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Abstract. The limited spectrum resources and the negative impacts of carbon 
dioxide emission resulted from inefficient use of wireless technologies have led 
to the development of green radio. Both the energy and spectral efficiencies 
should be considered together to meet green radio requirements. In this paper, 
we investigate the trade-off between energy efficiency and spectral efficiency 
through different approaches. Cognitive radio is a paradigm-shift technology 
which is used to increase both the energy and spectral efficiencies. Some 
efficient spectrum sensing techniques are considered in terms of energy and 
time consuming. Furthermore, it can be shown that the power control strategies 
can play a key role in avoiding interference between cognitive and primary 
users, and hence it can also enhance both the energy and spectral efficiencies. In 
addition to cognitive radio, a new infrastructure for deploying the cellular base 
stations which is a heterogeneous infrastructure of macro-, pico-, and femto-
cells is proposed to overcome the energy and bandwidth constraints. Further 
details related to hardware-constraints in a green base station have also been 
covered.  

Keywords: Green radio, energy efficiency, spectral efficiency, cognitive radio, 
spectrum sensing, transmit power control, heterogeneous networks. 

1 Introduction 

The continuous rapid growth in wireless applications, devices and demands has led to 
a rapid growth in energy consumption and spectrum utilization. Due to this growth, 
both energy and bandwidth resources became so limited for wireless traffic. The 
limitation of energy resources is represented by the excessive emission of carbon 
dioxide (CO2) which is the chief greenhouse gas that results from wireless 
applications and other human activities and causes global warming and climate 
changes. This gas is accelerating continuously, as shown in Fig. 1, and need to be 
stabilized [1].  

In the field of communications, more than 12,000 new base stations are installed 
every year to provide services to 300-400 million new subscribers around the world 
[2]. Many of these stations are driven by inefficient diesel generators which produces 
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the carbon footprint. Each base station antenna consumes an average power of 1KW 
which means 8,800 KWh each year [3]. A network with a medium size normally 
consists of 12-15,000 cell sites, each can serve two technologies (2G & 3G), and each 
technology needs around three antennas per technology, which tends to a total energy 
of 736,000 MWh which can run 168,000 European family houses [3]. Such statistics 
give a clear indication that the Information and communication technologies (ICT) 
contribute in the total world’s carbon footprint.  

 

 

Fig. 1. Concentration of atmospheric CO2 

On the other hand, the limitation in bandwidth resources is represented by the fact 
that the spectrum is not free and it is fixed. Data traffic has increased in the recent 
years due to the presence of iPhone and other smart software technologies and due to 
the variety of applications, and it is expected to grow more with the introduction of 
LTE-A which supports 100Mbps for down-link. In order to achieve such high bit rate, 
we need to improve the spectral efficiency of the channels. 

So far, the improvement in spectral efficiency has been the main interest of the 
research without much consideration of the energy efficiency metrics. Those two 
parameters (energy- and spectral-efficiency) should be considered together in order to 
meet what is known as “Green Radio”. In Green radio, both energy efficiency and 
spectral efficiency need to be maximized. However, they are, sometimes, two 
conflicting parameters which mean that any increase in spectral efficiency will lead to 
undesirable increase in power consumption [4]. Therefore, finding a trade-off 
between the energy- and spectral-efficiency is the goal of this paper. In this paper, we 
will survey and propose the state-of-the-art the energy- and spectral- efficient 
technologies that need to be considered in the current and next generation wireless 
networks.  

The rest of the paper is organized as follows. In Section 2, both the energy and 
spectrum efficiencies are defined and the trade-off between those two parameters is 
investigated. Section 3 shows the green wireless base stations architecture. Cognitive 
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radio as a promising technology for green radio will be covered in section 4. In 
Section 5, Heterogeneous network optimization will be suggested to meet a green 
next generation wireless communication deployment. Finally, the conclusions and 
recommendations for future work are drawn in section 6. 

2 The Trade-Off between Energy and Spectral Efficiencies 

The more energy-efficient communication system, the less energy required to achieve 
the same task. On the other hand, the more bandwidth- (spectral-) efficient 
communication system, the more bits per second it can transfer through the same 
channel. The maximization of spectral efficiency is one of the main targets that 
should be achieved in the next generation networks. Fig. 2 shows a comparison 
between spectral efficiencies required in different technologies for down-link and up-
link transmission. 

 

 
(a) 

 
(b) 

Fig. 2. Spectral efficiency comparison; (a) downlink and (b) uplink 
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On the contrary, there was no big interest in improving the energy efficiency. Now, 
green communication is a major challenge and introducing energy-efficient 
communication systems should be added to the list of major interests of academic and 
industrial researches. Sometimes, energy and spectral efficiency conflict each other. 
To formulate this trade-off, the Shannon’s capacity equation for point to point 
communication with AWGN plays the key role [5]: ܥ ൌ ଶ݈݃ ܤ ቀ1  ௌேቁ (1) . ݏܾ

where B is the channel bandwidth (Hz), S is the signal power, and N is the noise 
power which is NoB, where No is the power spectral density for AWGN. Therefore: ܥ ൌ ܤ ଶ݈݃ ቀ1  ௌேቁ .    

The bandwidth (spectral) efficiency (ηB), is the achievable transmission rate per unit 
bandwidth (bps/Hz): ߟ ൌ ଶ݈݃ ቀ1  ௌேቁ .     (2)

The energy efficiency (ηE), is the transmission rate per unit energy (bps/W): ߟா ൌ ଶ݈݃ܤ ቀ1  ௌேቁ ܵ⁄  .     (3)

Therefore, the relation between spectral efficiency and energy efficiency is shown 
below [7]: ߟா ൌ ఎಳሺଶആಳିଵሻே .     (4)

This relation can be represented by a convex curve shown in Fig. 3. 
However, there are many other factors that affect the relation between spectral 

efficiency and energy efficiency: 

- Physical layer transmission: The transmission parameters and strategies, such as 
modulation order, transmission distance and coding scheme, may also affect the 
energy and spectral efficiencies. An extensive analysis for the energy-efficient 
transmission in wireless networks has been achieved in [5].  

- Multi-cell/Multi-user systems: the above Shannon equation is for point-to-point 
communication. In the real wireless network environments many parameters 
should affect the trade-off such as the inter-cell interference and inter-user 
interference. i.e., the inter-cell interference degrades both the spectral and energy 
efficiencies [6].   

- The channel state: According to Shannon’s equation, using high bandwidth 
channels can improve the energy efficiency.  However, delay spread and 
frequency selectivity should also be taken into account in trade-off calculation [5].    

Hardware energy consumption: circuit power and real practical hardware constraints 
should be considered in the calculation of this trade-off: 
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Fig. 3. Energy vs. spectral efficiency in point-to-point communications 

3 Green Base Station 

Due to the increase in wireless demands and users, the cellular operators had to 
increase the number of base stations to provide more wireless services to bigger 
number of users. This growth in number of base stations makes the operators looking 
seriously for efficient equipments to overcome the energy constraints. The cellular 
base station consists of several power consuming equipments as shown in Fig. 4. 
Those equipments consume different amount of power in different technologies as 
shown in Table 1: 

Table 1 shows that the power amplifier is the major source of power consumption 
in the base station. The more energy-efficient base station, the less heat produced by 
the equipment, and thus, the less amount of air-conditioning required for cooling. 
Therefore, the improvement of efficiency of the power amplifier will reduce the 
power consumption of the main parts in a base station. The energy efficiency of the 
power amplifier can be improved by using a proper linearization and DSP methods to 
decrease the required linear area. Besides the power amplifier improvement, there are 
several approaches that have been proposed in the literature to introduce more energy-
efficient base stations. [7, 8] proposed a dynamic planning based on traffic intensity 
by switching off the underutilized base stations (i.e. during night periods) while 
maintaining the required quality of service.  The results show that the implementation 
of this approach can save up to 50% of the power consumption. The cooperation 
between two networks by switching off one of them during low traffic has been 
investigated in [9] in terms of power saving. 
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Fig. 4. Power consuming equipments in cellular base station 

Table 1. Power consumption of different parts of wireless base stations 

Equipment WiMAX HSPA LTE 
Digital signal 
processing 

100 W 100 W 100 W 

Power 
amplifier SISO 
(1x1) 

100 W 
10% 

40dbm 

300 W 
6.67% 
43dbm 

350 W 
6.3% 
43 dbm 

Power 
amplifier 
MIMO 

10.4 W 
11.54% 
30 dbm 

10.4 W 
11.54% 
30 dbm 

10.4 W 
11.54% 
30 dbm 

Transceiver 100 W 100 W 100 W 
Signal 
generator 

384 W 384 W 384 W 

AC-DC 
converter 

100 W 100 W 100 W 

Air 
conditioning 

690 W 690 W 690 W 

Microwave 
link 

80 W 80 W 80 W 
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Also, multiple-input and multiple-output, or MIMO, is considered in the new 
transmitting systems to improve the system capacity. By improving the spectral 
efficiency, the transmission duration is reduced which tends to reduction in 
transmitted power and circuit power consumption. On the other hand, more active 
components are needed by exploiting MIMO which increase the total power 
consumption.  According to these conflicting facts, the impacts of MIMO techniques 
on energy efficiency has been addressed in [10, 11] and it was shown that cooperative 
MIMO transmission and reception can outperform the SISO systems in terms of the 
energy efficiency, as shown in Fig. 5,  when the adaptive modulation is used to 
control the transmit and circuit energy consumption [10]. However, SISO systems is 
more energy-efficient than MIMO systems when the latter is not combined with 
adaptive modulation. Further investigation is required to optimize the MIMO systems 
for next generation wireless networks in terms of energy efficiency, spectral 
efficiency and overall complexity. 

4 Cognitive Radio 

The spectral utilization is one of the most critical problems that face the rapid 
developments of wireless communications. Previous researches followed some 
approaches to increase the spectral efficiency at the expense of energy efficiency. 
Recent researches in cognitive radio technology [4, 12-14] have brought a significant 
improvement towards green wireless communication. The cognitive radio technique 
will provide the wireless users with a high bandwidth and allow them to use the 
unutilized (white) spectrum through dynamic spectrum access techniques [15].  

In order to achieve efficient utilization of the spectrum, the unlicensed cognitive 
radio user (secondary user) can adapt its transmission and reception parameters to 
avoid interference with the primary user, and thus, it gives a significant enhancement  
 

 

Fig. 5. Comparing energy efficiency of MIMO and SISO 
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to green wireless networks. In [12], an energy optimization framework shown in  
Fig. 6 has been proposed to adjust parameters (e.g., modulation, radiated power and 
coding) and components characteristics (e.g. power amplifier) using cognitive radio.  

 

Fig. 6. Cognitive radio energy optimization framework 

According to [12], Fig. 7 shows the simulation of this framework using cognitive 
transmission over adaptive modulation along with power amplifier radiated power 
and it shows a significant energy saving up to 75%. However, the energy saving 
becomes less significant as the distance increases. 

 

Fig. 7. Energy saving with cognitive transmission 

The cognitive radio is a paradigm-shift technology that let the user interact 
intelligently with the environment through what is known as cognition cycle. This 
cycle consists mainly of four consecutive steps as shown in Fig. 8. 
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Fig. 8. Cognition cycle 

First, the cognitive radio technique will let the unlicensed users to determine which 
portion of the spectrum is currently not used (spectrum holes) and detect the existence 
of the primary licensed users, (spectrum sensing) [16].  Those unlicensed users should 
keep monitoring the spectrum continuously and therefore, they will still active. Due to 
this pivot role, the spectrum sensing is considered as one of the most time and energy 
consuming part of the cognitive radio device. Previous work concentrated on the time 
overhead of the spectrum sensing [17, 18]. In [16], an optimal sensing duration has 
been designed to maximize the throughput using the energy detection scheme. [17] 
studied the trade-off between the spectrum usage time and the energy efficiency of the 
spectrum sensing. Recently, and due to the green communications trends, the energy 
consumption of the spectrum sensing becomes one of the most challenges that face 
the academic researches nowadays. J. Wei and X. Zhang proposed an energy-efficient 
spectrum sensing technique using cluster-and-forward based Distributed Spectrum 
Sensing (DSS) [19]. This technique has shown a significant decrement in the total 
energy consumption while maintaining high sensing accuracy. A further improvement 
to the energy efficiency of the spectrum sensing has been proposed by [20]. The 
researchers proposed a Time-Division Energy-Efficient (TDEE) sensing technique 
that well balanced the trade-off between spectral efficiency and energy consumption 
by investigating heterogeneous and homogeneous networks. Although there was a 
good investigation for the efficient spectrum sensing, the green cognitive radio still 
need more interest to study the trade-off between all the spectrum sensing parameters 
which are: energy efficiency, spectral efficiency, sensing time and accuracy. 
However, the complexity of spectrum sensing can be reduced by exploiting some 
artificial intelligent techniques [14]. 

After sensing the spectrum, the cognitive radio user has to select the best available 
channel to meet the quality of service requirement over all available spectrum bands 
(spectrum management) [21]. Then, it allows the secondary user to access this 
channel along with the other users (spectrum sharing).  
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For cognitive radio, the introduced solutions for spectrum sharing can be classified 
into three phases: i.e., according to their architecture, spectrum allocation behavior, 
and spectrum access technique [22]. Upon the information available from the 
spectrum sensor, the cognitive radio user varies its transmitted power to maximize its 
performance. This operation is called “Transmit Power Control (TPC)”. TPC can play 
an important role in terms of green radio optimization by improving power efficiency. 
In order to increase the spectral efficiency, higher power levels should be allocated to 
more fading channels and low levels to better ones and therefore the interference will 
be minimized. Previous work in power control showed a big interest on maximizing 
the spectral efficiency, e.g., [23] proposed an optimal power control over different 
fading channels to maximize the ergodic capacity of the secondary user taking into 
account the primary user protection. By considering that the secondary user can share 
the licensed spectrum with the primary user as long as its interference power to the 
primary user still below a specific threshold level, [24] investigates the capacity gain 
offered by this spectrum sharing approach in Rayleigh fading environments, and 
derived an optimal power allocation scheme from the outage and ergodic capacities 
points of view. However, we can improve the power efficiency by using power 
truncation such that the secondary user can transmit in good channel conditions and 
abstain from transmission otherwise [25]. In such cases, bad channel conditions will 
cause long time delays which improve the power efficiency due to power truncation 
but, on the other hand, will minimize the spectral efficiency. Therefore, a trade-off 
between a spectral efficiency and power efficiency has been investigated in [25] as 
shown in Fig. 9. This figure shows the energy efficiency and goodput versus peak 
power in case of power truncation. Here, we can see that, at low level of peak power, 
the goodput is increasing as the peak power decreases. Further decreasing in peak 
power will result in goodput reduction while the energy efficiency is still increasing. 

 

Fig. 9. Goodput & efficiency vs. Ppeak at Imax =2×10−12W and SNR=12dB 

When the primary user has been detected, the cognitive radio user should leave the 
channel and access other unutilized channel (Spectrum mobility). Spectrum mobility 
presents a new type of handoff in next generation networks which is known as 
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spectral efficiency optimization to meet green radio requirements. In cognitive radio, 
we show that it can improve the energy efficiency in spite of that its major role is to 
maximize spectral efficiency. Designing an efficient spectrum sensing algorithm in 
terms of energy, time and accuracy is one of our interests for future work. Also, 
heterogeneous wireless network can be used to maximize both the spectral and energy 
efficiency. Sleep-mode strategy and cell-size reduction are the main techniques used 
with deployment of heterogeneous network. In addition to that, green base station 
architecture is proposed to enhance the energy efficiency of energy consuming parts 
of the base station (e.g. power amplifier). And multiple antennas (MIMO) can be used 
to maximize the capacity and further investigation needed to optimize the design of 
MIMO transmitters and receivers in terms of energy efficiency, spectral efficiency 
and overall complexity.  
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