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Abstract. We discuss the networking dimension of the Integrated Platform for 
Autonomic Computing (IPAC). IPAC supports the development and running of 
fully distributed applications that rely on infrastructureless (ad-hoc) network 
with multi-hop transmission capabilities. Such environment is typically used for 
the realization of collaborative context awareness where nodes with sensors 
“generate” and report context while other nodes receive and “consume” such in-
formation (i.e., feed local applications with it). Due to its highly dynamic cha-
racter this application environment, an efficient solution for the dissemination 
of information within the network involves the adoption of epidemical algo-
rithms. With the use of such algorithms, a certain node spreads information 
probabilistically to its neighborhood. Evidently this is a rational approach since 
the neighborhood changes frequently and nodes are not necessarily in need of 
the generated contextual stream. IPAC mainly targets embedded devices such 
as OS-powered sensor motes, smartphones and PDAs. The platform relies on 
the OSGi framework (a popular middleware for embedded devices) for compo-
nent deployment, management and execution. We discuss implementation is-
sues focusing on the broad spectrum of IPAC services that were developed in 
order to facilitate applications. We elaborate on the networking stack that im-
plements epidemical dissemination. We also discuss how such infrastructure 
has been used to realize applications related to crisis management and environ-
mental protection. We present an adaptive flavor of the epidemical dissemina-
tion which expedites delivery by tuning the forwarding probability whenever an 
alarming situation is detected. 

Keywords: wireless sensor networks, dissemination, epidemical algorithm, 
wildfire, epidemic model, forwarding probability.  

1 Introduction 

During the last few years advantage of WSN (wireless sensor networks) gave 
affordable and smart solutions to “real life” problems and situations. IPAC aims at 
providing all the communication functionality for fully distributed applications 
including medical monitoring and emergency response applications, monitoring 
remote or inhospitable habitats, disaster relief networks, crisis management 
applications, early fire detection in forests, and environmental monitoring.  
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Following nature's example a good way of disseminating information over WSN 
are the so called epidemical algorithms and gossip protocols solving the underlying 
problems that comes with the lack of a secure direct path for the data to be delivered. 
In this paper we discuss the efficiency in information dissemination of IPAC platform 
in a emergency case of a wildfire. In such cases multiple factors can be used for 
understanding the state of fire and predict the spreading so the data to be delivered 
safely. We use a temperature vs time model behavior as an example to explain the 
spreading algorithms of IPAC project.  

2 Wildfire Behavior 

Before further explaining the dissemination of information we must describe the 
factors that are taken into consideration during the spread of a wildfire into a forest 
monitored from IPAC sensors. In such cases sensors measuring temperature are 
preferred from others more sophisticated, like for example heat flux measuring 
sensors, due of being inexpensive and more reliable. 

2.1 General Behavior 

According to [1] the temperature course of a wildfire may be divided into three 
periods:  

1. The growth period. 
2. The fully developed period 
3. The decay period. 

 

 

Fig. 1. Temperature produced by a wildfire versus time measured from a constant point. Can be 
used for emulation of the results that a sensor will receive while measuring absolute values of 
temperature. 
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These periods are illustrated in the figure below, where an idealized fire temperature 
course is shown. During the growth period, heat produced by the burning trees 
increasing rapidly to high values. After a certain temperature the fully developed 
period starts and then follows the decay period. 

2.2 Wildfire Modeling 

According to [5] a relationship between temperature, distance from flame and flame 
length is the following: 
 300 ·                                                                      1  60 1 1300 ·                                                     2  

 
where I, L, Q and D denote fire intensity (in kW/m), flame length (in meters), 
radiation intensity (in kW/m2) and the distance from the flame position (in meters) 
respectively. Assuming a linear T = a Q relationship (with a=10 as inferred from [3] 
and [4]) we can establish a temperature distance T = (D) relationship for any given 
L. On the other hand for large flame height, the authors in [6] have presented a model 
that estimates the net radiant energy transfer to a fire fighter standing at a specified 
distance D from a fire of a height L. It is observed that the larger the flame height the 
larger is the distance from the flame that would result to a specific heat flux (and 
sensed temperature) value. We can use this work to extract a T = (D) relationship 
for large flame heights, L > 8m. It is interesting that the two different methods, for 
small [5] and large [6] flame sizes, produce approximately the same temperature 
estimates at the cutoff point of L=8m.  

3 Adaptive Epidemic Model 

In this section we introduce the concept of adjusting parameters of the SIS epidemic 
model for achieving efficient valid information dissemination in an IPAC WSN. Con-
sider a discrete time domain, i.e., t ∈ N. We consider a IPAC WSN consisting of N + 
1 nodes. Each node is indexed by an integer i ∈ N. The node 0 is the source, which 
generates and transmits data values. The node i = 1, . . . ,N is the (consumer) relay 
node, which receives, stores and forwards. Nodes disseminate data if they are within 
the communication range of each other. The source node 0 is equipped with a sensor 
(for our example a temperature sensor). At each discrete time instance t, the node 0 
generates a data value x(t) of a contextual parameter (e.g., temperature data) from an 
attached sensor and a temporal validity value v(t) ∈ R. The parameter is sampled with 
frequency z. The υ(t) value indicates the maximum time-horizon that a value x is 
considered valid, that is, υ(t) =  − t. The υ(t) value decreases with time. A υ(t) = 0 
indicates that the value x(t) turns obsolete at t. The source forwards the pairs (x(0), 
υ(0)), (x(1), v(1)), . . .) with a time–varying forwarding probability β(t) ∈ (0, 1]. Any 
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relay node i = 1, . . . ,N, which receives x(t), becomes infected at time t once υ(t) > 0 
and forwards x(t) to its neighbors with constant forwarding probability γ ∈ (0, 1]. 
Since we have only one source, an infected node, which has recently received (x(t), 
υ(t)), can be re-infected with some received (x(t+1), υ(t+1)) at time instance t+1 since 
υ(t+1) > υ(t), i.e., x(t+1) is more valid data than x(t).  

We now discuss the significance of the forwarding probabilities γ  for relay nodes 
and β(t) for the source. A high value of γ and β(t) leads to (almost) full network cov-
erage (i.e., information diffusion among the nodes) but at the expense of increased 
energy consumption due to redundant transmissions –receptions of messages. For γ = 
1 we obtain the Flooding scheme. On the other hand, low values of γ and β (t) lead to 
a global ageing of information throughout the network, i.e., the consumer nodes re-
ceive (and process) information of lower quality due to the elongation of the time 
interval γ − (reception time-generation time). In addition, the delay of a received 
piece of information is measured as the time interval between  and the reception 
time at some node in which the information is considered usable. A consumer node 
relies on the last received piece of data (for further processing by the upper layers) 
until a new one is received. With a low value of β(t) and a low value of γ  a newly 
generated piece of information is received with increased delay. Hence, a random 
relay node is badly synchronized with the source. A relay node is considered well 
synchronized with the source if the time interval (γ − ) is relatively small. On the 
other hand, synchronization is negatively impacted if the discussed time interval in-
creases. Let us introduce a global error indicator e to clearly indicate the impact of 
delayed data delivery to consumer nodes. The error indicator captures the timed data 
value difference between the source and relays. Surely, the e indicator should be kept 
at low levels and can be adopted as a metric for the assessment of the proposed 
scheme. Good synchronization leads to a low e value while the opposite holds for 
poor synchronization.  

Evidently, there is a trade-off between data dissemination efficiency and validity. 
Our idea is to adjust the β(t) value on the source prior to injecting information to the 
WSN according to the data stream(DS) variability experienced there. The DS varia-
bility is quantified through the rate of change of the disseminated pieces of informa-
tion. Intuitively, a DS of high variability has to be disseminated by the source with 
higher β(t) than a DS with low variability. High variability in the DS is manifested 
through frequent changes in the observed (sampled) quantity.  

A high value of γ for the relay nodes safeguards the rapid dissemination of infor-
mation throughout the network. Distinct values generated by the source (with proba-
bility β(t)) reach the various consumers in the network rapidly. Hence the induced 
error indicator drops and synchronization improves. A low β(t) value increases the 
inter-arrival time for data readings messages at relay nodes. Received values are not 
promptly updated and become stale and obsolete. Despite their ageing and expiration, 
such values can still be exploited by relays, since the DS is relatively static i.e., exhi-
bits low variability. Apart from the discussed β(t) tuning, another, closely related 
parameter (that still qualifies for tuning) is the time-to-live (TTL) of the disseminated 
data. The maximum temporal validity (TTL) of a sampled piece of information de-
pends on the observed variability of the DS and the relay probability of WSN nodes. 
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On a high variability DS, the sensed data values have to cover the whole WSN in 
order all nodes to ‘follow’ the rate of change of the DS, which is experienced by the 
source. The proposed adaptive SIS model is entirely data-centric meaning that specif-
ic characteristics of the generated DS tune the propagation (dissemination) of infor-
mation throughout the network. 

3.1 The Adaptive Epidemic Model 

We use the epidemic model in terms of the adaptive behavior of the source and the 
forwarding capability of the relay nodes. We assume that the WSN operation starts at t 
= 0. At that time all the relay nodes are susceptible and the source is infected. 

3.2 The Behavior of the Source 

Let (t) the temperature that is sensed by the source node 0 at time t. At time t ≥ 0, 

the source determines the value for the forwarding probability β(t) ∈ (0, 1] by taking 

into account the rate of change  of the sensed (t) value(the change of 

temperature). In addition, the temporal validity value υ(t) at time t, i.e., the TTL of the 
sensed data value (t), depends also on the variability of the temperature and the 
relay probability of the relay node γ as described later. We introduce the real functions 
f and g such that 

 , : 0,1                                                3  , , : 0,1 0,1                                 4  

The f (·) and g(·,·) functions rely on the nature of the sampled DS (t). The following 
paragraphs provide details of f (·) functions. 

3.3 Adaptive Forwarding Probability 

In this section we discuss the characteristics of the f (·) function. 
 

1. The f (·) function produces probability values (forwarding probability β(t)) 
2. The f (·) function is increased in the interval [0, ∞) of the DS variability 

percentage change 
| || |  The higher the percentage change in DS 

variability gets, the higher the probability of forwarding (t) to the 
neighbors of the source becomes. In such case the relay node I can 
reconstruct a DS ) with high variability assuming a small e value. On the 
other hand, a DS with low rate of change can be disseminated with lower 
forwarding probability since the  DS remains quite constant. The 
reduction in β(t) reduces the transmissions for the sake of energy.  
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3. The f (·) function should be tunable so as to treat the 
| || |  values in a non-

uniform way. In other words, the f (·) function should be able to assign 

varying significance to 
| || |  ratio values depending on the application and 

the actual utility of the transmitted data value. In certain cases, a small 

change in the DS 
| || |  can be regarded as noise and suppressed by the 

network to preserve energy efficiency while a significant change in the DS 
would be considered as highly important (e.g., an emergency alarm) and 
affect the f (·) value accordingly. 

 
We adopt the sigmoid s-shape function (structured as shown below) as it allows the ad 
hoc, discriminative treatment of the DS changes as discussed above. Specifically, 
 

Δ
Δ

11 | | 1| |                                   5  

 

Fig. 2. We observe the different s-shaped graphs for the sigmoid f function versus the percen-
tage change of variability for the different values of constant c. For c = 0.1 the graph approach 
a linear form.  

The c ∈ [0, 1] and ω ∈ (0, ∞) in (5) are the tuning factors of f (·). Without loss of 
generality, we assume that ∆t = 1. The ω parameter is the ‘significance threshold’, 
which indicates the percentage change of the variability of the temperature, i.e., | || |   that yields source forwarding probabilities greater than 0.5. The c parameter 

is a ‘bias factor’ that determines the shape of the f (·) function around the ω value. The 
higher the c the higher the rate of change of f from ω− to ω+ . Evidently, a zero value 
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of c yields a constant f (·) = 0.5 function which is completely independent of 
| || |  

(β(t) = 0.5). In this paper, we deal with a fire-detection application[8] . By inspection 
of the collected data, we noticed percentage value changes of the DS variability lower 
than 50%. Hence, we adopt as significance threshold ω = 0.5. In the unlikely case | || |   > 100% appears in the DS, the β(t) = 1 will be adopted as the ceiling value. In 

addition, we adopt c = 0.1. Such values are aligned with the characteristics points (3) 
to (5) of f (·) discussed above.  

We applied the fire progress details found in studies like [8] and observed the way 
the β(t) parameter fluctuates. Our findings are presented in the following table. 

Table 1. Results of β(t). Anything above 0.4 alarms the dissemination process. 

Condition β(t) 

Regular Sensor Operation(Ambient Temperature) 0.3-0.4 

Alarming Conditions(Possible Fire) 0.4+ 

4 Conclusions 

The proposed scheme satisfies two important requirements for sensor networks in 
critical safety applications (a) it saves energy throughout regular operation, thus, 
extending the lifetime of the network and improving dependability and (b) is totally 
reactive to changes of the sensed environmental parameter, thus, guaranteeing the 
timely issue of alarms and the required follow-up operations. 
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