
J. Rodriguez, R. Tafazolli, C. Verikoukis (Eds.): MOBIMEDIA 2010, LNICST 77, pp. 136–150, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Bridging the Devices with the Web Cloud:
A Restful Management Architecture over XMPP

Miguel Almeida1 and Alfredo Matos2

1 Nokia Siemens Networks
2 Instituto de Telecomunicações

miguel.almeida@ua.pt, alfredo.matos@av.it.pt

Abstract. In this paper we deal with the interactions between different types of
devices and a SaaS (Software as a Service) Management System. It is our goal
to provide a generic way by which users interface with their devices in terms of
getting information and actually being able to communicate with them. Our
effort in this proposal is the establishment of these interactions while assuring a
set of requirements such as privacy, authentication, association of multiple
devices to a user, etc. We provide the architectural means to support this view
and ensure the communication of the IoT (Internet of Things) devices with a
Cloud of Web Services, while maintaining the M2M (Machine 2 Machine)
vision. To do so we define an entity, the Cloud Bridge Server, which uses the
Extensible Messaging and Presence Protocol (XMPP) to interact with the
devices, and which provides a Representational State Transfer (REST) API for
3rd party Web Services. We present results on how our approach performs when
facing other alternatives and the main advantages of using it.

Keywords: Reporting, Actuation, XMPP, REST, SaaS, Service Management.

1 Introduction

As we evolve towards the Future Internet (FI), we expect the number of devices to
grow, along with the interactions between them. The widespread appearance of small
and embedded devices drives the Internet of Things (IoT) as a branch of the FI. In
such a scenario, being capable of adequately managing these devices implies a critical
success factor, where scalable and secure interactions will pave the way for
ubiquitous adoption of these paradigms.

It has become clear that information generated by the users’ multiple devices and
sensors, needs to be collected and evaluated in a scalable way. Many of these devices
gather information that serves as input for future decisions, in which case, commands
need to be sent back to the devices. We consider reporting and acting as the two
important management components for emerging networks, especially considering the
IoT paradigm in on Machine to Machine (M2M) context.

We face a lack of solutions that provide a scalable and integrated proposal for
device management. These solutions do not take into account emerging requirements
that stem from the FI and IoT, energy efficient environments, and the need to
integrate with the omnipresent web environment.

 Bridging the Devices with the Web Cloud: A Restful Management Architecture 137

The web component is translated into the sweeping trend of service oriented
approaches, resulting in paradigms like Software-as-a-Service (SaaS), Platform-as-a-
Service (PaaS) and Infrastructure-as-a-Service (IaaS), which compose the Cloud.
Such paradigms provide a greener approach by maximizing the resources’ efficiency
with scalable infrastructure, reusable platforms and distributed services that meet the
end-user needs. It becomes apparent that a bridge must be established between the
Cloud paradigms, embodied by SaaS and PaaS architectures, and the Future Internet,
in the form of IoT. The Cloud requires a strong interaction between web services, and
to make it a part of the FI, this cooperation must be extended to services which are not
web oriented – the devices operating in a M2M environment as part of IoT.

Many ongoing efforts attempt to integrate both of these paradigms, but a seamless
approach is yet to be accomplished. It must be assumed that any modern management
architecture must cope with a cloud driven approach to enable reporting and acting.
Therefore, it must integrate multiple domains and variable security environments,
where the devices are user driven and might even exist on user premises.

In this paper we define a platform that interacts with different devices associated
with users, supporting the M2M vision. This platform is presented as a twofold
ecosystem where a cloud service interacts with an Extensible Messaging and Presence
Protocol (XMPP) enabled device, through web like primitives. It provides
asynchronous and secure reporting/acting via a well defined set of commands,
maximizing resource usage on the device layer. This architecture is extended through
a consistent Representational State Transfer (REST) interface that ensures the cloud
integration by connecting a common web transaction model with the interfaces
exposed by devices, managed within in the cloud.

By using a consistent addressing scheme based on the XMPP’s Jabber ID (JID)
and a bridge entity between the two defined environments, we attempt to address the
problem caused by the complexity derived from the heterogeneity of terminals,
sensors and networks, which is one of the requirements for the future of device
management. Moreover, as each person uses several devices, we allow the possibility
of associating devices to the users’ identity while assuring a secure channel across
domains.

Having in mind that a big part of the considered devices will feature power
processing and autonomy constraints, we focus on a solution that does not require
excessive resource consumption. We show that all the added value introduced with
XMPP does not compromise performance, as discussed in Sec. 5.

The rest of the paper is organized as follows: Section 2 details the background and
existing proposals in the literature. Section 3 details the XMPP driven reporting and
acting architecture, exploring the requirements to allow exchange of information at
the transport level. Section 4 shows how communication is established between the
devices and the cloud, introducing the bridge between REST and XMPP and thus
enabling the integration of the device information multiple web services in a SaaS
approach. Section 6 concludes the paper.

138 M. Almeida and A. Matos

2 Background and Requirements

When integrating devices with SaaS and PaaS oriented solutions, we must consider
two main communication aspects: communication between the devices and the Cloud,
and in-between the services within the Cloud. The chosen protocol which allows
devices to interact with the cloud needs to consider several aspects, especially
information transport.

For device interaction, we highlight the Simple Network Management Protocol
(SNMP) [1], where information is collected from agents installed at the managed
devices. The information can be polled on the device, and follows an explicit
metadata scheme defined by the Management Information Bases (MIBs). When using
SNMP to deal with the exchange of metrics and commands, we need to consider that
while providing a performing environment, it lacks in authentication, identity
management and any type of web integration, especially considering its binary
oriented approach. Traps try to mend the lack of asynchronous core approach in
SNMP, but only manage to do so in one direction, i.e., the client can report
asynchronously, but to receive a command (or action as we call it) it needs to check
the Network Management System (NMS) for information. Due to the aforementioned
reasons we need to find a suitable transport alternative that fits the IoT approach,
concerning resource efficiency (no pooling) aspects, and that, at the same time, allows
a feasible integration with Web Services (WS).

The typical model for communicating with the cloud, or web service guideline, is
based on REST interfaces over HTTP. REST provides a clear interaction model that
enables powerful and flexible solution through simple interfaces, in a scalable
environment. However, HTTP is synchronous (uses workarounds such as SMTP) and
requires additional mechanisms to support authentication and identity management.

Integrating IoT devices and HTTP environments has been proposed over SOAP
[2]. REST and SOAP are associated to HTTP as means to convey information that the
cloud understands. SOAP does not provide any value beyond objects over HTTP.
Having these objects transport reporting or acting information can be considered an
orthogonal issue. In any case, SOAP faces a scalability issue because it usually
requires a large amount of technology to establish bidirectional invocation: it usually
requires an HTTP web server, coupled with an application server (e.g. Tomcat) to
enable the WS environment. Moreover, current trends resort to REST over HTTP due
to its simplicity and ease of usage given the mapping with of the HTTP methods
(GET, PUT, DELETE and POST). It also provides a long-lasting interface that is not
coupled with the business logic behind the interface. Where the WS approach has
proven to be too complicated for mass scale deployment, we have seen REST
Application Programming Interfaces (API) take hold, quickly extending to an
increasing number of service providers (like Web 2.0 companies, such Facebook or
Twitter) deploying SOAP-incompatible REST approach.

We then turn to a technology which has been slowly gaining traction, as it
broadens its applicability domains. XMPP offers good conditions as a transport
protocol for applications within the web services’ scope since it offers reliability,
synchronous and asynchronous deliver of messages and does not require a complexity
of features such as WS-Routing and WS-Referral to ensure identity trace back [3]
within private domains, since addressing is not only IP based.

 Bridging the Devices with the Web Cloud: A Restful Management Architecture 139

XMPP was conceived as an alternative Instant Messaging protocol but has been
evolving to a broader concept. Given the fact that it is open and XML based it became
easy extendible and became an IETF standard. According to [4] there are three Core
Stanza types defined by XMPP: The <message/>, <presence/> and <iq/>. The fist
works as a push mechanism to immediately send messages if the destination is online.
Presence relies on publish-subscribe mechanisms through which nodes inform the
server of their availability (e.g.: online, away, do not disturb) and is usually
distributed among the other nodes in the roster. The last one is a stanza responsible
for entities making requests and receiving responses (hence Info/Query) from each
other for management, feature negotiation and remote procedure call invocation.

One of the biggest advantages of XMPP is the fact that addresses can be associated
with people or devices such as computers, mobile phones, sensors, routers or cellular
network elements (3GPP RAN and Core Network Elements). This is achieved by the
formation of the JID (Jabber ID), a uniquely addressable ID, which is a valid URI [5],
that is created according to the following format: person@domain/resource, where
person usually represents the user entity; domain represents the network gateway or
"primary" server to which other entities connect for XML routing and data
management capabilities; and resource, which is of special interest since it allows to
identify a specific device associated with the person. Security can be achieved by
using Transport Layer Security (TLS) for channel encryption, while authentication is
achieved through Simple Authentication and Security Layer (SASL). Regarding the
portability and interoperability requirements, XMPP uses the “over-IP” approach and
allows the binding of resources to streams for network-addressing purposes. This
feature also allows us to perform Identity Management via the relationships of the
user and of the resource.

Another requirement we want to fulfill is the communication across multiple
domains (e.g. across two operators). XMPP allows multi domain management using
[6], while making use of server-to-server communication. It also allows the
capabilities’ exchange and location awareness features via the presence stanzas.
Regarding the efficiency of the protocol, an important matter as m[entioned above,
several activities are being conducted to improve XMPP performance, namely new
lightweight version such as [7], but the major performance issues drive from the
presence signaling which can be optimized, but is not the scope of this work. That
concern made us consider that proposals like Soap over XMPP [8], would even
enhance the performance concerns, since XMPP and SOAP are two XML based
protocols, running one on top of the other. XMPP has been previously used in device
connection, but only as a protocol capable on interconnecting sensors in an
asynchronous wireless environment [9], falling short of the IoT potential it carries.
We see a clear opportunity for XMPP and REST as IoT drivers, as explained in the
following sections.

3 Managing Devices with XMPP

Future IoT environments will impose that networks deal with an increasing number of
devices. It is crucial that the paradigms start shifting towards optimized security and
event driven approaches for M2M scenarios.

140 M. Almeida and A. Matos

We propose a framework using XMPP as the core technology for device
management. Its base specification enables a plethora of features in terms of security,
simple federation mechanisms, and considering its kernel use of XML, it enables a
seamless integration path towards cloud technologies, one of the emerging
networking paradigms. We use XMPP beyond its transport features, by leveraging the
core components such as the JID and the XMPP federation model to build an IoT-
aware environment that supports multiple devices.

3.1 User and Device Identification

XMPP provides the usage of a JID that uniquely identifies a user at a specified
resource. The user ID is a unique identifier within the operator domain. Each user
authenticates at its designated server, providing secure authentication towards the
XMPP provider (see Figure 1 and Figure 2).

john.doe@operator.com/mobile-phone

UserID Resource

john.doe@operator.com/mobile-phone

UserID Resource

Fig. 1. JID example

This creates a strong trust relationship between provider and user, even on devices
which are not supplied by (and bound to) the operator. The JID can also convey the
device identification, by specifying the resource, associated with the registered user.

By aligning the user identification in the JID with the user profile at the operator, it
is easy to perform Authentication, Authorization and Accounting (AAA) in the
operator structures, using a unique identifier, coupled with the appropriate resource
information. Reporting user and device related information becomes simpler, due to
the implicit identity linkage.

Fig. 2. Multiple Resources linked to one account

The described JID semantics constitutes a lightweight identity approach, providing
a unique user identifier and associated authentication and authorization credentials.
However, one of the key advantages of XMPP is that this user identification can be

 Bridging the Devices with the Web Cloud: A Restful Management Architecture 141

easily mapped with Identity Management (IdM) architectures such as SAML 2.0
based frameworks, like Liberty Alliance [10], or other approaches such as OpendID
[11], where the user identity is a URL (and the JID is a valid URL). The XMPP
resource becomes part of the user identity, i.e. mapped to identity attributes, and a
more secure framework, now tied to the XMPP identity and to the network’s
resources.

In this paper we focus on information aggregation as a function of the SaaS layer,
by using the XMPP JID as the central structure, gathering information stemming from
several user devices bound under one user profile.

3.2 Network Operation with XMPP

Within the XMPP domain of the proposed solution we must define two important
steps: 1) how the connections are established between the network entities (devices
and servers) and 2) how the information is exchanged between them.

Interacting with Devices

As we previously stated, we take advantage of the relationship between the users and
their operator accounts. To support this, the following steps are taken:

1. User has a pre-enrolment phase with the Customer Service Provider (CSP):
XMPP account pre-registered at the operator, with associated credentials;

2. User is authenticated at the CSP domain through the certified devices.
Authentication with the provider is done through a secure TLS channel
provided by XMPP, by which the user proves to be the owner of the XMPP
identity;

3. User claims the resource: XMPP uses a lightweight mechanism to identify
resources;

4. We request that the server provides a valid certificate establishing two-way
authentication, establishing a scenario of mutual authentication, protecting
the user’s security and privacy;

5. Allow multiple concurrent XMPP connections for the same account, towards
the same server, but with different resources, allowing concurrent usage of
different devices, and using the secure and authenticated channels for the
user information specified in the following section.

Information Exchange: Reports and Commands

Once the secure and authenticated communication channels are established, we can
start the information exchange process over them. However, we first segment the
nature of the information to understand what types of transport mechanisms (Stanzas)
are necessary. The terminal collects the devices’ characteristics, the Performance
Metrics and the behavior Actions. The performance metrics are related with a
multilayer analysis considering equipment performance, network performance and
application performance, but given that we focus on the framework to convey these
metrics rather than on the metrics themselves, we consider this component out of

142 M. Almeida and A. Matos

scope since it has been covered extensively in existing literature [12]. Moreover, the
actions of the user may also be of interest, which leads us to consider tracking that
information as well (e.g. mobility or user interaction with applications).

As shown in Figure 3, the XMPP server, upon initial registration of the user,
subscribes to all the events coming from the user. This will allow access to the reports
stemming from the user. This information can later be relayed towards the cloud,
particularly the Web Services that operate on a SaaS paradigm, as described in
Section 5. This is done through a RESTful interface, where the operator’s XMPP
server acts as a proxy for the required information.

XMPP
Server 1

XMPP
Server 2

Thing
XMPP
Client

Thing
XMPP
Client

Operator 1 Operator 2

Cloud

Thing
XMPP
Client

Thing
XMPP
Client

Fig. 3. Network Diagram

The choice of using the message stanza was taken considering that when
comparing it to the iq stanza, it allows bare JIDs (user@host), while the iq requires
full JIDs. Also the message stanzas can be sent later if the resource is offline thus
ensuring liability [4].

We define the following additional Message Types in <message/> stanza: Report
and Command.

Reports are sent from the devices to the XMPP server, where the final targets are
the mentioned Cloud services. Similarly, Commands originate at the Cloud service
towards the XMPP server, which conveys them to the appropriate device.

Then we specify the methods in the subject as shown in Table 1, ensuring Web
Service integration. The usage of these methods can be extended as far as the Web
Service understands them. Our XMPP server does not require any specific adaptation
over this matter.

In the stanza subject we use the method invocation. It is worth mentioning that we
re-use the subject field to convey the required operations so that the message if fully
XMPP compliant, without the need do draft a XMPP extension Protocol (XEP). The
field however, is fully understood at the XMPP/Cloud Bridge Server (Cloud Bridge
Server), which performs the necessary operations with the message. We purposely

 Bridging the Devices with the Web Cloud: A Restful Management Architecture 143

align the method invocation towards HTTP primitives to clearly align the XMPP
interactions with the REST interfaces that will be supported as part of the cloud
integration discussed in Section 4.2, which specifies the interactions between the
devices and the Cloud. We support the following methods, as specified by HTTP1.1:
GET, POST, PUT and DELETE.

The body conveys an XML object indicating the name of the metrics and their
values. The definition of this XML implies a creation of an Object Class with well
defined Classes on the Service’s Data Model. We refrain from detailing that
specification in the scope of this work. By using this approach the XMPP Servers at
the other domains are completely transparent and do not require additional extensions,
since the stanzas are fully compliant with legacy XMPP.

Table 1. Example of a Message stanza with the Report type

<message
 to='romeo@example.net'
 from='juliet@example.com/balcony'
 type='Report'
 xml:lang='en'>
 <subject>PUT</subject>
 <body>9102983019283012983102938</body>
</message>

3.3 Inter-domain with XMPP

Given the XMPP Federation support defined in XEP [6], communication between
servers is tightly integrated into the base protocol. Through different federation levels,
it enables secure communication, with full authentication when required, between
different domains. This property allows users registered on different XMPP domains
to communicate, while still retaining the security and authentication properties of a
federated approach. Trust is preserved by using Certification Authorities (CA) and
public certificates in the TLS exchanges, as defined in the base specification.

By using the described model, it is possible for nodes that operate in different
domains, to relay information in a secure and trusted environment. This setup
introduces a hierarchical concept that enables multiple operators to use the same
cloud service, with different federation levels as explained in [6]. This view is
presented in Figure 3 where, two federated domains, resort to the same Cloud service.

4 Bridging Devices into the Cloud

As services begin to shift into the cloud, SaaS is becoming the driver of a web-
oriented architecture. Any solution that wishes to provide cloud interaction must take
into account that, as mentioned before, SaaS is being built around REST interfaces.

144 M. Almeida and A. Matos

A REST interface facilitates the interoperability of the management solution and SaaS
services.

We leverage our XMPP based device management architecture to provide Cloud
support through a REST interface towards the devices, sustained by the Cloud Bridge
Server. The added infrastructure is fully aware of the M2M environment, and
simultaneously collaborates with federated web services to achieve a cloud model,
built around SaaS. We define a REST API that properly exposes the XMPP properties
towards web services, facilitating cloud interaction.

4.1 Cloud Interaction

The Cloud Bridge server is a central point of the architecture. It provides the device
management interfaces and functions for the registered devices. Therefore, given its
administrative control over the devices, it exposes a REST API that enables
interacting with the registered devices (Figure 4).

By functioning as the proxy or bridge to the M2M environment, it handles user
authentication, which put it in a position to also aggregate the control over the
exposed device information towards the cloud. The proposed exposure is done in a
federated web services model, through the definition of the REST API that drives
actuation and reporting towards the SaaS services.

Fig. 4. inCloud Interactions

The architecture can be summarized as a two interface system: 1) the XMPP server
exposes an interface that enables the 3rd party service to register as information
receivers, and to act as command providers, always referencing the appropriate JID
and going through the XMPP server’s defined authentication mechanisms; 2) The
web services expose an interface that allow information to be asynchronously
supplied, and commands requested, when necessary due to network management
operations. The two-way system allows outsourcing not only information storage, but
also network control and management.

4.2 Aligning XMPP with REST Services

The alignment between the REST services and XMPP domain is assured in full by the
REST/XMPP Bridge server. However, to assure a seamless integration we must
assure that the naming, through the JID, is consistent in both domains and that there is

 Bridging the Devices with the Web Cloud: A Restful Management Architecture 145

a secure control over the provided access in information flowing between the two
domains.

The abovementioned scenario, where services interact seamlessly through the
Cloud Bridge Server, is only possible because there is a direct re-usage of the JID on
both XMPP and Cloud domain, which guarantees addressing consistency in both
domains. However, the REST paradigm mandates a stateless interaction, where
resources are properly identified. Even though the JID is already a referable URL, it
requires the definition of a state to use at a HTTP server, given that it implies the
concept of a user at a domain. To maintain compliancy with current web deployment
trends, we use a transformation of the JID (the key identification mechanism in the
XMPP domain) as the primary resource identifier in the web domain. The
transformation is provided according to Figure 5.

john@doe.com/smartphones

doe.com/user/john/resource/smartphone

john@doe.com/smartphones

doe.com/user/john/resource/smartphone

Fig. 5. JID Translation example

With this simple translation mechanism provided by the Cloud Bridge Server, we
can guarantee the required consistency between the two domains, enabling the
exposure of XMPP resources to the REST interface, which can now be fully
controlled on a per-user/per-device policy determined by the bridge.

Given the fact that the JID is URI compliant we can use it to back trace the node of
origin of the information. All messages are sent to the Cloud seamlessly, given that
any web like environment can support RESTful primitives. Similarly, the selected
stanzas require mapping between the two domains. Given the defined XMPP
operations – GET, PUT, UPDATE, DELETE – which are 100% HTTP compliant,
and the core of REST functionality, integration is assured with the JID
transformation. This non-naïve selection of operations creates a perfectly aligned
environment with minimal effort on the Cloud Bridge Server.

As the entry point towards the Cloud, the Cloud Bridge Server enables the
communication between the devices and SaaS taking on a vital role for authentication
and authorization. It provides the means for the devices to send reports and receive
commands in a secure and trusted environment. We extend the properties stemming
form the XMPP environment to the Cloud by forcing a federation environment
between REST-enabled web services. Each service must register, define a SLA, and
authenticate to gain access to information pertaining to the devices. Given the control
over the information, the XMPP server is able to define a granular access control to
the information exposed, and even to exert a parsimonious filter on the commands
received from the SaaS services. Ultimately this decision can be left up to the device,
by having the server convert the REST API call to an XMPP request, and forwarding
it appropriately.

However, given that there is already a notion of identity on the Cloud Bridge
Server, provided by XMPP through the JID, it can define any number of configuration
on the access allowed between the identities’ resources and the with the 3rd Party Web

146 M. Almeida and A. Matos

Services. This requirement enables access control to the devices and their information
on a per service basis.

This secure setup even allows customizing the devices towards a specific web
service. If the devices are configured accordingly they can opt to send reports to the
custom Web Service URLs. The XMPP signaling will transport the report in the
message stanza to the XMPP Server and then the Web Service will perform a HTTP
POST on the destination Web Service. The Web Services need to be aware of the data
model being communicated. We do not intend to detail the Object Classes for each
data type in this paper, as we simply want to cover the transport and communication
procedures.

5 Discussion and Evaluation

We first start by comparing the different approaches in terms of feature support.
Using Table 2 as a reference, we can see that for the purposes of integrating the
devices with a web environment, SNMP is the most inadequate since HTTP based
solutions are already web based (because they use HTTP and hence this analysis is
Non Applicable for them) and XMPP is XML based which makes the transformation
of the objects direct.

Regarding the security features, XMPP creates a secure unique channel using TLS
an evolved solution of SSL. Earlier versions of SNMP present serious security
constraints and that in fact has been an issue widely addressed in SNMP v3, but still
the common applications use IPSec bellow the SNMP communication.

Table 2. Feature Comparison

Feature: XMPP HTTP+
 REST

HTTP+
SOAP

SNMP

Security TLS SSL SSL IPSec
Reliability YES NO NO YES
Authentication SASL NO NO NO
P2P Support YES YES YES YES/Traps
Easy to Integrate with
Web

YES YES YES Can Be Done

Easy to Integrate with
Operators

EASY N/A N/A Complex

Identity Management YES NO NO NO
Bi-Directional
Communication

YES NO NO YES*

Overhead HIGH HIGH HIGHEST LOWER

SNMP also allows authentication to verify that the message is from a valid source,
but we want to support authentication of an Identity and merge that with accounting
information which is not possible. None of the other solutions also allow this. That
brings us to the patter of Identity Management. In fact, XMPP is the best proposal to
link several devices to someone’s identification. And if such a platform is to be
deployed at a Network Operator’s site, then it would be good to allow the cross

 Bridging the Devices with the Web Cloud: A Restful Management Architecture 147

matching of accountings with the operator’s database, only feasible using the
possibilities offered by XMPP.

Being able to support asynchronous communication allows the deployment of an
important feature for fault management functions, which is sending alarms in a Near
Real Time way. There are a lot of applications which take advantage from this
possibility and XMPP is the best approach to deal which this type of events, also it
allows bidirectional communication without the need to be running a web server in
the devices, which is the only way to support bidirectional communication using
HTTP with REST or with SOAP. Also XMPP allows P2P (and hence device to
device) communication, which opens the possibility for nodes to self configure and
exchange capabilities as well as performance information in future work.

In terms of overhead and performance comparison, we evaluated how the access
links that connect the devices to the cloud would behave. As can be seen in Figure 6,
SNMP outperforms the XMPP approaches. This happens mainly because in XMPP
we defined an Object Class and used the objects within an XML to make the
transactions which we measured. The results presented for the XMPP approach were
obtained from experimental evaluation, while in the SNMP related results, we
computed the overhead induced by raw data transportation, when conveying binary
information. This information would require post processing at the NMS.

0

200

400

600

800

1000

1200

1400

50 100 150 200 250 300 350 400 450 500

Tr
af

fic
 g

en
er

at
ed

 (B
yt

es
)

Object Size (Bytes)

XMPP

SNMPv3 Get

Soap over HTTP Reports

SNMPv3 Traps

Fig. 6. Overhead and Traffic vs #Objects

In SOAP over HTTP, we must consider the overhead introduced by the signaling
and also the headers of the IP, TCP (with timestamps), SOAP and, SOAP envelope.
The calculated overhead was considered determined is presented in expression (1). As
the object size increases, packet segmentation occurs at the TCP layer, thus increasing
the size of generated traffic significantly.

LengthSoap=headerIP+headerTCP+headerHTTP+headerSoap+envelope+objectsize . (1)

Taking [13], we define the header size of SNMPv2c as approximately 25 octets. The
overhead of SNMPv3 is given by expression (2), where the Header Data of the SNMP
is given by expression (3) as 17 octets. This means that SNMPv3 adds a minimum of

148 M. Almeida and A. Matos

17 octets to SNMPv2c. Considering the signaling generated by both versions, the total
generated traffic is given by expression (4) SNMPv3. SNMPv3 traffic was generated
using ASN.1, and Get processes (Request + Response messages) were taken into
account for overhead measurement purposes.

TrafficSNMPv3 = HeaderData + SecurityParameters + ScoopedPDU data (2)

HeaderDataSNMPv3=SNMPVersion+MSGID+MaxSize+Flags+SecurityModel=17 Octets (3)

TrafficSNMPv3 = 88 +n (10+2.Objectlength +Value) (4)

When considering the trap-based approach, we determine the traffic of SNMP in
expression (5) for SNMPv2. Then, we calculate the minimum traffic generated by
SNMPv3 and add the additional minimum overhead (considering Communitysize=6
octets and Traplength=1 octet) to get expression (6) for the traffic generated by
SNMPv3 traps (OID refers to Object Identifier). As can be seen in Figure 6 and
Figure 7, Traps reduce the generated traffic especially when a many events are being
generated.

TrafficTrapSNMPv2c=63+Communitysize+TrapOIDsize+n.(3+OID+Value) (5)

Traffic SNMP v3 Trap = 87 + (3+ OID + Objectsize).numObjects (6)

In Figure 7 we show the required bit rate in function of the number of nodes
connected to a server.

0

50000

100000

150000

200000

250000

50 100 150 200 250 300 350 400 450 500

Number of Simultaneous Nodes

Tr
af

fi
c

G
e

ne
ra

te
d

 (B
y

te
s

)

SOAP over HTTP

SNMP Polling

SNMP Traps

XMPP

Fig. 7. Overhead and Traffic vs #Nodes

It represents a scalability analysis on the performance of the XMPP in terms of
throughput required per number of nodes. We see that, once again, SNMP
outperforms the XMPP approach, for the same reasons as explained above, but using
SOAP over HTTP would still be much worse. However with this comparison, we
want to show that the server’s requirements will scale proportionally to the number of
nodes.

 Bridging the Devices with the Web Cloud: A Restful Management Architecture 149

Nevertheless the number of features supported by XMMP cannot be neglected and
the ease of integrating the devices with a web environment makes it the most
attractive solution. We consider that the weight of the overhead is greatly
compensated by the provided features especially when considering Identity
Management possibilities and authentication procedures. Also, we cannot neglect the
flexibility allowed by the asynchronous and M2M oriented communication.

6 Conclusions

We have presented an architecture that addresses the integration of devices in a Cloud
scenario, taking advantage of asynchronous and secure technology, such as XMPP, to
drive a resource-maximizing solution, proven to be the greener approach in the long
run. Through analysis of XMPP as a transport technology and as the core driver for
interactions within the IoT domains, we consider it the best approach when
envisioning the integration of end user devices such as terminals, gaming consoles,
cell phones, IP enabled sensors, etc, with web environments and also with the
operator’s infrastructure. The number of features supported allows authentication
using the account identification of the devices’ owners within the operator’s Charging
Gateways, allowing the easy deployment of charging per usage. This, lightweight
identity mechanisms can also be extended into Future Internet IdM scenarios, placing
the proposed solution on the cutting edge of user-centric technologies.

The integration with the cloud environment provided through REST interfaces,
allows the interaction with 3rd party web services, increasing the possibilities of
applicability and revenue. By providing common and consistent interfaces to acting
and reporting on devices within IoT, we enable a new array of business relationships
and opportunities that put the telecom and infrastructure operator back in the driver
seat of the network, while enabling a clear interaction with the Cloud world, a feature
which has been profoundly lacking from the operators portfolio. We believe that these
paradigms will be a key revenue system where both operators and service providers
can capitalize by using the adequate tools, such as REST, XMPP and the Cloud
Bridge Server to unite the common approaches.

We consider that the weight of the overhead, when compared to binary approaches
such as SNMP, is greatly compensated by the features it provides especially when
considering the strong security environment that enables a new level of trust borough
onto M2M interactions. If we consider the Identity Management possibilities on top
of enabled authentication procedures, then we face a new ecosystem will benefit all
the parties in the network.

Also we cannot neglect the plethora of possibilities facilitated by the proposed
asynchronous paradigms, and publish-subscribe mechanisms that will drive M2M
interactions, with resource maximization concerns fro greener technology. These
kinds of features represent the major requirements for solutions in the fields of
eHealth, eEnergy, Domotics and lifestyle analysis.

Future work will focus on performance improvements, considering that better
results can be achieved with a binary approach. By reusing the XMPP paradigms that
include security through TLS, notifications, publication-subscription and inter-domain
considerations, we are in a position to enable an efficient IoT architecture that fits the
primary requirements of the Future Internet.

150 M. Almeida and A. Matos

References

1. Case, J., et al.: A Simple Network Management Protocol (SNMP). RFC 1157 (May 1990)
2. Liu, L., Gaedke, M., Koppel, A.: M2M Interface: A Web Services-based Framework for

Federated Enterprise Management. In: ICWS, pp. 767–774 (2005)
3. http://xmpp.org/extensions/xep-0072.html
4. IETF RFC 3920: Extensible Messaging and Presence Protocol (XMPP): Core,

http://www.ietf.org/rfc/rfc3920.txt
5. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifiers (URI): Generic

Syntax. RFC 2396 (August 1998) (TXT, HTML, XML)
6. XSF XEP-0238: XMPP Protocol Flows for Inter-Domain Federation,

http://www.xmpp.org/extensions/xep-0238.html
7. Hornsby, A., Bail, E.: μXMPP: Lightweight implementation for low power operating

system Contiki. In: International Conference on Ultra Modern Telecommunications &
Workshops, ICUMT 2009, October 12-14, pp. 1–5 (2009),
doi:10.1109/ICUMT.2009.5345594

8. XEP-0072: SOAP Over XMPP
9. Hornsby, A., Belimpasakis, P., Defee, I.: XMPP-based wireless sensor network and its

integration into the extended home environment. In: The 13th IEEE International
Symposium on Consumer Electronics- ISCE 2009 (May 2009)

10. Project Liberty website, http://www.projectliberty.org/
11. OpenID website, http://openid.net/
12. Almeida, M., et al.: Cross layer design approach for performance evaluation of multimedia

contents. In: IWCLD, Palma de Maiorca (July 2009)
13. de Lima, W.Q., et al.: Evaluating the Performance of SNMP and Web Services

Notifications. In: IEEE/IFIP Network Operations and Management Symposium (April
2006)

	Bridging the Devices with the Web Cloud: A Restful Management Architecture over XMPP

	Introduction
	Background and Requirements
	Managing Devices with XMPP
	User and Device Identification
	Network Operation with XMPP
	Inter-domain with XMPP

	Bridging Devices into the Cloud
	Cloud Interaction
	Aligning XMPP with REST Services

	Discussion and Evaluation
	Conclusions
	References

