
An Android Multimedia Framework

Based on Gstreamer

Hai Wang1, Fei Hao2, Chunsheng Zhu3,
Joel J.P.C. Rodrigues4, and Laurence T. Yang3

1 School of Computer Science, Wuhan University, Wuhan, China
hkhaiwang@gmail.com

2 Department of Computer Science, KAIST, Daejeon, South Korea
fhao@kaist.ac.kr

3 Department of Computer Science, St. Francis Xavier University,
Antigonish, Canada

{chunsheng.tom.zhu,ltyang}@gmail.com
4 Instituto de Telecomunicações,University of Beira Interior, Covilhã, Portugal

joeljr@ieee.org

Abstract. Android is a widely used operating system in mobile devices,
due to that it is free, open source and easy-to-use. However, the multime-
dia processing ability of current android is quite limited, as the
original android multimedia engine OpenCore cannot deal with lots of
commonly used video (audio) formats. Recently, several approaches are
proposed to enhance the multimedia processing ability and Gstreamer
based method is supposed to own the best performance. However, themul-
timedia processing ability of current extension multimedia frameworks are
still not good enough, which weakens the potential application prospect.
In this paper, we provide another android multimedia framework based on
Gstreamer. Extensive experiments show that our Gstreamer based frame-
work can greatly improve the multimedia processing ability in terms of
efficiency, compatibility, feasibility and universality.

Keywords: Android, Multimedia framework, OpenCore, Gstreamer.

1 Introduction

Multimedia supported green mobile networks can offer a lot of benefits for peo-
ple [1]. Released by Google and supported by OHA (Open Handset Alliance),
android is a widely used open source operating system for mobile devices. Apart
from its operating system character, android is also a mobile software develop-
ment platform which includes operating system kernel, application framework
and core applications. Because it is free, open-source and easy-to use for both
application developers and users, many developers and users have converted to
it and it has a very bright future in the mobile market [2] [3] [4] [5]. Moreover,
many multimedia terminals such as Google TV and iPad-like terminals have
been popular in recent years and android OS can been modified and ported to
be applied into them. This further extends the market prospect of android.

Joel J.P.C. Rodrigues et al.: (Eds.): GreeNets 2011, LNICST 51, pp. 51–62, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



52 H. Wang et al.

However, as the original multimedia engine OpenCore cannot deal with lots
of commonly used video (audio) formats, the multimedia processing ability of
android is quite limited and it cannot satisfy the various multimedia processing
demand imposed by multimedia terminal devices. Recently, several approaches
are put forward to enhance the multimedia processing ability of android. Spe-
cially, [6] proposes to add some audio/video coding (encoding) libraries into the
OpenCore engine as plug-ins to improve the processing ability of OpenCore. [7]
and [8] try to extend the Java application framework with NDK development
method to perform more functions. [9] intends to employ the Gstreamer mul-
timedia engine to supply more multimedia services for the application client.
Among these extension methods, the Gstreamer based method is supposed to
be the most effective, as Gstreamer is a popular multimedia engine with rich
plug-ins. Whereas, the multimedia processing ability of current android multi-
media frameworks are still not good enough. For example, many frameworks can
only deal with specific video (audio) formats. In this paper, another design of
an android multimedia framework based on Gstreamer which greatly enhances
the multimedia processing ability is presented. Extensive experiments are con-
ducted and they show that our framework obtains high efficiency, compatibility,
feasibility and universality. To the best of our knowledge, our work provides es-
sential contribution for further research regarding Gstreamer based multimedia
frameworks and their commercial applications.

For the rest of this paper, section 2 briefly introduces the system architecture
of android. The original android multimedia framework is discussed in section
3. Our extended Gstreamer based multimedia framework is described in section
4. Section 5 shows the experiments and gives experimental results analysis. And
section 6 concludes this paper.

2 Android System Architecture

The android system consists of five layers and each layer consists of some core
components. Figure 1 shows the architecture of android. From top to down, the
core components are: Applications, Application Framework, Native C libraries,
Android Runtime Environment (JVM), HAL (Hardware Abstract Layer), Linux
Kernel.

1) Applications. Application layer consists of many core Java-based applica-
tions, such as calendar, web browser, SMS application, E-mail, etc.

2) Application Framework. Application framework consists of many compo-
nents and Java classes to allow android application developers to develop various
kinds of applications. By using Java language, it hides the internal implemen-
tation of system core functions and provides the developers an easy-use API.
Basically, it includes Java core class and some special components of android.
Some typical components are as follows: View (List, Grids), Content Provider,
Resource Manager, Activity Manager.

3) Native C Libraries. In Native C library layer, it consists of many C/C++
libraries. And the core functions of android are implemented by those libraries.



An Android Multimedia Framework Based on Gstreamer 53

Shell & Java API

Linux Kernel

ThirdApp Etc...

Internet BrowserE-Business

WebKit Java VMGraphicsUtils NetworkSQLite

Applications

HAL

Education

Smart phone

Medical Shopping

Native C Library

Application Framework
View Manager Content ProviderActivity ManagerWindow Manager

Fig. 1. Android architecture

Some typical core libraries are as follows: Bionic C lib, OpenCore, SQLite, Sur-
face Manager, WebKit, 3D library.

4) Android Runtime Environment. Runtime environment consists of Dalvik
Java virtual machine and some implementations of Java core libraries.

5) HAL. This layer abstracts different kinds of hardwares and provides an
unified program interface to Native C libraries. HAL can make Android port on
different platforms more easily.

6) Linux Kernel. Android’s core system functions (e.g., safety management,
RAM management, process management, network stack) depend on Linux
kernels.

3 Android Multimedia Framework

3.1 Overall Multimedia Architecture

The android multimedia system includes multimedia applications, multime-
dia framework, OpenCore engine and hardware abstract for audio/video in-
put/output devices. And the goal of the android multimedia framework is to
provide a consistent interface for Java services. The multimedia framework con-
sists of several core dynamic libraries such as libmediajni, libmedia, libmedi-
aplayservice and so on [4].

A general multimedia framework architecture is shown in Figure 2. From Fig-
ure 2, we can see that, Java classes call the Native C library Libmedia through
Java JNI (Java Native Interface). Libmedia library communicates with Media
Server guard process through Android’s Binder IPC (inter process communica-
tion) mechanism. Media Server process creates the corresponding multimedia
service according to the Java multimedia applications. The whole communica-
tion between Libmedia and Media Server forms a Client/Server model. In Media



54 H. Wang et al.

Java Class of Media

Media JNI

MediaPlayer MediaRecorder

IMediaPlayer IMediaRecorder

Libmedia.so

Media Server
IPC

PVPlayer PVAuthor

Fig. 2. Android multimedia framework architecture

Android.widget.VideoView

Android.media.MediaPlayer Android.View.Surface

Libmedia_jni

Libmedia

MediaPlayer Service

Packet Video
FrameWork(OpenCore)

PVPlayerMidi
Player

Vorbis
Player

Surface Flinger Audio Flinger

Overlay Audio HAL

Audio DriverVideo PlaneMain
framebuffer

Video
stream Audio

stream

Java
Framework

Native C
library

Driver

Fig. 3. Details of android multimedia framework architecture

Server guard process, it calls OpenCore multimedia engine to realize the spe-
cific multimedia processing functions. And the OpenCore engine refers to the
PVPlayer and PVAuthor.

More detailed information regarding the multimedia framework are shown in
Figure 3. From Figure 3, we can see that the typical video/audio data stream
works in Android as follows. Specially, Java applications first set the URI of
the media (from file or network) to PVPlayer through Java framework, JNI
and Native C. In this process, there are no data stream flows. Then PVPlayer



An Android Multimedia Framework Based on Gstreamer 55

processes the media data stream with the following steps: demux the media data
to sperate video/audio data stream, decode video/audio data, sync video/audio
time, send the decoded data out.

3.2 OpenCore Multimedia Engine

OpenCore is the core of the android multimedia system. Generally speaking,
it has the following characters. First, it should support most common audio
formats and support stream media (RTSP/RTP). Second, it should be extended
with the third-party Codecs. A general architecture of OpenCore is described in
Figure 4.

Android Media Framework

Android Player Android
Author

PVPlayer
Engine

PVAuthor
Engine

PVMF
(Packet Video Multimedia Framework)

OSCL
(Operating System Compatibility Library)

OS,lib

Codec Nodes

Sink/Source
Nodes

Fileformat
Nodes

Audio IO
Video
Output
Camera

3rd
Codec

Fig. 4. OpenCore architecture

From Figure 4, we can see that OpenCore owns many functions such as media
file format analysis, audio/video decoding and so on. From down to top, Open-
Core includes OSCL (Operating System Compatible Layer), PVMF (Packet
Video Multimedia Framework), File Formats analysis Node, Decoding Node,
Encoding Node, Media I/O Node, Player engine. Furthermore, we can see that
PVPlayer used in multimedia framework calls Player engine in OpenCore to re-
alize the specific functions. At the same time, we can find that we can integrate
third party Codecs into OpenCore through adding new decoding Node.

4 Gstreamer Based Multimedia Framework

4.1 Design of the Multimedia Framework

Gstreamer is a popular and widely used multimedia engine in Linux and many
commercial media players use it as the core kernel [10]. The basic idea of



56 H. Wang et al.

Gstreamer based approach is to port Gstreamer to android and it is first pro-
posed in [9]. Compared with other extension methods (e.g., [6] [7] [8]), porting
Gstreamer to android has the following advantages. First, it extends the An-
droid’s multimedia processing ability in the Native C without changing the Java
API, so all the Java applications can benefit from this extension without any
modification. This can avoid the limited Java application problem compared
with the methods in [7] [8]. Second, Gstreamer is widely used, so there are lots
of available popular plug-ins. If a new function is needed, we only need to add the
corresponding plug-ins to Gstreamer. This can significantly reduces the work of
extension compared with the approach proposed in [6]. Third, Gstreamer owns
OpenMax IL Standard plug-in instead of using software to process video/audio.
Thus, it can realize hardware video processing acceleration on the development
board which supports OpenMax IL. With Gstreamer, Android can make use of
the ability of hardware to the uttermost [11] [12] [13] [14].

As for our Gstreamer based multimedia framework, first, we add Gstreamer to
the Media Server guard process, thus the Media Server guard process can provide
multimedia play service to Java applications. Second, we change the compilation
part of Gstreamer so that the total multimedia framework can run on different
kinds of multimedia terminals with CPU architectures (e.g., X86, ARM, MIPS,
SH4) [15]. Third, we employ the Prelink technology to enhance the execution
efficiency. Last, we also apply the OpenMax IL Standard, thus our approach can
support hardware video processing acceleration in special development boards.
Figure 5 shows our extension method with Gstreamer.

Media Server Process

GstreamerOpenCore

PVPlayer GPlayer

Fig. 5. Our Gstreamer-based multimedia framework architecture

To the best of our knowledge, current android multimedia frameworks ex-
ploiting Gstreamer are almost all based on the first Gstreamer based android
multimedia framework in [9]. Here, different from the Gstreamer multimedia
framework in [9], our framework has the following advantages. First, we still
keep OpenCore instead of replacing OpenCore, as OpenCore is more sufficient



An Android Multimedia Framework Based on Gstreamer 57

than Gstreamer when dealing with H.264 encoded videos. Thus our framework
can take advantage of both OpenCore and Gstreamer. Second, we modify the
assembly languages in Liboil and Gstreamer engine so that our framework can
run on different CPU architectures. Third, by adding more sufficient plug-ins,
our framework can deal with more video (audio) formats and it has a high com-
patibility to different Video/Audio clips. Finally, we make some performance
optimizations due to that Gstreamer has some performance weaknesses under
embedded environment.

4.2 Implementation of the Multimedia Framework

To achieve the desirable functions, we need to the following work.

1) Porting some Gstreamer required open-source libraries to Android, such as
Glib, Liboil, etc.

2) According to Gstreamer framework, write two plug-ins. One is used to
send the decoded original video data from Gstreamer to Android display system
(Surfaceflinger). And another is used to send the decoded original PCM audio
data to Android audio system (Audioflinger).

3) Based on Gstreamer, we should construct a mediaplayer which can be used
in Media Server guard process to supply media player service.

4) Modify assembly codes to apply Gstreamer to diversified CPU architec-
tures, and apply some commonly used optimized technologies in embedded en-
vironment to Gstreamer.

As the porting work of Glib, Libiol and other related libraries are easy, here we
introduce the rest steps.

1) The Surfaceflinger. Surfaceflinger is an important part of Android’s display
system. And its specific implementation mechanisms are quite complex. More-
over, it provides programming interfaces to Native C users and Java users. To
send our decoded raw data to Surfaceflinger to display, in the native C user, we
can do the following.

First, create a display layer through Surfaceflinger Client and get the control
interface, namely, ISurface interface. Second, open the Session between Surface-
flinger and the ISurface Interface. Third, utilize ISurface to control the Layer’s
attributes, such as Alpha, Z-order, then close the session. Fourth, clear the pre-
vious display buffer, then post the current buffer to the bufferheap in ISurface.
Last, destroy display buffer and unregister ISurface interface.

The core codes for implementation are described as follows.
2) The Audioflinger. Audioflinger is an important part of Androids audio

system. Meanwhile, it provides programming interfaces to Native C users and
Java users. To send our decoded raw data to Audioflinger to play, in the native
C user, we need to do the following.

First, create an AudioTrack through Audioflinger Client and obtain the con-
trol interface, namely, ISurface interface. Second, open the Session between Au-
dioflinger and the ISurface Interface.Third, utilize ISurface to control the attributes



58 H. Wang et al.

Algorithm 1. Core Codes for Implementation

1: SurfaceComposerClient client= new SurfaceComposerClient();
2: client.Register();
3: OpenSession();
4: ISurface control=client.get();
5: control.setAlpha();
6: control.setLayer();
7: CloseSession();
8: control.clear();
9: control.BufferHeap= SurfaceSink.get().BufferHeap;
10: control.Post(BufferHeap);
11: client.UnRegister();

of the Layers, such as FrameCount, Audio Format, then close the session. Fourth,
clear the previous audio buffer, then post the current buffer to the bufferheap in
ISurface. Last, destroy display buffer and unregister ISurface interface.

The core codes for this part are almost the same with that of Surfaceflinger
in Algorithm 1.

3) The Mediaplayer. After we build all the essential Gstreamer plug-ins, we
need to use Gstreamer to construct a media player inherited from Android Me-
diaPlayer interface to provide media processing service for Java framework. In
those steps, we can use some low-level elements in Gstreamer to construct medi-
aplayer. But this method is extremely complex. For example, regarding a specific
video clip, we need to analyze which video container format it belongs to. Then
according to different formats, we need to prepare different demux, decode el-
ements, and connect all the essential elements in a pipeline to let the whole
video processing steps run in it. As different video clips correspond different
processing elements, for practical use and stability, we use the Gstreamer ex-
isted high-level element “Playbin2” to start the pipeline. Then we add a bus to
Playbin2 to let the video data and video processing event flow in the bus. Finally,
we start the pipeline and bus. During implementation, we use gst-ffmpeg and
gstopenmax plug-ins to decode video/audio data. When running our framework,
the Gstreamer sends the original video data (RGB 555) to Surfaceflinger, and
sends original audio data to Audioflinger. As for media record service, media
meta information service and play service for H.264 encoded videos, we still use
OpenCore because OpenCore can provide the whole essential functions, there is
no need to extend it. Figure 6 shows the whole system after our extension.

4) Optimization methods. Due to Gstreamer is mainly used in Linux for PC,
for usage in diversified embedded environment, we need to do some optimiza-
tions.

First, because Gstreamer is a plug-in based multimedia engine, the whole sys-
tem needs to load many different functional dynamic libraries to coordinate to
complete the whole video processing steps. Large numbers of dynamic libraries’
loading and unloading can consume much memory, hence it seriously cuts down
the execution efficiency. To solve this problem, we use the Prelink technology to



An Android Multimedia Framework Based on Gstreamer 59

Bus

PipeLine(GPlayer)

TypeFind

Event

DemuxDecode
Bin Decoder Surface

Sink
Audio
Sink

Fig. 6. The whole system after extension

give every dynamic library a fixed memory loading address to reduce the exe-
cution consumption. Second, due to that different kinds of multimedia terminal
devices have different CPU architectures, we must make our extension approach
work well in the common CPU architectures such as ARM, X86, MIPS and
SH4. Here, we modify the assembly languages in Liboil and Gstreamer engine
according to different CPU architectures. Third, to deal with more video/audio
containers, we add many related Gstreamer plug-ins, such as TS Demux plug-ins.
Further, we fix bugs in those plug-ins when running in embedded environment
to obtain a high compatibility. Last, we add the OpenMax IL standard support
in Android.

5 Experiment Results and Analysis

5.1 Experiment Setup

In our experiment, we consider several different kinds of video container formats.
For each video container format, we take several different video clips with dif-
ferent rates, decoding standards and definitions. Though both our Android OS
and Gstreamer have been ported to X86, MIPS, ARM and SH4, in this experi-
ment section, we take S3C6410 ARM processor as an example. The development
board is Real6410 as show in Figure 7. And the specific parameters are: ARM11
Samsung S2C6410 up to 667MHz, 256MB mobile DDR RAM up to 266MHz,
1GB NAND Flash, Linux 2.6.28. During the experiments, we add our Gstreamer
module to Android 2.1, mount the modified Android file system to development
board, then install the original Java multimedia application (without any exten-
sion) released by Google to test our work.

5.2 Experiment Results

The running results of dealing with four common video container formats (i.e.,
AVI, RMVB, TS, and FLV) with our Gstreamer-based multimedia framework are
shown in Figure 8. Detailed performance evaluations are presented in Table 1.
In the column of Table 1, 1 standards for the method using OpenCore only,



60 H. Wang et al.

Fig. 7. Real6410 development board

a) b)

c) d)

Fig. 8. Test results using AVI (a), RMVB (b), TS (c) and FLV (d)

2 represents the extended OpenCore in [6], 3 means the Java+FFMpeg+NDK
approach in [7] [8], and 4 refers to our new Gstreamer based extension approach.

From Figure 8 and Table 1, we can see that, with our approach, android
can deal with more common used video container formats without any change
in Java applications. As for decoding efficiency, stability and compatibility, for
MP4&3GP continer formats, OpenCore is more efficient than Gstreamer. As for
other video formats such as ts, mpeg, etc, OpenCore cannot deal with them,
Gstreamer and approach proposed in [7] (Java+NDK+FFMpeg) almost have
the same efficiency. Moreover, from Table 1, we can find that using Gstreamer
as multimedia engine has a high compatibility for different video formats.



An Android Multimedia Framework Based on Gstreamer 61

Table 1. Evaluation results

1 2 3 4

VideoClips(Video+Audio) Play Fluent Play Fluent Play Fluent Play Fluent

TS File
MPEG2+MP2 No Unknown Yes Fluent No Unknown Yes Fluent
MPEG2+AAC No Unknown No Unknown No Unknown Yes Fluent

RMVB File
Real+Real No Unknown No Unknown Yes Fluent Yes Fluent

WMV+AMR No Unknown Yes Fluent Yes Fluent Yes Fluent

AVI File
WMV+MP3 No Unknown Yes Fluent Yes Fluent Yes Fluent
WMV+WAV No Unknown Yes Fluent Yes Fluent Yes Fluent

FLV File
M4V+MP4 No Unknown Yes Fluent No Unknown Yes Fluent
QT+MP4 No Unknown No Unknown No Unknown Yes Fluent

MP4 File MPEG4+MP2 Yes Very Yes Fluent Yes Fluent Yes Fluent

3GP File MPEG4+MP2 Yes Very Yes Fluent Yes Fluent Yes Fluent

Apart from that, our approach is more feasible. For example, if a new func-
tion is needed, we only need to add some existed plug-ins. We do not need to
change the Java API and all Java applications can benefit from our extension.
Furthermore, our new multimedia framework can work well on different CPU
architectures with an appropriate execution efficiency, thus our extension can be
applied to different multimedia terminal devices. Moreover, with OpenMax IL
Standard, our approach can support hardware video processing acceleration. All
these show that our approach can significantly extend the Android’s multimedia
processing ability regarding efficiency, compatibility, feasibility and universality.

6 Conclusions and Future Work

In this paper, focusing on enhancing the multimedia processing ability of an-
droid, the extension mechanisms regarding its core media engine OpenCore are
discussed and analyzed. Paying particular attention to the Gstreamer based
method, we optimize the commonly used Gstreamer based android multime-
dia frameworks and propose another android multimedia framework which owns
good working efficiency, compatibility, feasibility and universality. As for our fu-
ture work, we plan to consider some other factors such as using hardware Overlay
system to accelerate video display output [16].

Acknowledgment. Part of this work has been supported by Instituto de Tele-
comunicações, Next Generation Networks and Applications Group (NetGNA),
Portugal.

References

1. Wang, X., Vasilakos, A., Chen, M., Liu, Y., Kwon, T.: A Survey of Green Mobile
Networks: Opportunities and Challenges. ACM/Springer Mobile Networks and Ap-
plications (2011)



62 H. Wang et al.

2. Felker, D.: Android Application Development For Dummies. For Dummies, Aus-
tralia (2010)

3. Meier, R.: Professional Android 2 Application Development. Wrox Press, USA
(2010)

4. Conder, S.: Android Wireless Application Development. Addison-Wesley Press,
Boston (2010)

5. Ableson, F.: Android in Action. Manning Publications, Greenwich (2011)
6. Song, M.Q., Sun, J., Fu, X.L., Xiong, W.K.: Design and Implementation of Media

Player Based on Android. In: 6th International Conference on Wireless Communi-
cations, Networking and Mobile Computing (September 2010)

7. Song, M.Q., Sun, J., Fu, X.L.: Research on Architecture of Multimedia and Its
Design Based on Android. In: International Conference on Internet Technology
and Applications, pp. 1–4 (August 2010)

8. Fu, X.L., Wu, X.X., Song, M.Q., Chen, M.: Research on audio/video codec based
on Android. In: 6th International Conference on Wireless Communications, Net-
working and Mobile Computing (September 2010)

9. Gaignard, B.: GStreamer as multimedia framework in Android: a new alternative.
In: CELF Embedded Linux Conference Europe (CELF ELF Europe) (October
2010)

10. Gstreamer [EB/OL], http://gstreamer.freedesktop.org/
11. OpenMAX Integration Layer Application Programming Interface Specification

Version 1.0. The Khronos Group Inc. (2005)
12. OpenMAX Development Layer Interface Specification Version 1.0.2. The Khronos

Group Inc. (2005)
13. Gstreamer TI [EB/OL], https://gstreamer.ti.com/
14. Alejandro, A.R., Mireya, S.G., Sunil, K.: Streaming media portability with the

emerging support OpenMAX. IETE Technical Review (Institution of Electronics
and Telecommunication Engineers, India) 28, 146–157 (2011)

15. Truman, T.E.: InfoPad multimedia terminal: A portable device for wireless infor-
mation access. IEEE Transactions on Computers 47, 1073–1087 (1998)

16. Lee, S.C., Jeon, J.W.: Evaluating performance of android platform using native C
for embedded systems. In: Proceedings of the International Conference on Control,
Automation and Systems, pp. 1160-1163 (2010)

http://gstreamer.freedesktop.org/
https://gstreamer.ti.com/

	An Android Multimedia Framework
Based on Gstreamer
	Introduction
	Android System Architecture
	Android Multimedia Framework
	Overall Multimedia Architecture
	OpenCore Multimedia Engine

	Gstreamer Based Multimedia Framework
	Design of the Multimedia Framework
	Implementation of the Multimedia Framework

	Experiment Results and Analysis
	Experiment Setup
	Experiment Results

	Conclusions and Future Work
	References




