
TOA Ranging Using Real Time Application

Interface (RTAI) in IEEE 802.11 Networks

Jian Fang1, Alvin Lim, and Qing Yang2

1 Computer Science and Software Engineering,
Auburn University, Auburn AL 36849 USA

{fangjia,limalvi}@auburn.edu
2 Department of Computer Science

Montana State University, Bozeman MT 59717 USA
qing.yang@cs.montana.edu

Abstract. Ranging and positioning of wireless mobile devices using
time-of-arrivals (TOA) method is becoming an increasingly interesting
and challenging research topic. There are various TOA-based ranging
algorithms and positioning systems, but most of them require either
specially designed hardware or modifications to existing firmware. Us-
ing only off-the-self hardware, we present a novel software-based TOA
ranging approach which accurately measures TOAs using the Real Time
Application Interface (RTAI) operating system. A prototype system is
implemented which provides precise measurements of round trip time
(RTT) using IEEE 802.11b MAC layer ACK frames and the real-time
communication mechanism provided by RTAI. Experiments show that
using RTAI can achieve a ranging result with precision close to the ac-
curacy obtained by hardware based methods.

Keywords: IEEE 802.11, Ranging, Localization, RTT, TOA, RTAI.

1 Introduction

In today’s fast-paced and technology-centric world, positioning and tracking
through mobile devices is extremely useful for applications such as disaster res-
cue missions, travel guidance systems, fire fighting, and healthcare services. Al-
though GPS positioning system is widely used, it does not work correctly in
indoor or metropolitan areas where tall buildings may block GPS signals. On
the other hand, Wi-Fi networks are designed mainly for indoor use, so an al-
ternative solution is localizing mobile devices through widely populated IEEE
802.11 wireless networks. In this article, we are interested in the time-of-arrival
(TOA) based ranging technique which is the foundational component of IEEE
802.11 localization system.

For TOA-based ranging techniques, accurate round trip time (RTT) measure-
ment is the most important problem. However, it is not an easy task to obtain
accurate RTTs because many factors may contribute to errors in RTT measure-
ments such as multipath effect, signal interference, operating system scheduling,

Joel J.P.C. Rodrigues et al.: (Eds.): GreeNets 2011, LNICST 51, pp. 88–98, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

TOA Ranging Using Real Time Application Interface (RTAI) 89

and CPU clock throttling. All these factors could introduce variations or jitters
to the RTT measurement procedure. This implies that the longer the execution
path that the data travels in a system, the more difficult it is to obtain a stable
RTT, and the higher the errors that are introduced to the ranging results.

To address this issue, a TOA ranging system needs to measure the RTT as
close to the system’s bottom (physical) layer as possible. If time stamping cannot
be provided at the bottom layers, a deterministic execution of instructions along
the data path needs to be guaranteed, which is usually considered a difficult
task due to hardware and software latency and jitters [10]. Another important
factor affecting the accuracy of RTT measurements is the resolution of system
timer. For instance, the programmable interval timer (PIT) on most Intel x86
CPUs has a coarse resolution of 1ms (1000Hz) which corresponds to a computed
distance of more than 30km. Therefore, to achieve a viable TOA ranging system,
three key factors must be taken into account: 1) short data path, 2) deterministic
execution of instructions, and 3) high-resolution timer.

To satisfy the three requirements for accurate RTT measurements, Real Time
Application Interface (RTAI) [1] is selected in our implementation. By taking
full control of hardware and task scheduling, RTAI can achieve a much faster
response to outside events, e.g., interrupts of network activities, than general pur-
pose operating systems. Therefore, more accurate time stamps can be recorded
when a packet is sent or received by network devices, which is essential for ob-
taining precise RTT measurements.

There are mainly four contributions of this paper. First, the variation of RTT
measurements caused by the processing delays at system and process levels is
completely investigated. Second, we design and implement an accurate TOA
based ranging system using RTAI for standard IEEE 802.11 networks. Third, a
prototype system is implemented and tested using off-the-shelf wireless cards.
From experimental results, we find the proposed system can achieve a precise
ranging between two wireless devices with an error < 5m in indoor and an error
< 8m in outdoor scenarios. Fourth, since the RTAI based ranging system does
not require specific hardware, it can be easily installed (as kernel modules) on
existing IEEE 802.11 network devices. In fact, the same methodology can be
utilized in other wireless networks, e.g., sensor network and vehicular networks.

The rest of the paper is organized as follows: Section 2 presents methods that
are related to our work. Section 3 analyzes the task latency at the system and
process levels, and then describes the RTT ranging method in detail. Section 4
and 5 give the setup of our experiments and result analysis, respectively. Finally,
conclusions are provided in Section 7.

2 Related Works

Since different applications may require different location accuracy or positioning
precision, various wireless ranging methods are used by positioning and tracking
systems. These techniques can be classified along different dimensions, such as
hardware or software-based, time or signal based [2,3,4]. Besides the widely used

90 J. Fang, A. Lim, and Q. Yang

GPS system which does not work well for indoor environments, there exist several
other positioning techniques such as systems based on infrared, ultrasonic, or
received signal strength (RSS) [2]. Although they can overcome the shortcoming
of GPS systems, these techniques are not widely adopted either because of their
reliance on special hardware, offline trained radio maps, or complex design.

Another group of ranging methods are time-based techniques such as the time
of arrival (TOA) and time difference of arrival (TDOA) ranging. TDOA ranging
can provide accurate results but require perfect synchronization of APs, which
adds a great amount of complexity to the positioning system. TOA is similar to
TDOA but does not require synchronization. Synchronization error between two
nodes can be eliminated by measuring the RTTs of network packets. For example,
the RTS/CTS (request-to-send and clear-to-send) packets in MAC layer are used
to measure RTTs in [5]. Using phase matching and shifting of received signals,
[6] reports a ranging precision of less than 5m. In [7], a debug version of Intel
ABG WLAN card and an external FPGA card are used for accurately time
stamping transmit and receive signals. All the above-mentioned systems achieve
high precision ranging results but require auxiliary hardware or modifications to
existing wireless devices’ firmware.

Unlike those hardware-based method, a software based TOA ranging method
is presented in [8]. It achieves an indoor ranging error of a few meters by modify-
ing the driver of existing wireless devices. Our work is different from [8] because
we use a RTAI extended system which largely minimizes the time variations in
RTT measurements. Moreover, in the proposed system, the MAC layer’s status
information can be easily obtained from the application’s kernel modules or user
space using services provided by RTAI. Thus, it is easier to develop real-time
localization systems with our approach.

3 Design and Implementation

RTT of a packet can be measured on different levels, e.g., hardware, firmware,
driver, OS and application. Among these available approaches, measuring TOA
in the software layer may be the most feasible choice because software can be
more easily updated than hardware.

3.1 Latency at System Level

Time stamping a packet can be done on different levels, e.g., in the user space
or at the driver layer. However, theoretically, a precise and accurate ranging can
only be achieved by measuring the time when a data packet leaves or enters the
transmitter/air boundary. Unfortunately, it is impossible to accomplish this task
by a pure software based approach. For instance, the SoftTOA [8] measure RTT
of network packets in the network driver layer which is above the transmitter/air
boundary. That means the obtained RTT between the sender and receiver is:

RTT = ttx proc + 2× TOA+ trx proc (1)

TOA Ranging Using Real Time Application Interface (RTAI) 91

where ttx proc is the time for the sender to transmit a packet and process the
corresponding ACK message. trx proc is the time for the receiver to process the
received data packet, generate and transmit an ACK message. Equation 1 implies
the ranging precision of RTT depends on the precise measurements of ttx proc

and trx proc, which are determined by the hardware and software used in the
ranging system.

The hardware and software of a system affect the measurements of ttx proc and
trx proc in two ways: latency and jitter. Generally, hardware latency determines
the system response time but may not affect the precision of RTT, e.g., a precise
RTT can be obtained by hardware with longer but constant latency. However,
jitter of latency is detrimental to precise RTT measurement. Thus, TOA ranging
techniques need to focus on reducing jitters.

Generally, time jitters in the hardware are small, e.g., the time is relatively
stable for a NIC (network interface controller) transmitting a fixed number of
bits. However, large jitters exist in software due to the internal non-deterministic
execution of instructions in a general-purpose OS. For instance, the RTT mea-
surement process may be preempted by other process with a higher priority. To
eliminate these jitters, a software-based ranging method needs to timestamp the
data as close to the physical layer as possible.

3.2 Latency at Process Level

To obtain a precise RTT measurement, it is important to identify the points (in a
process) where time stamps should be put. As shown in Fig. 1, a typical process
(e.g., the RTT measuring process) is initiated within the user space. Then, to
transmit a packet, it may enter the kernel space which may be later interrupted
by a hardware signal. Obviously, measuring RTT at the interrupt level will give
the best measurement accuracy because it is the level closest to the hardware.

In IEEE 802.11 networks, when a device receives a packet, the MAC layer of its
NIC will generate an interrupt which notifies the OS that a packet matching its
MAC address is received. This time instance in which the interrupt is generated
should be a perfect time stamping point since it is the closest to the physical
layer. However, the CPU in a non-real-time OS may not be able to respond to
this interrupt immediately, so an accurate time stamping cannot be achieved.

For example, Task 1 in Fig. 1 may be executing in a critical region where an
interrupt (of receiving a packet) is generated at time t3. The interrupt can be
responded only after t4 or after Task 1 exits the critical region. In other words,
a ranging process can timestamp this event of receiving a packet only after t4.
t4 − t3 is the latency for interrupt handling and it will introduce jitters into
the measured RTT. Even worse, the time length of t4 − t3 is non-deterministic,
i.e., it depends on the running process, the scheduler, and the resolution of the
timer. Therefore, at the process level, a precise ranging system requires a fully
preemptable kernel if time stamping needs to be provided in the upper layers of
the system.

92 J. Fang, A. Lim, and Q. Yang

User Space

t0

Hardware

Interrupt Handling Kernel Space

t1
t2
t3

t4
t5

t6
t7

t8
t9

Interrupt Latency

ISR Service Time

Scheduling Latency

ISR Entry

Task 1 Task 2 Interrupt Service Routine (ISR)

Scheduling Time

Scheduling Time

ISR Exit

Time

Interrupt

Fig. 1. Task response time and latency in general purpose Linux system

3.3 RTAI Based Ranging System

Taking into account the latency and jitter described above, we select RTAI as the
operating system for our TOA ranging system. RTAI is a high performance real-
time extension to general-purpose Linux. It achieves real-time task executions
by implementing a real-time hardware abstraction layer (RTHAL) on which the
real-time application interface is mounted. With this sub-layer, RTAI takes over
the system hardware management completely.

Once the RTAI modules are loaded, all hardware interrupts will be intercepted
and dispatched by the RTAI and the scheduler in the general-purpose Linux core
is also taken over by RTAI’s real-time scheduler, which provides simultaneous
one-shot and periodic scheduling. RTAI can provide scheduling with a much
higher precision than general-purpose Linux because it can schedule tasks based
on time stamp counter (TSC) readings. Thus, the theoretical ranging resolution
in meters a RTAI sytem can achieve is:

dr =
c

TSCfreq
(2)

where dr is the theoretical minimum distance a RTAI system can measure al-
though the ranging resolution achieved in practice depends on multiple factors,
such as channel conditions and hardware response time, c is the speed of light
and TSCfreq is the TSC frequency which is 1.2G Hz in our ranging system. Be-
sides task scheduling with timers of finer resolutions, RTAI has more advantages
as a ranging system over general purpose operating systems. Generally, a RTAI

TOA Ranging Using Real Time Application Interface (RTAI) 93

PHY

MAC802.11b ACK

0

NIC
Hardware

Upper
Layer

HERMES_EV_TX

netif_wake_queue()

orinoco_ev_tx()

netif_stop_queue()

Driver
Layerhermes_docmd_wait() orinoco_ev_rx()

HERMES_EV_RX

netif_rx(skb)

1

2 3

4

Sender Receiver

56

7

8
9

Fig. 2. Tx and Rx path in the WLAN card and driver layer

application is a single-threaded process with a fixed priority. The RTAI thread
can be assigned a high priority and run to completion without being preempted.
Thus, in comparison with general-purpose operating systems, it can greatly re-
duce or eliminate the time t4 − t3 and t8 − t7 in Fig. 1. Implementation details
of RTAI can be found in [9].

Taking into account the above discussion on latency and jitter, the stamping
points for RTT in our ranging system are shown in Fig. 2. For easy explanation,
we use the same function names as the driver code of our RTT measurement
system, which uses an IEEE 802.11b Orinoco Gold card with a Hermes chipset.
Drivers for other cards may use different function names, but the same method-
ology can be used.

Fig. 2 shows the shortest round trip path of a data packet in a TOA ranging
system. At the sender, when the driver transmits a packet, it tells the upper
layer to stop feeding packet by calling netif stop queue(). Then, it calls her-
mes docmd wait() to transfer data to the MAC layer. In IEEE 802.11 systems, a
data frame from the sender requires an ACK frame to be returned to the sender.
When the packet is received at the receiver, an ACK frame is assembled and
sent to the sender after one SIFS. This ACK is generated by the MAC firmware
and is not passed to the upper layer. The MAC layer at the sender raises the
HERMES EV TX interrupt only after it receives this ACK. Thus, the shortest
data path for RTT measurement is 0 through 8 (the path with dashed lines in
Fig. 2). The receive interrupt, HERMES EV RX (9 in Fig. 2), is generated only
after the data packet is copied to the socket buffer.

To be precise, RTT in our RTAI-based ranging system starts at the time
when hermes docmd wait() is completed; it ends at the time when the interrupt
HERMES EV TX is raised. Hence, Equation 1 can be rewritten as:

RTT =ttx data trans + 2× TOA+ trx ACK proc

+ SIFS + trx ACK trans + ttx ACK proc

(3)

94 J. Fang, A. Lim, and Q. Yang

where ttx data trans is the time to transmit a data frame including the preamble,
frame header, data payload, and frame extension. ttx ACK proc and trx ACK proc

are the time for processing the ACK at the sender and receiver, respectively.
trx ACK trans is the time to transmit the ACK frame by the receiver.

Equation 3 not only gives the lower bound of RTT, but also identifies where
jitters are introduced into ranging results. Particularly, jitters come from the
interrupt handling (0, 8), the MAC logic execution (1, 7, 4), and transmitting
and receiving (2, 3, 5, 6). These jitters will be eliminated or alleviated by specific
data processing algorithms which will be introduced in latter sections.

4 Experiment Setting

A prototype system implementing the ranging logic above is developed on two
Dell laptops with a 1.2GHz Pentium III mobile processor with no CPU scaling
capability. The communication between the sender and receiver is set in ad
hoc mode in order to control the jitters at the receiver. The WLAN card used
is the Orinoco Gold PCMCIA card which has been set to transmit with the
maximum data rate of 11Mbps. The software used is a vanilla Linux 2.6.23
kernel patched with RTAI 3.6. The test program is implemented in kernel space
as kernel modules. RTT data is collected as CPU ticks from the kernel printing
buffer. In the data analysis phase, the CPU ticks are converted to nanoseconds
according to the following equation:

tns =
T icks

TSCfreq
=

T icks

1.2
(4)

where T icks is time stamp value read from the TSC and TSCfreq is the frequency
of the TSC in gigahertz.

To verify the performance of the ranging system, tests are conducted both
indoor and outdoor. The indoor tests are conducted in a straight aisle inside a
building about 3m wide. In the outdoor tests, the shortest distance from the test
devices to the surrounding buildings is about 10m. In both situations, the system
is placed about 1.5 meters above the ground to preserve the Fresnel zone. Test
is repeated with a LOS distance of 0, 15, 30, 45, 60, 75 feet between the sender
and receiver, respectively. In each test, 1000 RTT samples were collected. The
RTT collected at distance 0ft, denoted as RTT0 is considered as the processing
overhead in the ranging system, which corresponds to the summation of the
right hand side terms, except for the term 2×TOA, in Equation 3. The distance
between the sender and receiver is then computed as:

di = c× TOA = c× RTTdi −RTT0

2
(5)

where RTTdi is the RTT obtained with distance di.

TOA Ranging Using Real Time Application Interface (RTAI) 95

5 Result Analysis

5.1 Data Filtering

Even with time stamping being implemented close to the physical layer, jitters
could still be found in the RTT measurement results due to various reasons
such as hardware noise and multipath affects. However, with the RTAI ranging
system, the data samples, after filtering, are concentrated into a narrow time
band of about 10000ns for both indoor and outdoor situations.

To remove data outliers, the data is filtered in two steps. The first step is to
find the distribution of the data samples. Samples collected are distributed into
a series of buckets within a fixed interval (from 95000 ticks to 125000 ticks);
any sample falling outside this interval are discarded. The filtered RTT data is
shown in Fig. 3.

Fig. 3. RTT in ticks at 45ft indoor test

Two characteristics can be observed from Fig. 3. First, RTT samples gener-
ally follow a Normal or a Gaussian distribution around the peak value. Thus,
statistical data filtering algorithms for Normal distribution data can be used for
further analysis. Second, several sample clusters exist. We conjecture that the
first small clusters on the left are caused by multipath effect.

The second step in data filtering uses a smaller filter window to find the data
samples for the finalRTTcalculation,which are shownas the samples fallingwithin
the intervals surrounding the peak interval 683 in Fig. 3. The size of the filter win-
dow is experimentally determined. Windows of different sizes are slided around
the peak interval and the RTTs that are calculated based on samples within this

96 J. Fang, A. Lim, and Q. Yang

Fig. 4. RTT intervals filtered by sliding window

window are compared. The window size resulting in the smallest error of RTTs are
used. For our experiments, a window size of 81 is finally selected (40 intervals to
each side of the peak interval). The intervals in Fig. 3 that are filtered this way are
shown in Fig. 4, where the peak interval index is 683 and the window boundary
intervals are 643 and 723 (±40 intervals around the peak interval).

5.2 Data Analysis

After the RTT sample intervals in the histogram are identified, statistical meth-
ods are applied to the samples falling within these intervals. RTT is computed
as follows: First, the mean and standard deviation σ are computed for samples
falling within the window:

σ =

√
√
√
√ 1

N

N∑

i=1

(xi − μ)
2

(6)

where xi is the RTT value of sample i, and μ is the mean of all samples within
the selected intervals. Estimators of RTT are computed as μ ± σ, μ ± 2σ and
μ± 3σ, respectively.

Our Experiments show that simply using the mean value as the estimator of
RTT has slightly smaller errors. The table in Fig. 5 shows the results of both
indoor and outdoor tests using the mean of RTTs:

In the table, RTTm is the RTT measured in the test, RTTi is the estimated
RTT value for distance i, which is the estimation of the term 2×TOA in Equa-
tion 3. TOA(ns) is computed by Equation 4, and errors are computed as:

Err = cμ/2− d (7)

where d is the actual distance being measured and c is the speed of light. The
table in Fig. 5 shows our RTAI ranging system achieves a result with an error
less than 15.19ft (4.63m) for indoor ranging and 26.1ft (7.95m) for outdoor
ranging. The ranging results compared with the true distances are plotted in
Fig. 6.

TOA Ranging Using Real Time Application Interface (RTAI) 97

Fig. 5. Estimated distance for indoor and outdoor experiments

Fig. 6. Distances measured and actual distances for indoor and outdoor experiments

6 Discussion

In our test, RTAI is implemented at both the sender and receiver while the
communication mode is set in ad hoc mode. In this configuration, data processing
time at the receiver can be well controlled. However, in real world applications,
a sender will more likely communicate with an AP. The response of AP depends
on many factors that the sender cannot control such as workload change. This
may introduce more errors to the ranging result than our configuration. Besides,
our experiments are done in a limited number of scenarios, to make this system
viable in general application environments, tests in more rigorous situations are
needed, such as under different workloads both at the sender and receiver, or
under severe channel interference situations. We will conduct these tests in our
future work.

98 J. Fang, A. Lim, and Q. Yang

7 Conclusion

In this paper, a novel TOA ranging approach using real-time system RTAI is pre-
sented. The implemented system is software-based without any special hardware
support or modifications to system firmware. RTAI provides real-time guarantees
for task executions and has faster response to hardware interrupt than general
purpose Linux system. Our experimental results show, with the RTAI real-time
system, errors less than (4.63m) for indoor ranging and errors less than (7.95m)
for outdoor ranging can be achieved. Our work demonstrated that by exploit-
ing data packet transmission and receive at the instruction execution level at
bottom layers of the system, a software based system can achieve good ranging
accuracy. Our future work will test the system under more rigorous application
conditions.

References

1. Dozio, L., Mantegazza, P.: Real time distributed control systems using RTAI. In:
Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, pp. 11–18 (May 2003)

2. Koyuncu, H., Yang, S.H.: A survey of indoor positioning and object locating sys-
tem. International Journal of Computer Science and Networks Security 10(5), 121–
128 (2010)

3. Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning
techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews 37(6), 1067–1080 (2007)

4. Bill, R., Cap, C., Kofahl, M., Mundt, T.: Indoor and outdoor positioning in mobile
environments – a review and some investigation on WLAN positioning. Geographic
Information Sciences 10(2), 91–98 (2004)

5. Izquierdo, F., Ciurana, M., Barcelo, F., Paradells, J., Zola, E.: Performance eval-
uation of a TOA-based trilateration method to locate terminals in WLAN. In:
1st International Symposium on Wireless Pervasive Computing, pp. 1–6 (January
2006)

6. Karalar, T., Rabaey, J.: An RF tof based ranging implementation for sensor net-
works. In: IEEE International Conference on Communications, vol. 7, pp. 3347–
3352 (June 2006)

7. Golden, S., Bateman, S.: Sensor measurements for Wi-Fi location with emphasis on
time-of-arrival ranging. IEEE Transactions on Mobile Computing 6(10), 1185–1198
(2007)

8. Ciurana, M., López, D., Barceló-Arroyo, F.: SofTOA: Software Ranging for TOA-
Based Positioning of WLAN Terminals. In: Choudhury, T., Quigley, A., Strang,
T., Suginuma, K. (eds.) LoCA 2009. LNCS, vol. 5561, pp. 207–221. Springer, Hei-
delberg (2009)

9. http://www.aero.polimi.it/~rtai

10. Muthukrishnan, K., Koprinkov, G., Meratina, N., Lijding, M.: Using time-of-flight
for WLAN localization: feasibility study. Center for Telematics and Information
Technology (WLAN) technical report, TR-CTIT-06-28 (June 2006)

http://www.aero.polimi.it/~rtai

	TOA Ranging Using Real Time ApplicationInterface (RTAI) in IEEE 802.11 Networks
	Introduction
	Related Works
	Design and Implementation
	Latency at System Level
	Latency at Process Level
	RTAI Based Ranging System

	Experiment Setting
	Result Analysis
	Data Filtering
	Data Analysis

	Discussion
	Conclusion
	References

