 
and, for n routes, the oldest route as a freshness value of 1/n. All other routes have 
freshness values between 1 and 1/n.  

2.4.3   Length Parameter 
Longer routes can increase the delay in an ad hoc network. Also longer routes have 
more links, which leads to a higher probability of link breakage. The L(i) parameter in 
(2) indicates the length of route i and can be measured according to (4): 

ሺ݅ሻܮ ൌ ݄ݐ݃݊݁ܮ_ݔܽܯሺ݅ሻ݁ݐݑܴ_݂_݄ݐ݃݊݁ܮ  (4)
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Length_of_Route(i) is the length, in number of hops, for route i. Max_Length is the 
maximum length that a route can have in DSR routing protocol, default value is set  
to 16. 

2.4.4   Energy Parameter 
The energy level of a specific route is an important characteristic of that route, since it 
can assure that a link will not go down due to power issues. However, a route may 
have nodes that in average have good battery levels and, at the same time, have some 
nodes with low battery levels. Since there is a high probability of failure in the low 
battery nodes, this route is undesirable. 

The E(i) parameter in (2) indicates the energy of route i and can be measured 
according to (5). ܧሺ݅ሻ ൌ ሺ݅ሻܧܴ · ሺ݅ሻܯሺ݅ሻܧܴܯ · ଶ (5)ݕ݃ݎ݁݊ܧ݈ܽ݅ݐ݅݊ܫ

M(i) represents the number of nodes in route i. InitialEnergy is a constant that defines 
the maximum energy that a node can have. RE(i) represents the total of the remaining 
energy in  route i. MRE(i) is the minimum of the remaining energy between all nodes 
of route i. MRE(i) is important because it will allow the detection of the low battery 
nodes problem described previously. Knowing that MRE(i) is a part of RE(i) and is 
taken into account twice, the E(i) calculation presented in (5) will be modified to the 
one presented in (6). 

ሺ݅ሻܧ ൌ ሺܴܧሺ݅ሻ െ ሺ݅ሻሻܧܴܯ · ሺ݅ሻܯሺ݅ሻܧܴܯ · ଶݕ݃ݎ݁݊ܧ݈ܽ݅ݐ݅݊ܫ  (6)

2.5 Route Maintenance 

Routing maintenance process in E2DSR is like DSR protocol. When a node, by 
forwarding a packet from S to D, discovers a link breakage it must send Route Error 
(RERR) control packet back to S. By using this mechanism, all nodes in path to the 
source will learn about this link breakage and update their routing cache accordingly.  

3 E2DSR Implementation 

Currently, E2DSR is being implemented in both simulation environment and real 
sensors. Validation through simulation is being done with ns-2 [11] since it has 
proven to provide trusted results and it is also widely accepted by the academic 
research community.  

The implementation in real sensors is being done in TinyOS 2.1 [12] and being 
tested on Telos ultra low power IEEE 802.15.4 compliant wireless sensor modules 
(revision B) [13]. Code regarding E2DSR implementation in sensors is first done in 
TOSSIM simulator [14], where it is tested, and then exported to the sensors. Currently 
we have a testbed of ten sensors and have successfully implemented RREQ, RREP 
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and RERR primitives and Route Priority Function, as described in the previous 
sections. The testing in real sensors is allowing us to fine tune some E2DSR 
coefficients. 

3.1 Implementation in ns-2 

ns-2 [11] is a discrete event simulator where the advance of time depends on the 
timing of events maintained by a scheduler. ns-2 uses two languages: (i) C++ for 
the object oriented simulator, and, (ii) an OTcl interpreter for writing and 
executing user’s scripts (simulation scenarios). The OTcl can make use of the 
objects compiled in C++ through a TclCL (Tcl/C++ interface) linkage. The use of 
C++ in the simulator code has the advantage of reducing packet and event 
processing time, allowing it to achieve fast execution times. The use of OTcl, 
despite being a compact and very powerful object programming language, allows a 
more intuitive interface with the user, when compared to C++. The development of 
ns-2 started in 1989 and has evolved substantially over the past few years; it has 
been supported mainly by DARPA, NSF and the constantly growing ns-2 
community. Bugs in the ns-2 software are still being discovered and corrected; 
each user is responsible for verifying that his simulation is not invalidated by bugs. 
Additionally, due to its old code, output files are somewhat difficult to understand 
and users need to parse them in order to obtain the desired results. In order to 
improve output understanding, it is current practice to put ‘debugs’ and ‘printfs’ in 
ns-2 code. Nevertheless, ns-2 is considered a feasible simulator and as such, it’s 
largely used by academic researchers. 

Specific implementation details for the E2DSR primitives can be found in [7]. 

3.1.1   Simulation Scenario and Results 

3.1.1.1   Testing E2DSR implementation. Up to now, E2DSR was simulated in ns-2 
using a topology of 30 mobile nodes. Table 1 shows the other relevant ns-2 simulation 
parameters used for testing E2DSR implementation. 

Table 1. Simulation parameters 

Topology area 700m x 700m 
Maximum mobility of nodes 10m/s 
Paused time 50s 
Number of nodes 30 
Simulation time 200s 
Traffic sources CBR 
Data packets size 512 bytes 
Sending rate 8 packets/second 
Maximum no. connections 10 
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By using this scenario, Fig. 2 shows that at time 29.7s, node 17 executes the Route 
Priority Function in order to find the best path to node 19. We can see that node 17 
has in its routing cache, five paths to node 19. At the end the figure we can see that 
path 17-29-5-19 is the one with better priority; and so, is the selected by node 17 to 
route packets to node 19. 

 

 

Fig. 2. Route selection process in E2DSR 

Fig. 3 shows that at time 45.5s node 17 receives a RREQ sent by node 1 and 
forwarded by node 9. Upon receiving this RREQ, node 17 will: 

• Add self to the end of RREQ address array field. New path becomes [(1) 9 17]; 
• Add its energy level to the end of RREQ energy array field. The values 9, 12, 

and 11 (last line in figure) shows the energy level of nodes 1, 9 and 17, 
respectively.  

• Update its energy table. By extracting the energy array field of RREQ, node 17 
can learn or update the energy level of nodes 1 and 9. 

 

Fig. 3. Node 17 receives a RREQ and updates its energy table  
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a) At time=4s 
 

b) At time=45.5s. 

Fig. 4. Energy table of node 17 

The energy table is dynamic through all simulation time. Fig. 4 a) and b) show the 
energy table of node 17 at time 4s and 45.5s. We can see that as simulation proceeds, 
node 17 learns about the presence of other nodes in the network. 

3.1.1.2   Testing E2DSR Performance. In this section we will provide preliminary 
performance results that will allow measuring the effectiveness of the energy 
balancing algorithm used by E2DSR. Two Table 1 based scenarios were used: 

• Scenario 1: paused time varies between 0s (nodes are always moving) and 
200s (nodes don’t move); 

• Scenario 2: nodes’ velocity varies from 0m/s (static nodes) to 18m/s. In this 
scenario we use a fixed paused time value of 40s.  

Values are computed based on 100 iterations of the simulation, using a standard 
deviation of the remaining energy for all nodes. Hence the energy load for each node 
i, EL(i), is the relation between the consumed energy in node i and the total consumed 
energy in all nodes in the network. EL(i) can be computed according to (7). ܮܧሺ݅ሻ ൌ (7) ݕ݃ݎ݁݊ܧ݀݁݉ݑݏ݊ܥ݈ܽݐሺ݅ሻܶݕ݃ݎ݁݊ܧ݀݁݉ݑݏ݊ܥ

The value of the deviation will be the metric for energy consumption balancing of the 
protocol; the smaller the deviation, the more effective is energy balancing.  
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By using (7), Fig. 5 and Fig. 6 show the performance of both DSR and E2DSR 
protocols when using scenario 1 and 2 respectively. Our preliminary results show 
E2DSR has a higher performance than DSR regarding energy balancing and shows 
lower deviation in energy consumption.  

 

Fig. 5. Energy balancing vs. paused time 

 

Fig. 6. Energy balancing vs. mobility 
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3.2 Implementation in Sensors 

The E2DSR prototype was implemented in TinyOS 2.1.1 stable release. It was tested 
on Xbow Telos B motes and on a modified version of TOSSIM simulator. We added 
to TOSSIM a CC2420 radio stack model. The simulator has node mobility support, 
energy consumption estimation during simulations, RSSI value measurement and 
enhanced trace capabilities.  

In order to add mobility, an application was implemented in Python language that 
allows customization for the movement of nodes within the network. This application 
reads the network changes from a text file, and the specific instants at which the 
changes occur. 

3.2.1   Implementation Scenario and Results 
We consider 3 mobile nodes, travelling randomly amongst clusters of 5 nodes, with 
an average connectivity time, to at least one cluster, of 1'26”. At this testbed we force 
mobile nodes to be active seekers; they continuously send RREQ packets in order to 
find a route to a specific destination node. We also consider that sensors are always in 
a ‘full on’ state. After obtaining a route to the destination, the sensor sends CBR 
traffic, 10 packets of 35 bytes every 100 ms (approx 28Kbps). 

It is important to notice that the active seeker approach does not significantly 
increase the energy consumption when compared to a passive seeker approach. The 
only relevant issue related to the active seeker approach is a higher packet loss ratio 
due to collisions with preambles. Simulation results measured an average of 0.26 data 
frames lost by neighbor nodes whenever a source node sends frames. However, the 
routing protocol retransmitted all lost frames and concealed the packet losses from the 
application. 

A. Average end-to-end delay 
In E2DSR the best three routes (based on the metrics described in [7]) to a destination 
are stored in a cache, and whenever a new route is required, the RoutePriority 
function is executed. 

When E2DSR is customized to E2DSRl by giving a higher coefficient to the length 
of the route (which can decrease transfer time), it shows a better performance with 
respect to end-to-end delay, up to 20% fewer deviations than DSR by varying pause 
time or mobility, as shown in Fig. 7 and Fig. 8. 

B. Throughput 
Throughput is a measure of the number of bytes per second received by a mobile 
node. In a wireless ad hoc environment, throughput should be measured taking in 
consideration the frequently changing network topology of such networks. In our 
testbed we trigger these topology changes by varying the velocity of mobile nodes. 
Fig. 8 shows a comparison of the evolution of throughput when using E2DSR or 
DSR. During the measurements the destination node was at an average distance of 8 
hops from the mobile node. 
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Fig. 7. End-to-end delay comparison between E2DSR and DSR 

Fig. 8. Throughput comparison between E2DSR and DSR 
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4 Conclusions and Future Work 

Even though a full evaluation of E2DSR is not possible at this moment, the 
preliminary results are quite promising. We shown that E2DSR algorithm performs 
better energy balancing and improves energy consumption when compared to well 
known DSR. E2DSR also shows an improvement of approximately 20% in end-to-
end delay and throughput with regards to a well known protocol as DSR. These 
results are sufficient enough to motivate for the continued development of E2DSR. 
We also take in consideration that a previous version of E2DSR [9, 10]1, was already 
compared to other protocols, including AODV, using performance metrics such as 
jitter and overhead and proved to be efficient. 

E2DSR is being developed to work on sensors as in other mobile devices, hence it 
is continuously being fine tuned according to the results received by both our 
simulation platform and implementation testbed; for example, operations like 
divisions are more demanding for the limited CPU resources of a sensor, so metric 
calculations needed to be rethink in order to avoid these and other complicated 
operations. Other limitation is related to the limited bandwidth of sensor wireless 
links; using pure flooding mechanisms for route discover and maintenance has a 
direct impact in data throughput, on the other hand, avoiding flooding mechanisms 
will require a complex node-to-node signaling protocol that consumes memory and 
CPU. The solution we present for E2DSR seems a nice balance between these 
considerations. 

Also currently the energy field in E2DSR uses a linear quantization; however our 
latest studies indicate that if we give more granularity to the lower levels of battery 
energy, by using a non-linear quantization method, we will be able to achieve a more 
effective energy balance. 
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