
 

Joel J.P.C. Rodrigues et al.: (Eds.): GreeNets 2011, LNICST 51, pp. 63–72, 2012. 
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012 

Bandwidth Aware Application Partitioning  
for Computation Offloading on Mobile Devices 

Feifei Wu, Jianwei Niu, and Yuhang Gao 

School of Computer Science and Engineering, Beihang University,  
Xueyuan Road. 37, 100191 Beijng, China 

{wufeifei,niujianwei,gaoyuhang}@buaa.edu.cn 

Abstract. Computation offloading is a promising method for reducing power 
consumption of mobile devices by offloading computation to remote servers. 
For computation offloading, application partitioning is a key component. 
However, making a good application partitioning is challenging, as it needs to 
carefully consider the tradeoffs between the communication cost and 
computational benifits. Most of previous work makes application partitioning 
by using a static bandwidth to measure the communication cost and thus cannot 
adapt to scenarios with dynamic bandwidth. To address this problem, in this 
paper, we propose a Bandwidth Aware Application Partitioning Scheme 
(BAAP). BAAP models the bandwidth as a random variable and formulate the 
application partition as a 0-1 Integer Programming with Probability (IPP) 
problem. Then BAAP adopts Branch and Bound algorithm to solve the 
problem. Experimental results show that BAAP can greatly reduce energy 
consumption while satisfying the cost and time constraints with guaranteed 
confidence probabilities regardless of different network bandwidth.  

Keywords: Computation offloading, Graph Partitioning, Energy Saving, 
Mobile Devices, Confidence Probability. 

1 Introduction 

With the fast development of mobile technologies, mobile devices, such as smart 
phones, have become the primary computing platform for many users, which can 
provide a range of services and applications. However, the limited battery life is still a 
big obstacle for the further growth of mobile devices. Various studies have identified 
longer battery lifetime as the most desired feature of mobile devices, therefore, 
prolonging the battery life of mobile devices has become one of the top challenges. 

Much work has been done to address this problem by offloading computation from 
smart phones to remote resource rich servers [1][2][3][4] to reduce energy 
consumption, which is called computation offloading or code offloading. For 
example, Diaconescu [4] proposed a compiler and runtime infrastructure for 
automatically partitioning and offloading java applications, and Roelof Kemp 
proposed Cockoo[3], an offloading system for android applications. 



64 F. Wu, J. Niu, and Y. Gao 

 

The key component of computation offloading is application partitioning, which 
partitions the application into one local execution part and one or more remote 
execution parts. However, making a good application partitioning is challenging, as it 
needs to carefully consider the tradeoffs between the communication cost and 
computational cost: running a part of application locally will cause much energy 
consumption as the CPU needs to conduct complex computation while running the 
part remotely will led to extra communication cost (energy, money and delay) for 
transmitting the application state, code, and so on. 

A traditional solution to application partitioning is to model it as a graph 
partitioning problem. The application is represented as a Weighted Object Relation 
Graph (WORG), whose nodes represent the application components and edges 
represent the interaction between components. The weights of nodes and edges 
represent the computational cost and communication cost between components 
respectively. Then an optimization algorithm can be applied to solve the graph 
partitioning problem to minimize the cost. 

Apparently, an accurate measurement of communication cost is critical to 
partitioning decision, and the communication cost is largely decided by the network 
bandwidth. Some previous work [4][5][6] uses a static bandwidth to compute the 
communication cost when making application partitioning and thus cannot be 
applicable to those scenarios in which bandwidth is changing dynamically. In this 
paper, we propose a Bandwidth Aware Application Partitioning (BAAP) algorithm, 
which can adapt to dynamic bandwidth. We model the bandwidth as a random 
variable and construct a probabilistic WORG of the application with the weights of 
edges as a function of the random variable. Then, we formulate the application 
partitioning problem as a 0-1 Integer Programming with Probability (IPP) problem. 
Then BAAP adopts Branch and Bound to solve the problem to optimally determines 
which part of the application should be run locally and which part should be run 
remotely. Experimental results show that our algorithm can greatly reduce energy 
consumption while satisfying the cost and time constraints with guaranteed 
confidence probabilities regardless of different network conditions. 

The rest of this paper is organized as follows: Section 2 provides a detailed 
description of our Bandwidth Aware Application Partitioning scheme. Experiment 
and analysis are presented in section 3. Section 4 provides some concluding remarks. 

2 Bandwidth Aware Application Partitioning 

2.1 Overview  

Figure 1 shows the schematic workflow of our Bandwidth Aware Application 
Partitioning (BAAP) Algorithm. Currently, BAAP is target to Java Applications, but 
can be extended to any other Object-Oriented Applications (e.g., C++, C#). Taking a 
Java Application as input, BAAP first constructs the WORG of the application by 
static Call Graph Analysis and dynamic Profiling. Then, the constructed WOGR is 
passed to the Graph Partitioning module for partitioning. Based on the collected 
Bandwidth information and Application Specific Constraints(time constraint, cost 
constraint and energy constraint), the Graph Partitioning module works out the 
optimal assignment of each WORG node to run locally or remotely that fulfill the 



 BAAP for Computation Offloading on Mobile Devices 65 

 

constrains. Once the graph is partitioned, a distributed version of application will be 
generated to automatically offload the code to remote server according to the 
partitioning results. The details of WORG constructing and Graph Partitioning will be 
discussed in section 2.2 and 2.3, respectively.  
 

 

Fig. 1. Schematic workflow of BAAP 

2.2 WORG Construction 

BAAP models the application as a Weighted Object Relation Graph(WORG), with 
each node represents a run time object of the application and each edge represents the 
interaction between objects (we define three types of interaction: C<Creation>, 
I<Invocation>, D<DataAccess> ). Moreover, each node is associated with a weight 
<CPU> to indicate the CPU execution time for each object and each edge is 
associated with a weight <DataCount> to indicate the total data amount that needed to 
be transmitted between two nodes. 

In order to get an accurate WORG of the application, we first construct an initial 
Object Relation Graph (ORG) of the application by static point to analysis [8] and 
then we use offline profiling to assign weights to the ORG. Our WORG constructing 
algorithm is based on the method proposed in [7]. For convenience, we will use a 
simple example to work through our WORG constructing algorithm. 

An Example. Figure 2 shows an example of java application. The example contains 
two main classes: an Account class describes a bank account and a Bank class 
describes a bank that processes those bank accounts. In addition, the Bank class 



66 F. Wu, J. Niu, and Y. Gao 

 

creates a Vector object to save the accounts. The main function of the Bank class 
create one bank object and two account objects, performing  operations on them 
through method calls. Our target is to construct a graph to represent these objects and 
the interaction between them. 
 

 

Fig. 2. An Example of java application 

Static Point-to Analysis. We use the Soot analysis framework [8] to perform Point-to 
Analysis of the application. Soot is a Java optimization framework which provides 
tools and APIs for analyzing and transforming java byte code. By using Soot’s build-
in Pointer Analysis Research Kit (Spark) and call graph analysis, we can construct an 
initial ORG of the example application, which is showed in Figure 3. 

The OGR has five nodes and each node is annotated with S_ or D_ prefix to 
indicate static or dynamic objects. The entry point of the ORG is S_Bank which 
contains the main function. The main function first creates a Bank Object and two 
Account Objects which are represented by D_Bank,D_Account_1, D_Account_2 
respectively. Meanwhile three edges are added from S_Bank to D_Bank, 
D_Account_1, D_Account_2 to indicate the creation and invocation interaction  
between them. In addition, the main function invokes D_Bank’s “addNewAccount” 
method to add D_Account_1 and D_Account_2, thus two edges are added from  
 



 BAAP for Computation Offloading on Mobile Devices 67 

 

 

Fig. 3. Initial ORG of the Example 

D_Bank to D_Account_1 and D_Accout_2 for the DataAccess interaction. Then, the 
main function calls the D_Bank’s “saveMoney” function to set D_Account_2’s 
“money” attribute which will in turn invocate D_Account_2’s “setMoney” method, 
thus the edge between D_Bank and D_Account_2 is labeled with I (Invocation). 

Offline Profiling. After constructing the initial ORG, we perform Offline Profiling to 
assign weights to the nodes and edges of the ORG to form the Weighted ORG 
(WORG). We assign each node with a <CPU> weight to indicate the execution time 
of the corresponding object, and each edge with a <DataCount> weight to indicate the 
total data amount that needs to be transmitted between two nodes. In order to estimate 
the <CPU> and <DataCount> metrics, we combine Soot’s flow analysis framework 
with the byte code rewriting to add instrument code to collect the <CPU> and 
<DataCount> metrics of each node and edge. 

2.3 Graph Partitioning 

The task of Graph Partitioning module is to work out the optimal assignment (locally 
execution or remote execution) for each node of the constructed WORG. We 
formulate the Graph Partitioning problem as a 0-1 Integer Programming with 
Probability (IPP) problem and adopt Branch and Bound algorithm to solve the IPP 
problem. Section 2.3.1 and 2.3.2 present the details of IPP and Branch and Bound, 
respectively. 

Problem Formulation  

Input. The IPP problem takes the following inputs: 
1) G = <V, E>: The WORG of the application, with each node Vi associated with 

weight <cpui> and each edge with weight <datacounti> .  
2) F(b): The Probability Distribution Function of the bandwidth b; 
3) <EC, TC, CC, PC>: The application specific constrains, which indicates the total 

energy consumption, execution time and communication cost should not 
exceed EC, TC and CC respectively with guaranteed probability PC.  



68 F. Wu, J. Niu, and Y. Gao 

 

4) B: Current bandwidth. 
5) SL: The set of the nodes that needs to be run locally (e.g., the objects that 

process user interaction). 

Target. With a given input, we can compute the total energy consumption, execution 
time and cost of the application by the following equations: 

( ) * ( ) | - | * ( )Energy G x E i x x E ei i j ij = + . (1)

( ) * (1 ) * | | *
1 1 ,

Time G x t x t x x ti i nsi i j ijnlii n i j n
 = + − + −

≤ ≤ ≤ ≤
. (2)

( ) | | *
1 ,

Cost G x x ci j iji j n
= −

≤ ≤
. (3)

xi indicates the assignment of each node: xi = 1 means local execution of the node 
while xi = 0 means remote execution.  

E(i) is the energy consumption of node i when i is running locally, which can be 
computed through the following equation: 

( ) *E i cpu Pcpui=< > . (4)

<cpui> is the <CPU> weight of node i and Pcpu is the power of CPU. 
E(eij) is the energy consumption for data transmission between node i, j when they 

are not running together. E(eij) can be computed by equation (5). 

( ) / *E ij datacount b Pij wi fi=< > − . (5)

<datacountij>is the <DataCount> weight of the edge that connect node i and j. 
tnli and tnsi is the execution time of node i when running locally and remotely, which 

can be computed by equation (6) and (7) , respectively: 

t cpuinli =< > . (6)

/t t knsi nli=
. (7)

k indicates that the server is k times faster than local devices. 
tij is the transmission time for the communication data between node i and j : 

( ) /t ij datacount bij=< > . (8)

cij is the money cost for transmitting data between node i and j : 

( ) *c ij datacount cij=< > . (9)

c is the money taken for transmitting 1bit data. 
The task of IPP problem is to assign each node of the WORG with the optimal xi, 

to make the execution time, energy consumption and cost fulfill the given constrains 
with given probability confidence: 

{ ( ) }P Energy G E Pc< > . (10)



 BAAP for Computation Offloading on Mobile Devices 69 

 

{ ( )} } cP Time G T P< > . (11)

{ ( )} }P Cost G C Pc< > . (12)

Branch and Bound. We perform Branch and Bound algorithm to solve the IPP 
problem. First, in order to reduce computational complexity, we simplify the 
constraints defined in IPP (denoted as constraint A) problem as follows (denoted as 
constraint B): 

( )Energy G Eb < . (13)

( )Time G Tb < . (14)

( )Cost G Cb < . (15)

b is the critical bandwidth that meets P{B>=b}>Pc  and Energy(G)b , Time(G)b, 
Cost(G)b represents  the energy consumption, execution time and cost of a particular 
partitioning scheme respectively when bandwidth is b. 

Constraint B is an approximate to constraint A: if a partitioning scheme can fulfill 
constraint B, it will fulfill constraint A with a high probability. 

Then we conduct Branch and Bound on the simplified IPP. We first transform the 
WORG to a DAG, perform topologic sort on the DAG, and then branch form the first 
node in topologic sort. We use depth-first search to traverse the search tree, and for 
every encountered nodes, compute the Energy(G)b , Time(G)b, Cost(G)b , compare it 
with E, T, C and the current minimal energy MinEnergy. If Energy(G)b , Time(G)b, 
Cost(G)b don’t fulfill the constraints or E MinEnergy> , the sub tree of the node will 
be cut and the search back traverses to the parent node. After finishing searching, we 
will get the optimal partitioning that fulfills the given constrains.  

3 Evaluation 

This section presents the experimental results of our BAAP algorithm. We first show 
the drawbacks of those partitioning algorithms that using static bandwidth, then we 
present the performance of our BAAP algorithm and compare it with the static 
bandwidth based application partitioning algorithm.  

3.1 Drawbacks of Static Bandwidth Based Partitioning  

To show the drawbacks of static bandwidth based partitioning algorithms that using a 
static bandwidth to compute the communication cost, we perform the following 
experiment: 

1) With a given WOGR and bandwidth B(100kb/s in our experiment ), work out 
the optimal partition scheme (denoted as A) that minimize the energy 
consumption of the WORG through Branch and Bound algorithm. 

2) Change the bandwidth (from 10kb/s to 100kb/s), work out the corresponding 
optimal partition scheme (denoted as B), and compare the energy consumption 
of partition scheme A and that of scheme B at different bandwidth.  



70 F. Wu, J. Niu, and Y. Gao 

 

We perform the experiment on three random generated graphs that simulating the 
WORG of actual applications. The properties of the graphs are listed in Table 1 and 
the experimental results are showed in Figure 4. 

Table 1. Graph Properties 

Parameter Setting Description 

Graph size 
Graph1 <10,43> 

The number of node and edge Graph2 <15,103> 
Graph3 <30,416> 

Node weight 1-720(s) Execution time of a node 
Edge weight 1-2000(kb) Interaction data count 
Cpu power 480(mw) Cpu’s power 

Wi-Fi power 880(mw) The power of wi-fi interface 
cost 0.01(RMB) Money cost for transmitting 1 bit 

k 5 Speed up of server 

 

 

Fig. 4. Comparison of energy consumption between scheme A and B with different bandwidth 

From Figure 4 we can see that with the bandwidth decreases, the energy 
consumption of scheme A increases and the energy consumption of scheme A is 
much larger than that of scheme B, especially when the bandwidth is low. The 
experiment results reflect that the static bandwidth based partitioning scheme cannot 
adapt to dynamic bandwidth: the optimal partitioning at a bandwidth may consume 
much more energy at another bandwidth. Therefore a bandwidth aware partitioning 
scheme is needed. 



 BAAP for Computation Offloading on Mobile Devices 71 

 

3.2 Performance of BAAP 

To evaluate the performance of our BAAP algorithm, we work out the partitioning 
scheme (denoted as BAAP) through our BAAP algorithm of the three Graph that we 
used in 3.1 and compare the energy consumption of BAAP with that of scheme A and 
scheme B in 3.1 under different bandwidth(from 10kb/s to 100kb/s). 

Table 2. Experiment setting 

Parameter Setting Description 

B 100 Current bandwidth 

b 10 Critical bandwidth with 90% confidence 

E 1.2 *E(b) E(b ) is the minimal energy with bandwidth=b 

C 1.2*C(b) C(b) is the minimal cost with bandwidth=b 

T 1.2*T(b) T(b) is the Minimal time with bandwidth=b 

F(B) B/100 B obeys the uniform distribution between 0-100 

 

 

Fig. 5. Comparison of energy consumption among scheme A scheme B and BAAP with 
different bandwidth 



72 F. Wu, J. Niu, and Y. Gao 

 

Table 2 lists the constraints and parameters we set in this experiment for BAAP 
and Figure 5 shows the experimental results. 

From figure 5, we can see that BAPP consumes less energy than Scheme_A, and 
thus outperforms those static bandwidth based partitioning schemes. By setting 
constrains to the possible partitioning schemes, BAPP can exclude those partitioning 
schemes that may consume much energy at low bandwidth, though they may be the 
optimal scheme at current bandwidth. 

4 Conclusion  

This paper proposed a Bandwidth Aware Application Partitioning Scheme (BAAP) 
for computation offloading to save energy of mobile devices. BAAP models the 
bandwidth as a random variable and formulates the application partition as a 0-1 
Integer Programming with Probability (IPP) problem. Then, BAAP adopts Branch 
and Bound algorithm to solve the problem. Experimental results show our BAAP 
algorithm outperforms static bandwidth based partitioning schemes and can greatly 
reduce energy consumption while satisfying the cost and time constraints with 
guaranteed confidence probabilities regardless of different network bandwidth. 
 

Acknowledgments. This work was supported by the Research Fund of the State Key 
Laboratory of Software Development Environment under Grant No. BUAA 
SKLSDE-2010ZX-13, the National Natural Science Foundation of China under Grant 
No. 60873241, the Fund of Aeronautics Science granted No. 20091951020, the 
Program for New Century Excellent Talents in University under Grant No. 291184. 

References 

1. Yang, K., Ou, S.: On Effective Offloading Services for Resource-Constrained Mobile 
Devices Running Heavier Mobile Internet Applications. IEEE Communications 
Magazine 46(1), 56–63 (2008) 

2. Cuervo, E., Balasubramanian, A., Cho, D.: MAUI: Making Smart Phone Last Longer with 
Code Offloading. In: Proceedings of the 8th International Conference on Mobile Systems, 
Applications, and Services, San Francisco (2010) 

3. Kemp, R., Palmer, N., Kielmann, T., Bal, H.: Cuckoo: a Computation Offloading 
Framework for Smart phones. In: Proceedings of the 2nd International ICST Conference on 
Mobile Computing, Application and Services, Santa Clara (2010) 

4. Diaconescu, R.E., Wang, L., Mouri, Z., Chu, M.: A Compiler and Runtime Infrastructure 
for Automatic Program Distribution. In: 19th IEEE International Parallel and Distributed 
Processing Symposium, Denver (2005) 

5. Diaconescu, R.E., Wang, L., Franz, M.: Automatic distribution of java byte-code based on 
dependence analysis. Technical Report, School of Information and Computer Science, 
University of California (2003) 

6. Li, Z., Wang, C., Xu, R.: Computation Offloading to Save Energy on Handheld Devices: A 
Partition Scheme. In: Proceeding of the 4th ACM International Conference on Compilers, 
Architecture and Synthesis for Embedded Systems, Atlanta (2001) 

7. Wang, L., Franz, M.: Automatic Partitioning of Object-Oriented Programs with Multiple 
Distribution Objectives. Technical Report, Donald Bren School of Information and 
Computer Science, University of California, Irvine (2007) 

8. Soot, http://www.sable.mcgill.ca/soot/ 


	Bandwidth Aware Application Partitioning for Computation Offloading on Mobile Devices
	Introduction
	Bandwidth Aware Application Partitioning
	Overview
	WORG Construction
	Graph Partitioning

	Evaluation
	Drawbacks of Static Bandwidth Based Partitioning
	Performance of BAAP

	Conclusion
	References




