
A Robustness Testing Method for Network

Security

Yulong Fu and Ousmane Kone

University of Pau and Academy of Bordeaux
yulong.fu@etud.univ-pau.fr, Ousmane.kone@univ-pau.fr

Abstract. In this paper one type of the security problem of DoS (Denial
of Service) is studied and transformed to check the robustness of a multi-
ple components system. The network components like attackers, normal
clients and the network devices are modeled as implementations of the
testing system. And by evaluating the system’s robustness, the poten-
tial design defects can be detected. The methods on robustness testing
of multiple components are studied, and a new model of Glued-IOLTS
(Labelled Transition System) is given for defining this kind of multiple
and networked system. Then a new approach and algorithm are given
for generating the robustness test cases automatically.

1 Introduction

The Denial of Service attack is a normal way of network attacking aiming to crash
the network service or make the network resource unavailable. If the system has
some potential design defects, it risks to be attacked. As the networking becomes
more and more complex and are consisted of different network components,
checking defaults are more and more difficult. At the same time, the robustness
testing methods consider the problem from the whole system view, and aiming
to detect all the possible defects. If we take the system as a multiple components,
we can transform this DoS defects checking problem to the problem of robustness
testing for a networked and concurrent components.

The concurrent and networked components represent the components which
are connected through some kinds of mediums, and communicate with each
other to be a concurrent system to achieve some specific functions. While those
networked components are generated by different manufactures and implement
several network protocols or specifications which are defined by the organisa-
tions for standardization like IEEE, ISO...etc. However, different manufactures
need their products uniquely and specially, and they will add or extend some
functions to their implementations. And because of those expansions and aug-
mentations, the manufactures strongly need to test their products conformance,
robustness, and interoperability before they sell them to the market [9]. Related
works- In [5] and [1], the authors considered the interoperability testing of two
concurrent components, and proposed their C-Methods to describe the concur-
rent system, then derive the pathes between two components to generate the

H. Jahankhani et al. (Eds.): ICGS3/e-Democracy 2011, LNICST 99, pp. 38–45, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



A Robustness Testing Method for Network Security 39

interoperability test cases. In [8], the authors do well on the robustness test-
ing for the software components, they consider the robustness problems for the
closed components by experience. They give a definition of the addition set LSE
(language specific error) for ”dangerous” input values, and use this ”error” set in
their ”Path generation” to generate their robustness test cases. In [6], the author
presents a method to get the extended specification which includes the consid-
ered ”errors” to present the specification with Robustness. Our work is based on
those forward works and go ahead to achieve the problem of robustness testing
for the concurrent and networked components.

Our contribution is to extend the IOLTS (Input/Output Labelled Transition
System) to give a definition of multiple concurrent and networked components,
and then give an approach and algorithm for generating the robustness test
cases. We consider black box testing, that is we do note care how the security
mechanisms are implemented like in [2], but just whether they are correctly
enforced by the network components implementations. This method can be used
to design or examine the network protocols including multiple components and
different network protocol layer. The method can also be used in the software
testing domain.

The following sections are organized as follows: In Section two, we introduce
the general testing theories and our testing architecture. In Section three, the
formalism based on Labeled Transition System (LTS) is introduced, and our
assumptions and approaches are given. In Section four, one case study of con-
current components using RADIUS protocol is given. And the Section five draws
our conclusion and future works.

2 Robustness Testing of Concurrent Components

Formal testing methods take the implementations as block-boxes [10], which can
be only observed with inputs and outputs. In a specification based testing, a test
case is a pair of input and output, which are derived from the specifications, and
are executed through the implementation by the tester. The specifications are
described as graphs by some kinds of modeling languages like FSM, LTS, etc. The
test cases can be taken as traces of the graphs, and the testing methods are trying
to see whether the traces of the specifications also exist in the implementations
[7]. When running the test case through an implementation, the input sequence
of the test case will cause the corresponding output sequence. If the outputs are
similar to the pre-defined outputs in the test cases, we say this test case running
is successful, and we note ”Pass” to this test case. Otherwise, the test running
is failed, and the test case is marked as ”Fail” [4].

The concurrent components refer to the networked system which has many
local or remote components to work together to finish some functions. Those
components are connected through some materials or mediums, and exchange
messages and data through them. We considered this concurrent and networked
components testing from a simple instance with only two communicated compo-
nents. The testing architecture is presented in Fig.1. In a concurrent components



40 Y. Fu and O. Kone

Fig. 1. Test Architecture

testing, each of the IUT s (implementation under test) has two kinds of interfaces.
The lower interfaces LIi are the interfaces used for the interaction of the two
IUT s. These interfaces are only observable but not controllable, which means a
lower tester(LTi) connected to such interfaces can only observe the events but
not send stimuli to these interfaces. The upper interfaces UIi are the interfaces
through which the IUT communicates with its environment. They are observable
and also controllable by the upper tester(UTi).

Robustness is the degree to which a system or component can function cor-
rectly in the presence of invalid inputs or stressful environmental conditions [3].
Robustness testing concerns the appearance of a behavior which possibly jeop-
ardizes the rest of the system, especially under a wrong input. A system with
robustness means it can be executed without crashing, even when it is used
inappropriately [6]. We considered the specifications using IOLTS, which em-
phasize the input and output labels, and then we expand the IOLTS by adding
the medium states and transitions into the definition to suit for the requirement
of concurrent components.

Labeled Transition System
Labeled transition system is specification formalism studied in the realm of

testing, it is used for modeling the behavior of processes, and it serves as a
semantic model for various formal specification languages [12].

Definition 1: A labeled transition system is a 4-tuple array 〈S,L, T, s0〉
where

– S is a countable, non-empty set of states;
– L is a countable set of labels;
– T is the transition relation, which T ⊆ S × (L ∪ {τ})× S
– s0 is the initial state.

The labels in L represent the observable actions which occur inside the system;
the states of S are changing just cause of the actions in L. The sign τ denotes
the internal and unobservable actions. The definition of T reveals the relations
between states in S, for example: (s0, a, s1) ∈ T . A trace is a finite sequence of



A Robustness Testing Method for Network Security 41

observable actions. The set of all traces over L is denoted by L∗ , and ε denotes
the empty sequence. If σ1, σ2 ∈ L∗, then σ1 ∗ σ2 is the concatenation of σ1 and
σ2. |σ| denotes the length of trace of σ.

Definition 2: An input-output transition system p is a labeled tran-
sition system in which the set of actions L is partitioned into input
actions LI and output action LU(LI ∩ LU = ∅, LI ∪ LU = L), and for
which all input actions are always enabled in any state. If q ∈ S, then
Out(q) denotes all the output labels from q, In(q) denotes all the input labels
to q, and Out(S, σ) denotes the output of S after σ. ref(q) represents the input
actions which are not accepted by state q.

3 Our Approach

As we described in Section 2, the concurrent components communicate each
other through a common medium using their lower interfaces, and receive the
messages from the environments through their upper interfaces(see Fig.1). We
separated the states of each component which are directly connected to the
common medium into higher level states, and we use the low level states to
define the common medium.

Definition 3: The states of the concurrent and networked components
system have two levels:

– higher level state si u connects to the environment or other states
of the same component.

– lower level state si l connects to the states of other components

A common medium is a subset of the lower level interfaces of the
states, which stimulate the messages to other components. We make
SM to denote all the states in the medium, si denote some state in
IOLTSi, sj denote some state in IOLTSj then

{∀s ∈ SM | ∃si, ∃sj , s = si l, and Out(si l) ∩ In(sj) �= ∅}

With the help of a common medium, we can glue the components together. We
connect the medium states and the stimulated component’s initial states with
the same label as the medium state received(denoted as LM ). Then the different
components are glued.

Definition 4
A Glued IOLTS represents a set of IOLTS 〈Si, Li, Ti, si 0〉 (i=1,n) and a
medium M, which is a 4-tuple:
IOLTSglu = 〈Sglu, Lglu, Tglu, sglu 0〉, whith
– Sglu = 〈S1 × S2 × ...× Sn × SM 〉,
– Lglu = 〈L1 ∪ L2 ∪ ... ∪ Ln〉,
– sglu 0 = 〈s1 0, s2 0, ..., sn 0〉 is the initial state,
– Tglu ⊂ Sglu × Lglu × Sglu

Tglu = {(s1, s2, ...si, ...sm)
α−→ (s1, s2, ...s

′
i, ...sm)|(si, α, s′i) ∈ Ti ∪ TM},

TM = {(si l, μ, sj l)|i �= j, μ ∈ Out(si l) ∩ In(sj l)}



42 Y. Fu and O. Kone

One example of Glued-IOLTS is presented in Fig.2 of the next Section.
Robustness testing needs to take into account both normal and threatening

inputs. In order to obtain all the possible traces in the concurrent and networked
components, first we need to extend the specification to include all the possible
inputs actions. We use the so called ”Meta-graph” [6] to describe the processes
of invalid inputs, and use the ”Refusal Graph” [12] to describe the inopportune
inputs, then join them to one extended Glued IOLTS: S+

glu to describe all the
possible pathes.

Here for a better understanding, we use GIB (Graph Invalid inputs Block) to
describe the process of dealing with invalid inputs. By adding the elements of
invalid and inopportune input actions, the S+

glu includes all possible actions. We
say the implementation of concurrent and networked components is robust if it
follows the following conditions:

Definition 5
The implementations of a concurrent and networked components sys-
tem are denoted as IUTs, Suni represents the specification of the those
implementations, then:

IUTs Robust Suni ≡def ∀σ ∈ traces(S+
glu) ⇒ Out(IUTs, σ) ⊆ Out(S+

glu, σ)

According to this Definition, to check the robustness of the system, we need to
see whether any traces in S+

glu can also be found in its implementations.
So the robustness test case can be generated through the following approach:

– Analyze the compositions’ specifications to figure out the concurrent system
described using Glued IOLTS Sglu.

– Calculate the S+
glu

– Calculate all the possible pathes of the S+
glu to generate the test cases.

– Test Cases run on the implementation. If the implementation can pass all
the test cases, the implementation is robust. If not, the implementation fail
the robustness testing.

We give an algorithm in Listing 1 to calculate the testing cases automatically.
We assume the ”initial” states are reachable, and we define the ”end” states
as the states which after them, the system goes back to the ”initial” state or
stop. The inputs of this algorithm is the Extended Glued Specification. The
pair 〈stimulate, reponse〉 denotes the actions between different systems, and
the function opt() in the algorithm is to calculate the corresponding actions in
this pair. The algorithm uses two recursions to trace back the specifications from
the ”end” states to the ”initial” states. The algorithm uses an arraylist ”Trace”
to record all the passed labels. When the algorithm reach the ”initial” state, it
uses the function Check glue() to detect the actions inputs from the common
medium. If it find that the passed traces need the inputs from the medium, then
it adds the corresponding medium labels, and continue to trace back to another
system. If it can not find the requirements from the passed traces, the algorithm
stops this traceback, and continue to the next trace.



A Robustness Testing Method for Network Security 43

Listing 1.1. Algorithm

Inputs : the s t a t e s o f G lued Spe c i f i c a t i o n S ,
the l a b e l s o f G lued Spe c i f i c a t i o n L ;

Outputs : p o s s i b l e t ra ce a r r a y l i s t s t ra ce [m] ;
in t k ,m, n=0;
A r r ay l i s t t rac e [m] , L s t i [ k ] ;
// t race [m] r e cord s the passed act ions , and m r ep r e s en t s d i f f e r e n t t r a ce s .
// L s t i [ k ] r e cord s the ac t ion s in one t ra ce which w i l l s t imula t e another systems .
//k r ep r e s en t s d i f f e r e n t t r a c e s .
pub l i c main (){

ArrayList<s tate> s end ;
For ( in t i =0; i<S . s i z e ( ) ; i++){

i f (S . get ( i ) . ge tS tatus ( ) . equa l s (” end ” ) ) ;
s end . add (S . get ( i ) ) ;}

For ( in t i =0; i<s end . s i z e ( ) ; i++){
Traceback ( s end [ i ] ) ;
For ( in t j =0; j<n ; j++){

Check glue ( t ra ce [ j ] ) ; }
For ( in t j =0; j<n ; j++){

pr in t t ra c e [ j ] ;}}}
pub l i c t ra c e Traceback ( s t a t e s ){

ArrayLi s t L= In ( s ) ; // a r r a y l i s t L reco rds a l l the input ac t i on s to s ta t e s
I f ( s i s i n i t i a l s t a t e ){

return t ra ce [m] ; }
For ( in t i =0; i<L. s i z e ( ) ; i++){

t ra ce [m+i ] . add ( t ra ce [m] ) ;
m=m+i ;
n=m;// count a r r a y l i s t t rac e }

For ( in t i =0; i<L . s i z e ( ) ; i++){
t ra ce [m] . add (L . get ( i ) ) ;
s=L . get ( i ) . p r e s t a t e ;
Traceback ( s ) ;
m=m−1;}}

pub l i c void Check glue ( a r r a y l i s t t ra c e ){
For ( in t i =0; i<t ra ce . s i z e ; i++){

I f ( t r a ce . get ( i ) in L s t i u l a t e ){
L s t i . add ( t ra ce . get ( i ) ) ;}}

I f L s t i . s i z e ()=0{
return t ra ce ;}

e l s e {
For ( in t i =0; i<L s t i . s i z e ( ) ; i++){

t ra ce . add ( opt ( L s t i . get ( i ) ) ) ;
Traceback ( opt ( L s t i u l a t e . get ( i ) ) . p r e s t a t e ) ;}

For ( i =0; i<m; i++){
Check glue ( t ra ce [ i ] ) ;}}}

4 Case Study - RADIUS Protocol

RADIUS protocol is a network protocol between three basic components: client,
NAS (network access server), and RADIUS server. The three components con-
nected and worked together, to finish the handshaking and AAA (authentication,
authorization, and accounting) security processes. This RADIUS system is a con-
current and networked components system, and we need to use our approach to
check the robustness of the implementations of the RADIUS protocol.

Analyze the Specification and Construct the Glued IOLTS
We take the client as one part of the environment, and in the RADIUS pro-

tocol, there are two components: NAS and RADIUS server are considered. Fig.2
presents the Glued Specification of the ”Authentication” processes between NAS
and RADIUS server according to the standard RFC 2865 [11]. The interactions
τ of RADIUS server part represent the processes of security checking.

Calculate the S+
glu and the Possible Traces

By adding the GIB and the refusal graphs at each side of Fig.2 to represent
the invalid inputs and the self cycles to represent the inopportune inputs, the
S+
glu can be obtained and presented in Fig.3. In this case study, with the help of

the algorithm, we got 17 traces by considering the invalid inputs.



44 Y. Fu and O. Kone

Fig. 2. RADIUS-NAS-Glued-Auth

Fig. 3. RADIUS-NAS-Glued-Auth-Plus

Assess the Robustness of the Networked Implementations
After the generations of the test cases, we need to use those test cases to test

the implementations. The implementations are tested by checking the outputs
with the outputs of the test suites. If the outputs of the implementations are
the same as the outputs of the test suites, the implementations are robust. We
take the 17th trace of the results: {invalidinput, τ , τ , ?Ac req n, !Ac req n,
?Known id, ?Ac req} as an example. This trace of the RADIUS protocol implies
the client(or hacker) sends an access request message(?Ac req) to the NAS Server
to ask for accessing to the protected network, then the NAS Server checks this
user’s id, and find it is an already known id(Known id), and send a message
{Ac req n} with the client’s security information to the Radius Server. Then the
Radius Server checks the client’s encryption method, and find it is supported by
the server(the first τ), then it checks the authentication of the client(the second
τ), after this, the RADIUS Server receives a undefined message(invalidinput



A Robustness Testing Method for Network Security 45

which is maybe an attack), and the system should terminate this session. If
after we input this test case to the system, and find it does not terminate the
session, then we know there is a potential risk which exists in the system.

5 Conclusion

In this article, we use a formal method to describe the network components and
we extend the definition of Labelled Transition System to model the concurrent
component systems. Then we give a definition of robustness of concurrent com-
ponents system, and give our approach to the robustness test design. We also
do an experiment to generate the test cases for the RADIUS protocol. We be-
lieve by modeling the network system, and checking its robustness, the potential
security defects can be detected and then be fixed.

In this work we did not consider extra functional requirements like real-time
constraints. For future work, we also plan to investigate the time conditions
required in the network behaviour.

References

1. Ansay, T.: Compositional testing of communication systems-tools and case studies.
Master’s thesis, Concordia University (2008)

2. Boulares, O., Kone, O.: A security control architecture for soap based services. In:
International Conference on Emerging Security Information, Systems and Tech-
nologies, SECURWARE (2010)

3. Castanet, R., Kone, O., and Zarkouna. Test de robustesse. In: Proc. of SETIT 2003
(Mars 2003)

4. Desmoulin, A., Viho, C.: Interoperability test generation: Formal definitions and
algorithm. In: ARIMA-Numero special CARI 2006, pp. 49–63 (2006)

5. Gotzhein, R., and Khendek, F. Compositional testing of communication systems.
IFIP International Federation for Information Processing (2006)

6. Khorchef, S. Un Cardre Formel pour le Test de Robustesse des Protocols de Com-
munication. PhD thesis, University of Bordeaux 1 (2007)

7. Lai, R. A survey of communication protocol testing. Systems and Software 62
(2002)

8. Lei, B., Li, X., and Liu, Z. Robustness testing for software components. Science of
Computer Programming, 879–897 (2010)

9. Malek, M., and Dibuz, S. Pragmatic method for interoperability test suite deriva-
tion. In: The 24th Euromicro Conference, vol. 2, pp. 838–844. IEEE

10. Offutt, J., Liu, S., and Abdurazik, A. Genearting test data from state-based speci-
fication. The Journal of Software Testing,Verification and Reliability, 25–53 (2003)

11. Rigney, C., Willens, S., and Rubens, A. Remote authentication dial in user service
(radius). Tech. rep., The Internet Society (2000)

12. Tretmans, J. Conformance testing with labelled transition system: Implementation
relations and test generation. Computer Networks and ISDN Systems, 49–76 (1996)


	A Robustness Testing Method for Network Security

	Introduction
	Robustness Testing of Concurrent Components
	Our Approach
	Case Study - RADIUS Protocol
	Conclusion
	References




