

J. Rodriguez, R. Tafazolli, C. Verikoukis (Eds.): MOBIMEDIA 2010, LNICST 77, pp. 151–165, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

E2DSR: Preliminary Implementation Results
and Performance Evaluation of an Energy Efficient

Routing Protocol for Wireless Ad Hoc Networks

Vahid Talooki, Hugo Marques, Jonathan Rodriguez1, Hugo Água,
Nelson Blanco, and Luís Miguel Campos 2

1 Instituto de Telecomunicações,
Campus de Santiago, Aveiro

{vahid,hugo.marques,jonathan}@av.it.pt
2 PDM&FC,

Av. Conde Valbom n. 30, Piso 3, Lisboa
{hugo.agua,nelson.blanco,luis.campos}@pdmfc.com

Abstract. The energy consumption in mobile devices has been identified as a
growing problem in network access. Maintaining devices connected to the
network for long periods of time quickly depletes their already limited battery
capacity. This problem gets worst in wireless ad hoc environments where
devices besides the energy consumption associated with normal behavior, also
support routing functions, consuming additional energy for packet relaying
functions. In order o improve the lifetime and hence the performance of
wireless ad hoc networks, this paper discusses the specification for an energy
aware wireless routing protocol called E2DSR and describes the protocol
implementation both in ns-2 and sensor hardware. E2DSR uses some
mechanisms of Dynamic Source Routing (DSR) protocol, but defines a new
structure for control packets, changes the routing behavior in nodes, implements
a new “Energy Table” and creates a whole new algorithm for route cache and
selection.

Keywords: DSR, E2DSR, energy efficiency, flat routing, load balancing,
mobile ad hoc networks, routing protocol, wireless networks.

1 Introduction

In pure wireless ad hoc networks there is no infrastructure and as such all nodes
actively participate in packet routing. This approach makes these networks easy to
implement at any place and at any time, independent from electrical power source
availability. In order have a fully functional wireless ad hoc network, every node in
the network is eligible to execute packet relaying functions, supporting routing for the
network. However, packet relaying is not fairly distributed amongst nodes in a
network, some nodes due to its position in the network, get unfairly burden with
traffic, relaying packets to multiple nodes in the network. This load has two
implications: traffic bottleneck and energy consumption for the node itself. Traffic

152 V. Talooki et al.

bottleneck means lower network performance, higher delay and eventually higher
jitter. Energy consumption leads to earlier node failure in the overloaded nodes,
causing an even higher unstable network topology that can lead to network
partitioning, decreasing route reliability [1].

The authors didn’t found any wireless routing protocols capable of conveying these
issues without causing drawbacks such as requiring global topology information,
increase delay or even create a blocking issue [3,4,5,6] (the blocking issue happens
for example, when a source node is impeded by a timeout timer to start a data
transmission before receiving all replies for a route request message).

Taking this in consideration, this paper discusses the Energy Efficient Dynamic
Source Routing (E2DSR) protocol [7], an energy efficient routing protocol for
wireless ad hoc networks. E2DSR uses some mechanisms of Dynamic Source
Routing Protocol (DSR) [8], defines a new structure for control packets, changes the
routing behavior in nodes, implements a new “Energy Table” and creates a whole
new algorithm for route cache and selection. With this new approach, all known
routes to a destination are evaluated with respect to three metrics: i) length of route;
ii) freshness of route and iii) energy level. The route that better satisfies these metrics
is the selected route to be used. Preliminary results from an early version of this
protocol showed that performance metrics such as traffic balancing, power
consumption balancing, and average end-to-end delay were improved when compared
to other protocols [9,10].

The remainder of this paper is organized as follows: section 2 makes an overview
of E2DSR; Section 3 describes current implementation work, both on network
simulator 2 (ns-2) and hardware implementation in sensors; this section also presents
the preliminary results of implementation work, finally Section 4 presents conclusions
and future work.

2 E2DSR Overview

E2DSR is a hybrid source routing protocol. It’s hybrid because it uses source routing
only to create and maintain a routing cache, data packets are forwarded according to
destination address and not to source routing. The routing cache in E2DSR is
basically similar to a routing table in routing protocols. The routing cache however
does not contain only the best route to a destination, instead it contains all K better
routes to a destination, being K a configurable variable, related to energy. Routing
cache is populated with routes discovered in the route discovery phase of E2DSR.

2.1 Route Discovery

In E2DSR, routes to unknown destinations can be learned by two different strategies:
(i) by overhearing routing control packets from neighbor nodes or (ii) by broadcasting
(flooding) a Route Request (RREQ) control packet to neighbor nodes. If using the
later, the RREQ includes the source address (S), destination address (D), a hop count

 E2DSR: Preliminary Implementation Results and Performance Evaluation 153

field and an energy field (in form of an array) that includes the energy level of every
node in the path. In this case, the energy field will only include the energy level of S.

Upon receiving a RREQ, each node needs to process it accordingly. In E2DSR
there are three types of nodes, Source nodes, Intermediary nodes and Destination
nodes.

2.1.1 Behavior of Intermediate Nodes
Contrary to DSR, in E2DSR the intermediate node forwards a maximum of K RREQs
(from S to D). When the first RREQ from S arrives to an intermediate node it stores it
in its request table (as in DSR), extracts the energy array to calculates the energy
parameter of path (energy parameter is discussed in section 2.4.4), being E1 the
energy parameter of first RREQ, and then processes it to check if it already knows a
path to D. If a path is known, then the node creates a Route Reply (RREP) message
back to S that includes its own address and the addresses of all other nodes in the path
to reach D, and its own energy level as well as energy level for each node in the path
to D.

If this node doesn’t have any route to D, it will change the received RREQ packet
by putting its own address and energy level in the correspondent address and energy
fields of the RREQ message. The RREQ is then broadcasted to all of its neighbors,
with the objective of reaching D (flooding process).

The intermediate node then caches all subsequent received RREQs (during a
configurable time window) and will choose the K-1 routes with the highest energy
level to reply. To do that, the intermediate node will extract the energy array of every
RREQ and then compares it to E1. Only the RREQs that have a better energy level
than E1 should be forwarded. To achieve this goal, we save E value (which is E1 plus
a threshold) in its request table (E is introduced in equation 1). The value of threshold
is controlled by a coefficient which is set to a reasonable value Ce=0.2 in equation 1.
A bigger coefficient yields a bigger threshold. The time at which the first RREQ is
received (T1) will also be saved on the request table and a related timeout clock
(TInter.Wait) will be started. ܧ ൌ ଵܧ ሺ1ܥ െ ଵሻ 0ܧ ܧ 1; 0 ଵܧ 1; Cୣ ൌ 0.2

(1)

When the ith route request (RREQi) arrives, the intermediate node will again calculate
Ei (energy parameter of RREQi) and if Ei > E then it forwards RREQi and also
updates E by Ei

 (i.e. E=Ei) otherwise it simply drops RREQi. By using this RREQ
processing mechanism, each intermediate node will forward K RREQ at maximum;
also the intermediate node will not forward RREQs that have arrived after TInter.Wait
timer expires. By varying K and TInter.Wait, the behavior of the protocol can be adjusted
to be more efficient. The chosen value for K is 3. Higher values for K imply
forwarding and processing more RREQs which have a significant impact in traffic
overhead and energy consumption. A smaller value for K limits the number of
redundant routes in a node’s routing cache, which can lead to higher delays and also
to more traffic in the network, due to the discovery phase flooding mechanism.

154 V. Talooki et al.

Also, by default TInter.Wait is set to 2 seconds because it’s assumed that a RREQ which
is received after this reasonable long time, has encountered problems inside its path
(such as traffic congestion or interference), so it should be ignored.

2.1.2 Behavior of Destination Nodes
In E2DSR, destination nodes will immediately reply to the first received RREQ
(avoiding the blocking problem described in Section 1) and also to the subsequent K’-
1 received RREQs, within time window TDest.Wait, that have the highest energy. By
changing K’ and TDest.Wait, we can customize our protocol for most efficiency; for
destination nodes their default values are K’=3 and TDest.Wait=4s.

2.1.3 Behavior of Source Nodes
After S receives first RREP to D, it immediately starts forwarding packets to D via
that route. However, taking in consideration the behavior of Intermediate and
Destination nodes in E2DSR, S can still receive other RREPs with higher energy
level, shortly after receiving the first RREP. After TSource.Wait seconds, S runs a new
E2DSR function, called Route Priority Function, that calculates the priority of
each discovered route (see section 2.4.1). The chosen route to a destination, to use
for data communication, will be the one that has the highest priority. This
(re)selection process doesn’t add additional delay since it can run in the
background.

For scenarios where the exchange of data between S and D takes too long, the
energy of the nodes in the path will quickly change and some nodes will eventually
reach a critical battery level. To avoid this, during the data transmission time
window, S may need to change the route to D to an alternate route, one that has
better energy.

Source nodes should run Route Priority Function in the following cases:

• The first run should happen after receiving the first RREP, at the beginning of
the communication, ܶ௨ଵ ൌ 0.

• The second run is at time ܶ௨ଶ ൌ ௌܶ௨.ௐ௧ ൌ Note that during this .ݏ6
time, S has probably received other routes to D.

• The next runs will take place each ܶ௧௩ ൌ This number is chosen .ݏ180
for test setup and can be changed based on new results.

By using this mechanism, source nodes will balance the energy consumption between
the best routes they have to a specific destination.

2.2 Control Packets in E2DSR

Control packets are used by E2DSR in order to discover and maintain routes. Shows
how these control packets are handled.

 E2DSR: Prelimina

Fig

2.2.1 Structure of Route
In E2DSR the RREQ has a
field contains the energy va
the RREQ. Nodes append t
energy value for each node
levels. Level zero means ba
levels gives a good granul
overhead.

2.2.2 Structure of Route
In E2DSR the RREP mess
Destination nodes, upon rec
energy array field that is a
the RREP to the originator
node that already has a rou
route when responding to th

The energy array of the
level of a route.

2.3 The Energy Table

In E2DSR, nodes create a t
discovered nodes. Energy
and RREPs. The energy tab
whole path towards a dest
update both the routing cac

B1

RREQ Hand

C1

Receiving RREQ

Is destined for us?

D1

NO

ForwardRREQs()

D2

YES

ReplyToRREQs()

ary Implementation Results and Performance Evaluation

g. 1. Control packet handling in E2DSR

Request (RREQ) Routing Control Packets
an energy field in the form of an array. This energy ar
alue (battery remaining power) of each node that forwar
their energy value to the end of the energy array field. T
e is implemented by a 4 bit field which gives 16 differ
attery critical and level 15 means full battery. The use of
larity level while maintaining header size at a reasona

Reply (RREP) Routing Control Packets
sage was also modified to include the energy array fi
ceiving a RREQ message, create a RREP message, add
copy of the one received in the RREQ message, and s

r of the RREQ. If a RREQ is received by an intermed
ute to destination, this node uses the energy values of t
he RREQ message.
new RREQ and RREP message directly shows the ene

table called Energy Table, used to save the energy value
values are extracted from received or overheard RRE
ble will then allow a node to determine the energy leve
tination. Every time S listens a RREP or a RREQ it w
che and energy table.

A

Control Packet
Handling in E2DSR

dling

C2

Sending RREQ

D3

Like DSR

B2

RERR Handling Like
DSR

B3

RREP Handling

C3

Receiving RREP

Is destined for us?

D4

NO

Like DSR

D5

YES

RoutePriority()

C4

Sendind RR

D6

Go to D2

155

rray
rded
The
rent
f 16
able

eld.
d an
end

diate
that

ergy

e of
EQs
el of
will

REP

2

156 V. Talooki et al.

2.4 Route Selection

In E2DSR a Route Priority Function is defined to determine the priority of each
discovered route. For a specific source and destination pair, the route which has the
maximum priority will be selected as the best route between candidate routes. The
Route Priority Function has three input parameters with respect to each route: (i)
length; (ii) freshness and; (iii) energy of path. These parameters have values
normalized between 0 and 1 and are explained in the next subsections.

2.4.1 Priority of a Path
The PathPriority function uses (2) to compute the priority of a path. ܲܽݕݐ݅ݎ݅ݎ݄ܲݐሺ݅ሻ ൌ ிܭ · ሺ݅ሻܨ ாܭ · ܭሺ݅ሻܧ · ሺ݅ሻܮ (2)

Where KF, KE and KL are the coefficients for freshness, energy and length of route,
respectively. Desirable values for these coefficients, obtained through simulation, are
KF=1 KE=3 and KL=1. It’s possible to achieve a higher performance regarding a
special metric by giving a higher weight to the related parameter in (2). For example,
for end-to-end delay the PathPriority function can be customized by a higher
coefficient for length parameter (KL), because delay is typically more dependent on
the length of routes.

2.4.2 Freshness Parameter
Measuring the freshness of a route is especially important in wireless ad hoc networks
due to its dynamic nature. Node’s movement constantly changes the validity of a
route. Therefore every entry in the node’s routing cache should have information
regarding how fresh that route is. A route can be old and fresh at the same time, if it
was learned a long time ago but used recently. The F(i) parameter in (2), indicates the
freshness of route i and can be measured according to (3):

ሺ݅ሻܨ ൌ ݊ െ ݅ 1݊ (3)

The freshest route (the one learned or used more recently) has a freshness value of 1
and, for n routes, the oldest route as a freshness value of 1/n. All other routes have
freshness values between 1 and 1/n.

2.4.3 Length Parameter
Longer routes can increase the delay in an ad hoc network. Also longer routes have
more links, which leads to a higher probability of link breakage. The L(i) parameter in
(2) indicates the length of route i and can be measured according to (4):

ሺ݅ሻܮ ൌ ݄ݐ݃݊݁ܮ_ݔܽܯሺ݅ሻ݁ݐݑܴ_݂_݄ݐ݃݊݁ܮ (4)

 E2DSR: Preliminary Implementation Results and Performance Evaluation 157

Length_of_Route(i) is the length, in number of hops, for route i. Max_Length is the
maximum length that a route can have in DSR routing protocol, default value is set
to 16.

2.4.4 Energy Parameter
The energy level of a specific route is an important characteristic of that route, since it
can assure that a link will not go down due to power issues. However, a route may
have nodes that in average have good battery levels and, at the same time, have some
nodes with low battery levels. Since there is a high probability of failure in the low
battery nodes, this route is undesirable.

The E(i) parameter in (2) indicates the energy of route i and can be measured
according to (5). ܧሺ݅ሻ ൌ ሺ݅ሻܧܴ · ሺ݅ሻܯሺ݅ሻܧܴܯ · ଶ (5)ݕ݃ݎ݁݊ܧ݈ܽ݅ݐ݅݊ܫ

M(i) represents the number of nodes in route i. InitialEnergy is a constant that defines
the maximum energy that a node can have. RE(i) represents the total of the remaining
energy in route i. MRE(i) is the minimum of the remaining energy between all nodes
of route i. MRE(i) is important because it will allow the detection of the low battery
nodes problem described previously. Knowing that MRE(i) is a part of RE(i) and is
taken into account twice, the E(i) calculation presented in (5) will be modified to the
one presented in (6).

ሺ݅ሻܧ ൌ ሺܴܧሺ݅ሻ െ ሺ݅ሻሻܧܴܯ · ሺ݅ሻܯሺ݅ሻܧܴܯ · ଶݕ݃ݎ݁݊ܧ݈ܽ݅ݐ݅݊ܫ (6)

2.5 Route Maintenance

Routing maintenance process in E2DSR is like DSR protocol. When a node, by
forwarding a packet from S to D, discovers a link breakage it must send Route Error
(RERR) control packet back to S. By using this mechanism, all nodes in path to the
source will learn about this link breakage and update their routing cache accordingly.

3 E2DSR Implementation

Currently, E2DSR is being implemented in both simulation environment and real
sensors. Validation through simulation is being done with ns-2 [11] since it has
proven to provide trusted results and it is also widely accepted by the academic
research community.

The implementation in real sensors is being done in TinyOS 2.1 [12] and being
tested on Telos ultra low power IEEE 802.15.4 compliant wireless sensor modules
(revision B) [13]. Code regarding E2DSR implementation in sensors is first done in
TOSSIM simulator [14], where it is tested, and then exported to the sensors. Currently
we have a testbed of ten sensors and have successfully implemented RREQ, RREP

158 V. Talooki et al.

and RERR primitives and Route Priority Function, as described in the previous
sections. The testing in real sensors is allowing us to fine tune some E2DSR
coefficients.

3.1 Implementation in ns-2

ns-2 [11] is a discrete event simulator where the advance of time depends on the
timing of events maintained by a scheduler. ns-2 uses two languages: (i) C++ for
the object oriented simulator, and, (ii) an OTcl interpreter for writing and
executing user’s scripts (simulation scenarios). The OTcl can make use of the
objects compiled in C++ through a TclCL (Tcl/C++ interface) linkage. The use of
C++ in the simulator code has the advantage of reducing packet and event
processing time, allowing it to achieve fast execution times. The use of OTcl,
despite being a compact and very powerful object programming language, allows a
more intuitive interface with the user, when compared to C++. The development of
ns-2 started in 1989 and has evolved substantially over the past few years; it has
been supported mainly by DARPA, NSF and the constantly growing ns-2
community. Bugs in the ns-2 software are still being discovered and corrected;
each user is responsible for verifying that his simulation is not invalidated by bugs.
Additionally, due to its old code, output files are somewhat difficult to understand
and users need to parse them in order to obtain the desired results. In order to
improve output understanding, it is current practice to put ‘debugs’ and ‘printfs’ in
ns-2 code. Nevertheless, ns-2 is considered a feasible simulator and as such, it’s
largely used by academic researchers.

Specific implementation details for the E2DSR primitives can be found in [7].

3.1.1 Simulation Scenario and Results

3.1.1.1 Testing E2DSR implementation. Up to now, E2DSR was simulated in ns-2
using a topology of 30 mobile nodes. Table 1 shows the other relevant ns-2 simulation
parameters used for testing E2DSR implementation.

Table 1. Simulation parameters

Topology area 700m x 700m
Maximum mobility of nodes 10m/s
Paused time 50s
Number of nodes 30
Simulation time 200s
Traffic sources CBR
Data packets size 512 bytes
Sending rate 8 packets/second
Maximum no. connections 10

 E2DSR: Preliminary Implementation Results and Performance Evaluation 159

By using this scenario, Fig. 2 shows that at time 29.7s, node 17 executes the Route
Priority Function in order to find the best path to node 19. We can see that node 17
has in its routing cache, five paths to node 19. At the end the figure we can see that
path 17-29-5-19 is the one with better priority; and so, is the selected by node 17 to
route packets to node 19.

Fig. 2. Route selection process in E2DSR

Fig. 3 shows that at time 45.5s node 17 receives a RREQ sent by node 1 and
forwarded by node 9. Upon receiving this RREQ, node 17 will:

• Add self to the end of RREQ address array field. New path becomes [(1) 9 17];
• Add its energy level to the end of RREQ energy array field. The values 9, 12,

and 11 (last line in figure) shows the energy level of nodes 1, 9 and 17,
respectively.

• Update its energy table. By extracting the energy array field of RREQ, node 17
can learn or update the energy level of nodes 1 and 9.

Fig. 3. Node 17 receives a RREQ and updates its energy table

160 V. Talooki et al.

a) At time=4s

b) At time=45.5s.

Fig. 4. Energy table of node 17

The energy table is dynamic through all simulation time. Fig. 4 a) and b) show the
energy table of node 17 at time 4s and 45.5s. We can see that as simulation proceeds,
node 17 learns about the presence of other nodes in the network.

3.1.1.2 Testing E2DSR Performance. In this section we will provide preliminary
performance results that will allow measuring the effectiveness of the energy
balancing algorithm used by E2DSR. Two Table 1 based scenarios were used:

• Scenario 1: paused time varies between 0s (nodes are always moving) and
200s (nodes don’t move);

• Scenario 2: nodes’ velocity varies from 0m/s (static nodes) to 18m/s. In this
scenario we use a fixed paused time value of 40s.

Values are computed based on 100 iterations of the simulation, using a standard
deviation of the remaining energy for all nodes. Hence the energy load for each node
i, EL(i), is the relation between the consumed energy in node i and the total consumed
energy in all nodes in the network. EL(i) can be computed according to (7). ܮܧሺ݅ሻ ൌ (7) ݕ݃ݎ݁݊ܧ݀݁݉ݑݏ݊ܥ݈ܽݐሺ݅ሻܶݕ݃ݎ݁݊ܧ݀݁݉ݑݏ݊ܥ

The value of the deviation will be the metric for energy consumption balancing of the
protocol; the smaller the deviation, the more effective is energy balancing.

 E2DSR: Preliminary Implementation Results and Performance Evaluation 161

By using (7), Fig. 5 and Fig. 6 show the performance of both DSR and E2DSR
protocols when using scenario 1 and 2 respectively. Our preliminary results show
E2DSR has a higher performance than DSR regarding energy balancing and shows
lower deviation in energy consumption.

Fig. 5. Energy balancing vs. paused time

Fig. 6. Energy balancing vs. mobility

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

0 20 40 60 80 100 120 140 160 180 200

st
an

da
rd

 d
ev

ia
ti

on
 o

f
en

er
gy

 v
al

ue
s

Paused time (seconds)

Energy Balancing versus Paused Time

DSR

E2DSR

0

0.005

0.01

0.015

0.02

0.025

0 3 6 9 12 15 18st
an

da
rd

 d
ev

ia
ti

on
 o

f
en

er
gy

 v
al

ue
s

Mobility (m/s)

Energy Balancing versus Mobility

DSR

E2DSR

162 V. Talooki et al.

3.2 Implementation in Sensors

The E2DSR prototype was implemented in TinyOS 2.1.1 stable release. It was tested
on Xbow Telos B motes and on a modified version of TOSSIM simulator. We added
to TOSSIM a CC2420 radio stack model. The simulator has node mobility support,
energy consumption estimation during simulations, RSSI value measurement and
enhanced trace capabilities.

In order to add mobility, an application was implemented in Python language that
allows customization for the movement of nodes within the network. This application
reads the network changes from a text file, and the specific instants at which the
changes occur.

3.2.1 Implementation Scenario and Results
We consider 3 mobile nodes, travelling randomly amongst clusters of 5 nodes, with
an average connectivity time, to at least one cluster, of 1'26”. At this testbed we force
mobile nodes to be active seekers; they continuously send RREQ packets in order to
find a route to a specific destination node. We also consider that sensors are always in
a ‘full on’ state. After obtaining a route to the destination, the sensor sends CBR
traffic, 10 packets of 35 bytes every 100 ms (approx 28Kbps).

It is important to notice that the active seeker approach does not significantly
increase the energy consumption when compared to a passive seeker approach. The
only relevant issue related to the active seeker approach is a higher packet loss ratio
due to collisions with preambles. Simulation results measured an average of 0.26 data
frames lost by neighbor nodes whenever a source node sends frames. However, the
routing protocol retransmitted all lost frames and concealed the packet losses from the
application.

A. Average end-to-end delay
In E2DSR the best three routes (based on the metrics described in [7]) to a destination
are stored in a cache, and whenever a new route is required, the RoutePriority
function is executed.

When E2DSR is customized to E2DSRl by giving a higher coefficient to the length
of the route (which can decrease transfer time), it shows a better performance with
respect to end-to-end delay, up to 20% fewer deviations than DSR by varying pause
time or mobility, as shown in Fig. 7 and Fig. 8.

B. Throughput
Throughput is a measure of the number of bytes per second received by a mobile
node. In a wireless ad hoc environment, throughput should be measured taking in
consideration the frequently changing network topology of such networks. In our
testbed we trigger these topology changes by varying the velocity of mobile nodes.
Fig. 8 shows a comparison of the evolution of throughput when using E2DSR or
DSR. During the measurements the destination node was at an average distance of 8
hops from the mobile node.

 E2DSR: Preliminary Implementation Results and Performance Evaluation 163

Fig. 7. End-to-end delay comparison between E2DSR and DSR

Fig. 8. Throughput comparison between E2DSR and DSR

0 5 10 15 20 25 30 35

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

mobility (m/s)

de
la

y
(s

ec
on

ds
)

End to end delay comparison

E2DSR

E2DSRl

DSR

0 5 10 15 20 25 30 35

0

500

1000

1500

2000

2500

3000

3500

4000

Mobility (m/s)

T
hr

ou
gh

pu
t (

by
te

s/
se

c)

Mobile Node Throughput

E2DSR

E2DSRl

DSR

164 V. Talooki et al.

4 Conclusions and Future Work

Even though a full evaluation of E2DSR is not possible at this moment, the
preliminary results are quite promising. We shown that E2DSR algorithm performs
better energy balancing and improves energy consumption when compared to well
known DSR. E2DSR also shows an improvement of approximately 20% in end-to-
end delay and throughput with regards to a well known protocol as DSR. These
results are sufficient enough to motivate for the continued development of E2DSR.
We also take in consideration that a previous version of E2DSR [9, 10]1, was already
compared to other protocols, including AODV, using performance metrics such as
jitter and overhead and proved to be efficient.

E2DSR is being developed to work on sensors as in other mobile devices, hence it
is continuously being fine tuned according to the results received by both our
simulation platform and implementation testbed; for example, operations like
divisions are more demanding for the limited CPU resources of a sensor, so metric
calculations needed to be rethink in order to avoid these and other complicated
operations. Other limitation is related to the limited bandwidth of sensor wireless
links; using pure flooding mechanisms for route discover and maintenance has a
direct impact in data throughput, on the other hand, avoiding flooding mechanisms
will require a complex node-to-node signaling protocol that consumes memory and
CPU. The solution we present for E2DSR seems a nice balance between these
considerations.

Also currently the energy field in E2DSR uses a linear quantization; however our
latest studies indicate that if we give more granularity to the lower levels of battery
energy, by using a non-linear quantization method, we will be able to achieve a more
effective energy balance.

Acknowledgments. The work presented in this paper was undertaken in the context
of the project INFSO-ICT- 225654 PEACE (IP-Based Emergency Applications and
ServiCes for Next Generation Networks), which has received research funding from
the European 7th Framework Programme. The authors would like to acknowledge the
contributions of their colleagues from the PEACE consortium.

References

1. Woo, K., Lee, B.: Non blocking localized routing algorithm for balanced energy
consumption in mobile ad hoc networks. In: IEEE MASCOTS 2001, pp. 15–18 (2001)

2. Royer, E., Toh, C.: A Review of Current Routing Protocols for Ad Hoc Mobile Wireless
Networks. IEEE Personal Communications 4(2), 46–55 (1999)

3. Singh, S., Woo, M., Raghavendra, C.: Power-Aware Routing in Mobile AD Hoc
Networks. In: International Conference on Mobile Computing and Networking, MobiCom
1998, pp. 181–190 (1998)

1 Load Balancing Routing Protocol (LBDSR) – is also being developed but it is not meant to

work on sensors, due to memory and processor requirements.

 E2DSR: Preliminary Implementation Results and Performance Evaluation 165

4. Chang, J., Tassiulas, L.: Energy Conserving Routing in Wireless Ad Hoc Networks. In:
Conference on Computer Communications IEEE Infocom, pp. 22–31 (2000)

5. Zhou, A., Hassanein, H.: Load-Balanced Wireless Ad Hoc Routing. In: Canadian
Conference on Electrical and Computer Engineering, pp. 1157–1161 (2002)

6. Chakrabarti, G., Kulkarni, S.: Load Balancing and resource reservation in mobile ad hoc
networks. Ad Hoc Networks 4(2) (2006)

7. Talooki, V., Marques, H., Rodriguez, J., Água, H., Blanco, N., Campos, L.: An Energy
Efficient Flat Routing Protocol for Wireless Ad hoc Networks. In: 1st IEEE International
Workshop on Convergence of Heterogeneous Wireless Systems, International Conference
on Computer Communication Networks, ICCCN 2010 (2010)

8. IETEF Draft: The Dynamic Source Routing Protocol (DSR) for Mobile Ad Hoc Networks
for IPv4 (2007), http://tools.ietf.org/html/rfc4728

9. Talooki, V., Rodriguez, J.: Jitter Based Comparisons for Routing Protocols in Mobile Ad
hoc Networks. In: IEEE Workshop on Wireless and Optical Networks (WI-OPT 2009),
Saint-Petersburg, Russia (2009)

10. Talooki, V., Rodriguez, J., Sadeghi, R.: A Load Balanced Aware Routing Protocol for
Wireless Ad Hoc Network. In: 16th IEEE International Conference on
Telecommunications, Marrakech, Morocco (2009)

11. The Network simulator ns-2 (2010), http://www.isi.edu/nsnam/ns
12. TinyOS: open-source operating system designed for wireless embedded sensor networks,

http://www.tinyos.net/
13. Polastre, J., Szewczyk, R., Culler, D.: Telos: enabling ultra-low power wireless research.

In: 4th International Symposium on Information Processing in Sensor Networks. IEEE
Press (2005)

14. Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: Accurate and Scalable Simulation of
Entire TinyOS Applications. In: ACM International Conference on Embedded Networked
Sensor Systems (SenSys), pp. 126–137 (2003)

	E2DSR: Preliminary Implementation Results and Performance Evaluation of an Energy Efficient Routing Protocol for Wireless Ad Hoc Networks
	Introduction
	E2DSR Overview
	Route Discovery
	Control Packets in E2DSR
	The Energy Table
	Route Selection
	Route Maintenance

	E2DSR Implementation
	Implementation in ns-2
	Implementation in Sensors

	Conclusions and Future Work
	References

