
F. Alvarez and C. Costa (Eds.): UCMEDIA 2010, LNICST 60, pp. 10–19, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

A Multi-touch Solution to Build Personalized Interfaces
for the Control of Remote Applications

Gianluca Paravati1, Mattia Donna Bianco2, Andrea Sanna1, and Fabrizio Lamberti1

1 Politecnico di Torino, Dipartimento di Automatica e Informatica,
C.so Duca degli Abruzzi 24, I-10129, Torino, Italy

2 CEDEO.net, Via Borgionera 103, I-10040, Villar Dora (TO), Italy
{gianluca.paravati,andrea.sanna,fabrizio.lamberti}@polito.it,

mattia@cedeo.net

Abstract. This paper presents a framework for controlling remote applications
by means of personalized multi-touch interfaces. The designed framework
allows end-users to fully personalize the mapping between gestures and input
commands. A two-tier architecture has been developed. A formal description of
the original interface is automatically generated at the server side to identify a
set of available actions for controlling existing applications. The client is in
charge of loading the description of the target application, allowing the user to
shape the preferred mapping between gestures and actions. Finally, the server
converts the identified actions into one or more commands understandable by
the original computer interface. The implementation of the system for this work
specifically relies on handheld multi-touch devices. Test results are
encouraging, both from an objective and a subjective point of view; indeed, the
designed framework resulted to outperform a traditional GUI both in terms of
number of actions to perform a task and average completion time.

Keywords: Multi-Touch, personalized interfaces, human-machine interface,
remote control.

1 Introduction

Human-machine interaction based on touch devices is quite common today. The
evolution of input device technologies such as reflection-based or pressure-sensitive
touch surfaces led to identification of the natural user interface (NUI) as the clear
evolution of the human-machine interaction, following the shift from command-line
interfaces (CLI) to graphical user interfaces (GUI).

The main goal of human-machine interaction is to improve the way users and
computers communicate, by means of effective user interfaces. The design of user
interfaces requires a careful mapping of complex user actions in order to make
computers more intuitive, usable and receptive to the user’s needs: in other words,
more user-friendly.

Gestures, and in particular hand gestures, ever played a crucial role in human
communication, as they constitute a direct expression of mental concepts [1]. The

 A Multi-touch Solution to Build Personalized Interfaces 11

naturalness and variety of hand gestures, compared with traditional interaction
paradigms, can offer unique opportunities also for new and attracting forms of
human-machine interaction [2]. Thus, new gesture-based paradigms are progressively
introduced in various interaction scenarios (encompassing, for instance, navigation of
virtual worlds, browsing of multimedia contents, management of immersive
applications, etc. [3][4][21]), and the design of gesture-based systems will play an
important role in the future trends of the human-computer interaction.

Indeed, we use gestures to express ourselves most of the times. Thus, GUI-based
applications could be converted to take as input intuitive gestures. By means of a
mapping between the original interface and the gesture-based one, applications could
gain a higher degree of user friendliness, achieve better performance, and become
easier to interact with. This new paradigm started to be introduced also for the control
of consumer electronic devices. For instance, the CRISTAL project (Control of
Remotely Interfaced Systems using Touch-based Actions in Living spaces) [5]
enables people to control a wide variety of digital devices (TVs, music players, digital
picture frames, speakers, light sources, etc.) from an interactive tabletop system that
provides users with a gesture-based interface. User controls the devices through a
virtually augmented representation of the surrounding environment.

Despite the evolution of the mobile world, most of the existing applications
designed for the desktop world cannot run on mobile devices due to different
hardware and graphics capabilities. One solution for allowing mobile user to access
desktop-like applications involves the use of remote-computing techniques, where a
remote server executes a specific application sending to the mobile device only the
relevant graphics representation through a sequence of still images or a video stream
[6][7]. This solution allows users to remotely control virtually any kind of application,
including those that are still out of reach for handheld devices (as, for instance, the
navigation in a 3D world composed by millions of polygons). Recently, a software
independent approach extending the basic remote control paradigm to maintain a
separate work area and user interface has been presented [8].

The aim of the proposed work is to describe a user-centric methodology to support
the generalization of the mapping between existing GUIs and up-to-date NUIs, thus
matching the above needs. To this purpose, the approach described in [8] is extended
to build a solution supporting the creation of personalized and customizable human
computer interaction interfaces by means of a generic gesture-based framework based
on the multi-touch technology. The main advantage of the designed solution is that it
allows for the development of user interfaces that most effectively and intuitively
leverage one of the more relevant senses into the most optimal user friendliness (for
instance, with projected-capacitive touch screen, users can give more complicated
inputs like those used for sizing photos, adjusting web pages, etc.).

Basically, the framework is structured into a two-tier architecture. On one side, a
server component is in charge of managing any kind of desktop application and to
automatically build the description of its interface. This description is used to identify
the functionalities of the target application and to create a personalized mapping
between functionalities and user gestures that is then used for application control.
Because of the availability of the 802.11g connectivity and of a mature set of APIs, in

12 G. Paravati et al.

our test-bed the client side was implemented on the Apple’s iPod Touch, one of the
most popular multi-touch devices currently available on the market. However, the
proposed approach is generic and can be applied to any kind of device able to capture
user gestures.

This paper has been organized as follows. Section 2 reviews main works related to
multi-touch interfaces. The proposed framework is described in Section 3. Section 4
presents a case study and the results of objective and subjective evaluations given by
a set of users. Finally, conclusions and future works are discussed in Section 5.

2 Background

Recently, multi-touch technology has gained increasing attention both in the research
community and the commercial world. On the market, various devices able to capture
gestures already exist, ranging from tabletop displays to handheld devices. An in
depth discussion on the application of multi-touch techniques for providing full
control (6-DOFs) of a 3D rigid body using tabletop displays is reported in [9]. A
different approach exploiting tabletop surfaces for designing a more realistic and
sophisticated form of interaction is presented in [10].

The introduction of devices such as the Apple’s iPhone and iPod Touch led
researchers to focus their attention towards multi-touch user interfaces tailored to
mobile environments. For instance, a framework to dispatch multi-touch events
generated on a mobile device to a tabletop system is presented in [11]. Collaboration
among users equipped with handheld multi-touch devices and tabletop frameworks is
investigated in [12]. An interesting approach for manipulating 3D objects on multi-
touch mobile devices has been recently presented in [13]. In this work, two iPod
Touch units are attached back to back, and connected through a Wi-Fi connection; in
this way, the freedom of manipulation is extended to a (pseudo) 3D scenario obtained
by the sandwiched fixed volume architecture [14]. In [13] and [21], preliminary
evaluations of the proposed interfaces are also carried out by collecting end-user
feedbacks.

Gesture input on multi-touch handheld devices has not been used only for the
control of desktop applications. As a matter of example, applications exploiting multi-
touch technology to control IR devices are already available on the market. For
instance, the RedEye system allows users to directly control devices such as TV,
stereo, cable box, DVD player, and many other units that receive standard infrared
signals by means of their iPhone or iPod Touch devices[15]. Similarly, in [16] iPhone
and iPod Touch platforms are used for remote sensor control and data collection.

An interesting approach to adapt gesture input to the controlled application has
been taken by the developers of SparshUI [17]. SparshUI is a platform-independent
framework for developing multi-touch enabled applications, composed by a gesture
server (in charge for handling the gesture processing), a gesture adapter (which is
different for every controlled application), and an input device driver (that is needed
to communicate with the gesture server). Drivers for several types of hardware
devices have already been developed. Similarly, a software architecture supporting

 A Multi-touch Solution to Build Personalized Interfaces 13

multi-touch capability on existing desktop systems, where both multi-touch and
multiple single pointer inputs can be used simultaneously to manipulate existing
application windows is proposed in [18]. The authors presented a proof-of-concept
implementation of their architecture on the Linux system, demonstrating the
possibility of using touch displays in a collaborative work environment.

Fig. 1. Conceptual architecture of the designed multi-touch remote control system

The work presented in this paper follows a concept similar to SparshUI. However,
it is aimed at enabling users to create their own multi-touch applications, whereas our
intention is to adapt already existing applications to the multi-touch technology; for
this reason, we need to create a description of the original interface and we lean on the
results obtained in [8], where a software-independent framework, able to exploit
image processing techniques to effectively decompose an original application into its
main GUI elements, create a description of the original interface, and reload a
personalized GUI on different devices, is presented.

3 The Proposed Framework

The proposed framework is structured into the two-tier architecture that is depicted in
Figure 1. The user directly interacts with the client component, which is demanded to
deal with all the aspects concerning gesture identification, interpretation, and
personalization. On the other hand, the server interacts with the controlled application
providing it with the translated gestures. The proposed solution requires a setup phase
(indicated in Figure 1 by the dashed boxes), followed by the actual gesture mapping
chain, composed by three steps, namely “Gesture Input”, “Action Mapping” and
“Application Control”.

The setup phase is meant to create a formal description of the target application
interface and it is composed by an off-line step (i.e. “Interface Analysis”) and an on-
line step (i.e. a part of the “Action Mapping” step). The off-line step is introduced for

14 G. Paravati et al.

allowing the client application to know in advance which actions are associated to the
target application. During the second step of the setup phase, the user will be able to
personalize the mapping between gestures and available actions.

The interface of an existing application can be automatically analyzed through
reverse engineering approaches in order to build a description of its elements. In this
work, an image-based approach proposed in [9] has been used as the basis to design
the “Interface Analysis” phase, which provides a method to create an XML-based
description of the elements belonging to the GUI, i.e. the concrete aspects. Since other
kinds of input methods can be possibly used to control the application, such as mouse
or keyboard events, the method in [9] has been extended by introducing a language
able to overcome the above issues. UsiXML [16], a XML-compliant User Interface
Description Language, was used for this purpose: it is aimed at describing user
interfaces according to four levels of abstraction: task model, abstract user interface,
concrete user interface and final user interface. The two models describing tasks (i.e.
actions) and the concrete aspects (buttons, keys, etc.) are of particular interest for the
purpose of this work. The first model is described using UsiXML. The tasks can be
composed by more sub-tasks; moreover, UsiXML allows to specify relationships
among the tasks. The process of creating the complete description ends with the
definition of a mapping between the two models in order to link them.

During the on-line step of the setup phase, the client device receives from the
server a list of available applications and the corresponding XML-based descriptions.
Once the target application has been selected, its XML-based description is loaded on
the client device and the user can select a personalized gesture for each action. This
step of the setup phase is aimed at creating a mapping between the multi-touch
gestures (e.g. single, double, or multiple tap, pinch-in, pinch-out, joined or separate
fingers, clockwise or counterclockwise rotations, etc.) and the described actions,
which is stored into a conversion table. Moreover, during the setup phase the
personalization of the multi-touch remote control is improved by allowing the user to
select the preferred sensibility settings for each gesture.

The gesture mapping chain is split into two branches: “Gesture Input” and “Action
Mapping” take place on the client device, whereas the “Application Control” logic is
located on the server side. “Gesture Input” is oriented towards the human interface,
taking as input the gestures drawn by the user on the multi-touch screen and
delivering them to the next steps. During the intermediate step each recognized
gesture is then translated into a meaningful action in the application context, based on
the conversion table defined by the user during the setup phase, thus personalizing the
new interface. On the other hand, the “Application Control” is part of the computer
interface; each action received from the previous conversion block can be mapped
into one or more input commands, which are then delivered to the target application.
The original input can be either discrete (e.g., key presses) or continuous (e.g., mouse
position, although digitized into a discrete quantity, is fast enough to be considered as
continuous). To complete the description of the framework, a swim lane diagram
showing, step-by-step, tasks involved in a client-server connection is presented in
Figure 2.

 A Multi-touch Solution to Build Personalized Interfaces 15

At an early stage, a custom communication protocol has been defined for the
management of all the events generated in the considered architecture, i.e. for
the handling of the gesture association stage, the selection of the target application,
the delivery of actions from the multi-touch device to the server, etc. However, it is
worth observing that hardware devices and touch libraries are progressively adopting
TUIO, an open standard recently introduced for structuring the description of touch
event based communications [20] developed to provide hardware-independence.
Therefore, it has been already planned the experimentation of the TUIO framework in
the designed architecture.

Fig. 2. Swim lane diagram of tasks involved in a client-server connection

4 A Case Study

The proposed framework has been implemented as a client-server application. The
server application runs on a desktop PC with Microsoft Windows XP; with reference to
Figure 1, the “Interface Analysis” and “Application Control” modules have been
implemented in C++ language to be platform independent. The minimum requirements
of the computer are determined by the target application to be controlled, since the
server application has a very small footprint. The client application runs on an Apple
iPodTouch device; it has been implemented in Objective-C language and Cocoa, the
Apple’s native object-oriented application development framework. The
communication between the client and the server application occurs via a TCP
connection and the handheld multi-touch device is connected to the desktop PC through
a 802.11g wireless access point.

16 G. Paravati et al.

Fig. 3. Snapshot of the supermarket model used for testing the multi-touch interface

The evaluation process of the proposed framework was aimed at assessing the added
value of the multi-touch interface for an existing generic application. For this purpose,
the designed solution was tested and evaluated both from an objective and a subjective
point of view by a group of forty-three end-users. A 3D viewer has been chosen as the
target application, due to its intrinsic interactivity constraints; indeed, in this kind of
applications each action require a closed-loop control by the user. The test consisted in
navigating a 3D supermarket environment, searching for a specified shopping list
including five objects (http://conferences.computer.org/3dui/3dui2010/). The test was
considered completed when all the objects had been collected. The objects were placed
all around the supermarket, in order to force the users to walk through the scene for at
least two minutes. Moreover, the objects were placed on shelves of different heights;
thus, it was necessary to look up and down to grab them. The 3D viewer application
selected as a case study was Cortona3D (http://www.cortona3d.com/). A screenshot of
the application during a test sequence is shown in Figure 3. User population was mostly
composed by students of a Computer Graphics course, i.e. it represented a quite
homogeneous group: users have similar background, interests and knowledge. On the
other hand, it is worth to remark that the selected population could be not completely
representative; in fact, students of the above course are already used to work with 3D
computer graphics applications.

Only ten out of forty-three users owned a touch device. As their performances did
not stand out, in the following they will not be discussed as a different group, but they
will be kept together with the other.

Since the main interest during the case study was to evaluate the impact of the new
user interface, the correlation due to the influence of the personalization of user
gestures was minimized by choosing in advance default values both for sensibility
and gesture mapping settings. Each user was individually trained on the execution of
the test; then, each user was requested to complete the test both with the multi-touch
device and the mouse. The tests were submitted with a random order, in order to limit
the impact of the knowledge acquired during the first attempt on the overall result.

The overall usability and effectiveness of the experimented interface can be
inferred from Table 1. The objective results were gathered focusing on the analysis of
the average completion time and the average number of interactions needed to
complete the task. In particular, each gesture was considered as a single interaction as
well as each press-release of a button or key stroke, thus allowing to achieve a fair
analysis of the two interfaces. The gesture-based framework resulted to outperform

 A Multi-touch Solution to Build Personalized Interfaces 17

the traditional interface, both in terms of average completion time (13%
improvement) and number of actions (18% saving).

The interest was not only on the objective data, but also on the subjective
information (i.e., the impression that students had using the proposed interface). At
the end of any test session, each user was asked to compile a brief questionnaire about
the personal evaluation of the interfaces; in particular, the users were allowed to give
a score ranging from one to four, with one indicating a forced/unnatural interface, and
four meaning a very intuitive one. As shown in Table 1, the gesture-based solution
appears to be significantly more user friendly than the original interface.

Table 1 also shows a statistical analysis on the experimental data that has been
carried out to the purpose of disclosing the confidence level of the results obtained
with the gesture based (GB) and the traditional (TR) interfaces. As variances are
unknown and small samples are taken, the t-statistic was used to test the differences
between the interfaces.

A paired t-test was performed by testing the hypothesis that the mean of
differences between each pair of observation μt was μGB-μTR=0, both in terms of
completion time, total number of interactions and subjective scores. As a rule of
thumb, the risk level for computing the reference t-value for comparison was set to
α=5%, finding a reference t-value equal to 1.99. According to the statistical analysis,
as shown in Table 1, the t-statistic values computed for the comparison of the average
number of actions and the subjective results were larger than the reference t-value;
therefore, the null hypothesis could be rejected. Moreover, since the confidence level
was larger than 99%, the proposed framework definitely showed to outperform the
traditional interface. On the other hand, the t-statistic value computed for the time
comparison resulted to be lower than the reference t-value. As a matter of fact, in the
latter case the null hypothesis (with α=5%) could not be rejected. Although the
decrease in user actions and the increase in the degree of user satisfaction could be
specifically related to the adoption of the gesture-based framework, the saving in time
might be not fully related to the same fact (a confidence level equal to 70% was
reached). This could be explained by considering the relation between the type of
tasks that users needed to perform and the size of the input device: as already outlined
in [21], actions that need a high level of precision can not be accurately controlled by
multi-touch mobile device.

Table 1. Objective and subjective results indicating the performance using the traditional
interface and the gesture-based framework. All the results are expressed as average values.

Interface Objective Results Subjective Results
 Time Actions User evaluation
Traditional 252 s 138 2.65
Gesture-based 218 s 113 3.23
Statistics:
Gesture-based
improvement

13% 18% 18%

t-statistic value 1.05 3.69 3.59
confidence level 70% 99% 99%

18 G. Paravati et al.

5 Conclusions and Future Works

A customizable and portable human computer interaction interface has been presented
in this paper. The framework exploits a gesture-based paradigm relying on the multi-
touch technology and it is aimed at controlling existing applications by translating the
original command inputs into gestures that can be customized by the user. The main
reason behind the measured improvement is that by using gestures an immediate and
more intuitive access to the action to be performed can be achieved.

Future works will be aimed at investigating the use of gesture-based interfaces to
control real-time applications (e.g. to supervise a robot). Moreover, further experiments
involving larger multi-touch input devices are planned, with the aim of checking if it is
possible to reduce the limitations identified during the execution of high precision tasks.

Acknowledgment. This article is part of a work developed within the frame of the
project "Piattaforma Tecnologica Innovativa per l'Internet of Things" co-funded by
the Regione Piemonte.

References

1. Pavlovi’c, V.I., Sharma, R., Huang, T.S.: Visual interpretation of hand gestures for human-
computer interaction: a review. IEEE TPAMI 19, 677–695 (1997)

2. Pavlovi’c, V.I., Sharma, R., Huang, T.S.: Gestural interface to a visual computing
environment for molecular biologists. In: Proc. of the 2nd Intern. Conf. on Automatic Face
and Gesture Recognition, pp. 52–73. IEEE Computer Society, Los Alamitos (1996)

3. Selker, T.: Touching the future. Commun. ACM 51, 14–16 (2008)
4. Wright, A.: Making sense of sensors. Commun. ACM 52, 14–15 (2009)
5. Seifried, T., Rendl, C., Perteneder, F., Leitner, J., Haller, M., Sakamoto, D., Kato, J.,

Inami, M., Scott, S.D.: CRISTAL, control of remotely interfaced systems using touch-
based actions in living spaces. In: SIGGRAPH 2009 Emerging Technologies, N.Y. (2009)

6. Gong, J., Tarasewich, P.: Guidelines for Handheld Mobile Device Interface Design. In:
Proc. Decision Sciences Inst., Decision Sciences Inst., pp. 3751–3756 (2004)

7. Florins, M., Vanderdonckt, J.: Graceful Degradation of User Interfaces as a Design
Method for Multiplatform Systems. In: Proc. 9th ACM Int’l Conf. IUI 2004, pp. 140–147
(2004)

8. Lamberti, F., Sanna, A.: Extensible GUIs for Remote Application Control on Mobile
Devices. IEEE Computer Graphics and Applications 28(4), 50–57 (2008)

9. Hancock, M., Carpendale, S., Cockburn, A.: Shallow-depth 3D interaction: design and
evaluation of one, two and threetouch techniques. In: CHI 2007: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 1147–1156. ACM,
N.Y (2007)

10. Wilson, A.D., Izadi, S., Hilliges, O., Garcia-Mendoza, A., Kirk, D.: Bringing physics to
the surface. In: UIST 2008: Proceedings of the 21st Annual ACM Symposium on User
Interface Software and Technology, pp. 67–76. ACM, New York (2008)

11. Hafeneger, S., Weiss, M., Herkenrath, G., Borchers, J.: Pockettable: Mobile devices as
multi-touch controllers for tabletop application development. Extended Abstracts of
Tabletop 2008 (2008)

 A Multi-touch Solution to Build Personalized Interfaces 19

12. Nestler, S., Echtler, F., Dollinger, A., Klinker, G.: Collaborative problem solving on
mobile hand-held devices and stationary multi-touch interfaces. In: PPD 2008: Workshop
on Designing Multitouch Interaction Techniques for Coupled Public and Private Displays
(2008)

13. Shen, E.L., Tsai, S.S., Chu, H.H., Hsu, J., Chen, C.W.: Double-side multi-touch input for
mobile devices. In: CHI 2009: Proceedings of the SIGCHI. ACM, New York (2009)

14. Wigdor, D., Leigh, D., Forlines, C., Shipman, S., Barnwell, J., Balakrishnan, R., Shen, C.:
Under the table interaction. In: UIST 2006: Proc. of the 19th Annual ACM Symposium on
User Interface Software and Technology, pp. 259–268. ACM, New York (2006)

15. RedEye, http://thinkflood.com/products/redeye/what-is-redeye/
16. Geltz, B.R., Berlier, J.A., McCollum, J.M.: Using the iPhone and iPod Touch for remote

sensor control and data acquisition. In: IEEE Proc. of the SoutheastCon, pp. 9–12 (2010)
17. Sparsh-UI, http://code.google.com/p/sparsh-ui/
18. Cheng, K., Itzstein, B., Sztajer, P., Rittenbruch, P.: A unified multi-touch & multi-pointer

software architecture for supporting collocated work on the desktop. Technical Report
ATP-2247. NICTA, Australian Technology Park, Sydney, Australia (2009)

19. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.: USIXML:
A Language Supporting Multi-path Development of User Interfaces. In: Feige, U., Roth, J.
(eds.) DSV-IS 2004 and EHCI 2004. LNCS, vol. 3425, pp. 200–220. Springer, Heidelberg
(2005)

20. Kaltenbrunner, M., Bovermann, T., Bencina, R., Costanza, E.: TUIO: A Protocol for
Table-Top Tangible User Interfaces. In: 6th International Gesture Workshop (2005)

21. Fiorella, D., Sanna, A., Lamberti, F.: Multi-touch user interface evaluation for 3D object
manipulation on mobile devices. Journal on Multimodal User Interfaces (2009)

	A Multi-touch Solution to Build Personalized Interfaces for the Control of Remote Applications
	Introduction
	Background
	The Proposed Framework
	A Case Study
	Conclusions and Future Works
	References

