
Integrate WSN to the Web of Things

by Using XMPP

Pin Nie and Jukka K. Nurminen

Aalto University, School of Science, Finland
{pin.nie,jukka.k.nurminen}@aalto.fi

Abstract. Wireless Sensor Network is a promising technology thanks
to its numerous beneficial applications. The recent trend towards Web of
Things leverages substantial web technologies and toolkits, which greatly
simplify the chore of WSN application development. However, the com-
plex web server and heavy HTTP communications impose difficulties on
portability of WSN applications and node’s resources management. In
order to provide a lightweight web integration and uniform data repre-
sentation, we propose to employ XMPP, an open standard formalized
by IETF, to build instant messaging and presence service for wireless
sensor nodes. In this paper, we develop a scalable and flexible XMPP
sensor bot to integrate WSN into generic XMPP architecture. We also
design two lightweight XMPP extensions for sensor node representation
and task configuration. The efficient XML expression in our extension
protocol can squeeze the payload into a single IEEE 802.15.4 packet and
does not cause XMPP message fragmentation. Our solution works di-
rectly on MAC layer without the need of TCP/IP stack. Based on our
sensor bot, we propose a novel application for product validation and
customer behavior analysis with RFID/NFC technology on smartphones
to demonstrate a new context-aware service.

Keywords: Wireless Sensor Network, XMPP, Instant Messaging and
Presence Service, RFID/NFC Application.

1 Introduction

Humans have intrinsic limitations to observe the surrounding world in terms
of the sensitivity of our natural perception of the environment, the variety of
our senses and the persistent working capability. Moreover, we cannot directly
perceive hazardous substances, such as chemicals and radiation. Therefore, we
need sensors to enhance our perception, to perform persistent monitoring and
to expand our awareness. Particularly, wireless sensor networks (WSN) [1] con-
nect different sensor nodes over distance to fulfill various tasks in a cooperative
manner without costly cable infrastructure.

Despite many benefits, WSN has not yet been widely employed in prac-
tice for multiple reasons. Firstly, there are numerous wireless technologies, such
as IEEE 802.15.4/Zigbee, WirelessHART, Bluetooth Low Energy (BLE), Near

F. Martins, L. Lopes, and H. Paulino (Eds.): S-Cube 2012, LNICST 102, pp. 105–120, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



106 P. Nie and J.K. Nurminen

Field Communication (NFC), Z-wave, Dash7 and WiFi. These protocols and
standards do not work together and cause severe interoperability issue when
bridging multiple WSN applications. Secondly, resource constraints on sensor
nodes set up physical barriers to build reliable and long lifespan WSN systems.
Thirdly, incompatible proprietary WSN software create information silos and
hinder application development. Consequently, these difficulties prohibit coop-
eration between different WSN applications for seamless service creation. To
solve this problem, web integration brings a mature platform for better flexi-
bility and scalability. Evolved from the Internet of Things (IoT) [2], the Web
of Things (WoT) [3] is proposed to simplify WSN development by leveraging
embedded web server and HTTP communications. This architecture fits a few
regular WSN applications with powerful sensor nodes. However, the complex
web server and heavy HTTP communications impose difficulties on portability
of WSN applications and node’s resources management. Many limited sensor
motes need ultra-lightweight web integration in just a few kilobytes memory
[4]. Furthermore, HTTP does not support real-time communication which is
required in safety-critical and/or highly interactive WSN applications.

eXtensible Messaging and Presence Protocol (XMPP) [5] [6] is an open stan-
dard, XML-based communication protocol for instant messaging and presence
information. XMPP can offer uniform data representation and real-time service.
XMPP has been tested in some WSN application scenarios [7] [8] to disseminate
data. Therefore, we propose to extend XMPP architecture for WSN integration
on the Web. In this paper, we develop an XMPP client called sensor bot to
integrate sensor nodes into generic XMPP architecture. In contrast to the static
customized messages sent by other XMPP/Jabber bots, our sensor bot auto-
matically generates events derived from sensor data based on the processing
rules, and then encapsulates events into XMPP messages for further distribu-
tion. In addition, the sensor bot also accepts incoming requests in predefined
patterns from authorized contacts to create new tasks and/or update existing
tasks. Moreover, we add feedback study on user rating from their responses for
parameters optimization, such as sampling frequency and/or event notification
preference. Essentially, we explore three generic programming components to
build a scalable and flexible XMPP bot for more WSN application logics and
better interaction with end users. Meanwhile, to improve XMPP functionality
regarding WSN characteristics, we design two XMPP extensions for sensor node
representation and task configuration. Since many tiny wireless sensor nodes do
not support TCP/IP stack, we build our XMPP extensions directly on MAC lay
and squeeze the payload into a single IEEE 802.15.4 packet. Hence, our proto-
col completely removes the dependence on transport layer by eliminating XML
message fragmentation and data packet serialization.

Based on our WSN-enabled XMPP architecture, we propose a novel applica-
tion for product validation and customer behavior analysis. We use RFID/NFC
technology on smartphones to build a new context-aware service. We measured
end-to-end latency to evaluate real-time performance on a preliminary proto-
type. The experimental result proves the feasibility to integrate WSN to the



Integrate WSN to the Web of Things by Using XMPP 107

Web via open XMPP network on the Internet. Thus, our XMPP architecture
can be reused by other WSN applications.

The rest of the paper is organized as follows: Section 2 studies related works on
WSN web integration and compares with our XMPP-based solution. Section 3
explains the primary elements in XMPP network and our development of sensor
bot. Section 4 presents two XMPP extensions for WSN integration. Section 5
elaborates a novel application on smartphones with RFID/NFC technology. At
last, Section 6 summarizes the paper.

2 Related Works

The Web of Things is an emerging architecture with the purpose to connect a
variety of limited devices over the Internet, such as mobile phones and wireless
sensor nodes. In [9] [10], a web mashup is proposed for embedded devices using
tiny web server through either a gateway or direct integration on the SunSPOT
[11] sensor node with a built-in HTTP engine. To expand data sharing, [12]
presents a WSN integration into social networks via Restful Web API. An ex-
tensive study on the integration of sensors and social networks is provided in
[13]. A heavier and more sophisticated framework is Sensor Web Enablement
(SWE) [14]. Open Geospatial Consortium (OGC) [15] has developed compre-
hensive SWE standards to integrate sensor devices, measurements, information
models and services into the Internet.

Inspired by these novel development, we identify two critical elements to boost
WSN integration to the Internet. The first element is a uniform data represen-
tation to encapsulate information in a widely supported format. The second
element is a ubiquitous service to distribute information in a widely supported
mechanism. Driven by these two considerations, we select XMPP as the platform
to develop WSN web integration. XMPP employs universal XML data model to
encapsulate general content into message payload for instant messaging and pres-
ence service, which is a generic data exchange mechanism widely supported by
many web services. As an open industrial standard, XMPP has fostered a big
user community 1 and numerous interoperable free software 2.

Compared with HTTP-based web server architecture, XMPP has two ad-
vantages for WSN applications. Firstly, XMPP is a real-time protocol which
can better serve safety-critical WSN applications, e.g., fire detection and health
care. Secondly, XMPP client is a more lightweight program than a web server
in typical Client/Server (C/S) model in which most application logics reside at
server side. Thus, XMPP client can fit into embedded systems and mobile de-
vices easier. Although XMPP has developed a lot of extensions, the core feature
is rather straight-forward and simple with three basic XML stanzas. In contrast
to static webpages and pull method in HTTP, XMPP supports dynamic data
transportation with push method which is more suitable for asynchronous event

1 Jabber Organization: http://www.jabber.org/
2 XMPP Standards Foundation: http://xmpp.org/

http://www.jabber.org/
http://xmpp.org/


108 P. Nie and J.K. Nurminen

notification in WSN applications. Concerning XML efficiency on resource con-
sumption, several binary XML protocols are being standardized, such as Efficient
XML Interchange (EXI) [16] [17] formalized by W3C. Binary XML compresses
verbose XML content into more efficient format for storage and transmission.
Notice that existing EXI products [18] [19] can achieve two orders of magnitude
smaller binary XML messages with less than 2MB implementation.

XMPP/Jabber bot [20] is a client program sending customized replies in
response to time trigger and/or incoming messages from others. Following pub-
lish/subscriber paradigm [21] [22], XMPP bot provides events notification service
to other peers in the contact list. This feature saves considerable time and energy
for WSN data dissemination from blind polling new data at a fixed interval. One
micro-XMPP implementation [23] demonstrated the feasibility to enable XMPP
on resource constrained wireless sensor nodes. In comparison, our XMPP sen-
sor bot excels in flexibility of data processing and payload efficiency with two
lightweight XMPP extensions tailored for WSN packet.

3 XMPP Architecture for Wireless Sensor Networks

Due to the limited battery and long lifetime requirement, WSN is featured with
narrowband communication with low processing capabilities. In contrast to the
fast hardware upgrade in many embedded systems, wireless sensor nodes are
scaling up slowly for two reasons. Firstly, most of WSN applications mainly re-
quire primitive sensory data to enable situation awareness. WSN serves as an
interface between cyberspace and physical world. Sensing is the fundamental
objective rather than processing. Secondly, current battery technology cannot
power small sensor nodes for long lifespan and rich processing at low cost, par-
ticularly in the applications where large data is sampled (e.g., vibration, image
and acoustic signals). Hence, we choose three types of devices, namely smart-
phone, sink node and powerful sensor nodes as the gateway to host XMPP sensor
bot. In this section, we firstly introduce the generic XMPP framework and then
explain our development of WSN-connected XMPP sensor bot.

3.1 Generic XMPP Framework

The XMPP architecture as shown in figure 1 is composed of three components:
XMPP client, XMPP server and gateway to foreign networks. The XMPP client
is an I/O interface for text and multimedia rendering and sending. The XMPP
server is responsible for connection management and message routing. The gate-
way bridges different networks by translating different protocols into XMPP and
vice versa. Any two XMPP elements use TCP connection for XML streaming
session. A single TCP connection can carry multiple sessions identified by their
unique ids. The identifier for XMPP entity (a.k.a., JID) follows a URI pattern:
user@domain/resource. Three basic XML stanzas are defined in XMPP as fol-
lows. XML stanza is the message payload exchanged over the XML stream.



Integrate WSN to the Web of Things by Using XMPP 109

Fig. 1. The XMPP Architecture [24]

– <message/>: it is unicast carried out in store-and-forward mechanism
through which one entity pushes information to another transferring mes-
sages between two endpoints.

<message from=‘niepin@aalto.fi’ to=‘jukka@hut.fi’

type=‘chat’>

<body>Hello</body>

</message>

– <presence/>: it is broadcast executed in publish-subscribe mechanism
through which multiple entities receive information about an entity to which
they have subscribed, i.e., entity’s availability.

<presence from=‘niepin@aalto.fi’ xml:lang=‘en’>

<show>online</show>

<status>Working in the office</status>

</presence>

– <iq/> (Info/Query): it is a ping-pong interaction between two entities in
request-response mechanism. This stanza can be used for service discovery
and resource retrieval, such as file transfer and roster fetch. IQ interactions
follow a common pattern of structured data exchange in the type of either
get/result or set/result. An unique id is required to identify a transaction.

<iq type=‘get’ from=‘niepin@aalto.fi’ id=‘vq71f4nb’>

<query xmlns=‘jabber:roster’/>

</iq>

XML stanzas must reside in the <stream/> block, which stands for an XML
stream. All stream-level errors are unrecoverable and an <error/> stanza with
description is sent by the detecting entity. Security constructs are specified in
XMPP core protocol [5]. Two security protocols are employed to provide con-
fidentiality, data integrity and entity authentication. The first protocol, Trans-
port Layer Security (TLS), lies on the top of TCP connection and encrypts



110 P. Nie and J.K. Nurminen

XML streams between two entities. TLS protects XMPP channel from tam-
pering and eavesdropping. On the top of TLS is the second protocol, Simple
Authentication and Security Layer protocol (SASL), which provides a reliable
mechanism to validate the identity of an entity. Prior to the SASL negotiation,
XMPP clients should use TLS to secure the XML streams with “STARTTLS”
extension in the namespace “urn:ietf:params:xml:ns:xmpp-tls”. SASL defines a
generic method for adding authentication support to connection-based proto-
cols in the namespace “urn:ietf:par-ams:xml:ns:xmpp-sasl”. Supported security
mechanisms are announced within a <mechanisms/> element for negotiation
between two XMPP entities. In addition to TLS and SASL, another XMPP
specification [25] provides end-to-end (E2E) signing and object encryption.

Among plentiful XMPP extensions, Multi-User Chat (MUC) [26] is an im-
portant specification to enable many-to-many communication. This feature has
high value to interconnect different WSN applications and share data for context-
aware information processing. MUC is also beneficial to link up multiple WSNs
at different locations for a bigger scale WSN application of the same interest
or subject. All we need to do is to create a chat room, give a certain subject
and invite others to join. A participant could be a WSN-enabled XMPP client
publishing data and human users observing events at runtime.

3.2 XMPP Sensor Bot

From the generic XMPP framework above, we can leverage three key features
for WSN applications as below:

1. Interactive communication:XMPPuses<presence/> stanza to indicate avail-
ability of an entity and<message/> stanza to exchange text messages in both
online and offline cases. The presence status suits duty-cycled WSN applica-
tions inwhich sensor nodes are scheduled to sleepperiodically for energypreser-
vation. Whenever the node(s) wakes up and transmits data, associated
contacts in the group will receive its updated information. Meanwhile, users
can send queries or commands to get latest data or reconfigure tasks if autho-
rized. When sensor nodes return to sleep, all offline messages will be cached in
XMPP server till the next awake period.

2. Service discovery: based on the<iq/> stanza, an XMPP extension, XEP-0030
[27] specifies service discovery process for XMPP entities. We can define a JID
URI pattern “wsn name@domain/sensor node id/sensor” for resource bind-
ing on a specificWSN within the given domain. This URI allows oneWSN op-
erator to have multiple WSN applications which are identified by their names.
Each WSN application may consist of many nodes and each node may equip
several sensors for differentmeasurements. The hierarchical structure provides
flexible and scalable WSN resource binding.

3. Group chat: XMPP extensionMUC offers rendezvous point for multiple WSN
operators to share their real-time data in a common interest. This feature not
only creates context-richWSN application, it also covers a wide physical area.
Based on a list ofMUC room subjects, users can choose their favoriteWSN ap-
plication and observe a specific environment or monitor an interesting object.



Integrate WSN to the Web of Things by Using XMPP 111

Fig. 2. WSN-enabled XMPP Architecture

In order to integrate WSN into generic XMPP architecture with minimal cost,
we develop an XMPP sensor bot. Figure 2 illustrates the overall system from
the sensor node to the Internet user. We create a small XMPP client 3 to collect
data from sensor nodes and send customized messages to remote XMPP entities.
A data analyzer is built into the sensor bot for data logging, event producing
and feedback study. All other XMPP entities remain the intact without any
change. Information flows smoothly from physical world to the Web via XMPP
networks. Thus, our solution simplifies WSN application and service creation.

Fig. 3. Program structure of the sensor bot

3 Smack API: http://www.igniterealtime.org/projects/smack/

http://www.igniterealtime.org/projects/smack/


112 P. Nie and J.K. Nurminen

To realize a seamless connection between WSN and XMPP network, we ex-
plore three programming components in the sensor bot. Figure 3 illustrates the
program structure and information flows. Firstly, we add the WSN driver pro-
vided by the manufacturer into the XMPP client to capture packets from the
serial port which listens to wireless sensor nodes. The driver also handles net-
work management, such as node leaving and joining. A typical setup is to employ
master-slave mode in star topology for single-hop WSN. In this case, one sensor
bot can manage several wireless sensor nodes in a synchronized duty-cycled man-
ner. For a large WSN with multi-hop connections, the WSN driver should work
separately to guarantee fast process of the large amount of incoming packets.
The sensor bot reads data from local file system or database periodically based
on a timer. Secondly, we develop a rulebook to specify WSN application logics for
data processing. The rulebook is an XML file defining filtering conditions and
publishing events for each type of sensor. Triggered by new receiving packets
from the WSN or a local timer, the data analyzer executes these rules to publish
events to the subscribed peers in the contact list through XMPP <message/>
stanza in multicast method. The following example shows two types of sensor
with different filters and consequent events. The first temperature sensor applies
threshold filter and generates alarm if the value exceeds 40 degrees. The second
accelerometer sensor applies deviation filter on vibration measurement and de-
tects impact during motion monitoring. The rulebook is flexible and scalable to
contain more data aggregation techniques [28] [29].

<sensor type=‘temperature’>

<filter id=‘threshold’ operator=‘>’ value=‘40’/>

<event id=‘alarm’ description=‘temperature is too high.’/>

</sensor>

<sensor type=‘accelerometer’>

<filter id=‘deviation’ operator=‘>’ value=‘1’/>

<event id=‘motion’ description=‘impact is detected.’/>

</sensor>

The third programming component is a message parser. The parser reads in-
coming data queries, tasks configuration commands and feedback ratings. To
support flexible interactions with users, we define a few patterns using regu-
lar expression to differentiate diverse requests. Our parser extracts sensor type,
command parameters and filtering conditions from the received message. Ac-
cordingly, the sensor bot either returns the latest measurement for data query
or set command parameters (e.g., LEDs blink in a specific color and order). If
an incoming message does not comply with any expression patterns, a list of
allowable patterns will be replied automatically to the requester. Unlike event
multicast defined in the rulebook, data query is unicast and executed only once
in request-response mechanism. On the one hand, the event notification is used
in routine monitoring to avoid overwhelming raw data and to highlight special
status and/or changes. On the other hand, real-time data query handles random
and dynamic situations, such as customer service.



Integrate WSN to the Web of Things by Using XMPP 113

Tasks configuration and parameters optimization are important issues in WSN
application development. Thus, we add feedback study to rate users satisfac-
tion. Our message parser will prompt users to “like” or “dislike” the response.
Subsequent comments will be recorded as reasons for feedback study later. By
counting the number of “like” and “dislike”, the WSN operator can evaluate the
popularity and quality of his applications and services for further improvement.
Moreover, our sensor bot supports an open control feedback loop based on the
user’s presence information. By reading the subscriber’s presence, the sensor bot
decides whether it should send the data right now or postpone when the remote
user is busy or not available.

4 XMPP Extensions for Sensor Networks

In the program structure of our XMPP sensor bot above, WSN driver is a poten-
tial bottleneck, because sensor nodes do not use XML format to encapsulate their
data. The sensor bot has to parse every packet and format into XML element
for XMPP messages. As a result, packet transformation may exhaust the sensor
bot when dealing with heavy network traffic. Furthermore, low level packet con-
version also hinders XML parser development when porting a WSN application
to another XMPP sensor bot. However, none of existing XMPP extensions suit
WSN due to their huge resource consumption in complex signaling and verbose
expression. To solve this problem, we propose two lightweight XMPP extensions
to encapsulate XML format payload into a single IEEE 802.15.4 packet. Our
XMPP extensions cover two fundamental functions in all WSN applications,
namely node representation and task configuration.

4.1 Node Representation

There are two common attributes for every sensor node: capability and mea-
surement. Capability specifies the equipped hardware sensors and the supported
precision and format. One sensor node may have several sensors (e.g., tempera-
ture, light, accelerometer, barometer) onboard. Measurement delivers data from
the hardware. One temperature sensor gives float value in degree centigrade.
Measurement may also include data point of embedded software algorithms. One
sensor node can calculate dew point based on temperature and humidity at a
given altitude. With these two common attributes, a WSN application supports
service discovery and data provision.

To represent a sensor node in a concise profile, we design a new XML stanza
<sensornode/> with two child elements: <sensor/> and <measurement/>. As
aforementioned, these two elements list equipped sensors and supported mea-
surements onboard. In addition, a <sensornode/> has one basic attribute, ‘id’
and three optional attributes, ‘type’, ‘location’ and ‘time’. The ‘id’ attribute
identifies the node in WSN and can be appended in XMPP entity URI for
resource binding. The ‘type’ attribute is a tag for grouping or classification de-
pending on the WSN application. The ‘location’ attribute gives positional con-
text information. The ‘time’ attribute gives measurement a time stamp and may



114 P. Nie and J.K. Nurminen

also be used to update node’s presence status. The following example shows two
<sensornode/> stanzas. The first stanza is for service discovery at the initial
stage and the second stanza is a regular data report.

<sensornode id=‘node_1’ type=‘fire_detector’

location=‘office’ time=‘YY:MM:DD-HH:MM:SS’>

<sensor type=‘temperature’ unit=‘celsius’/>

<sensor type=‘light’ unit=‘lux’/>

</sensornode>

<sensornode id=‘node_1’>

<measurement type=‘temperature’ value=‘25’/>

<measurement type=‘light’ value=‘100’/>

</sensornode>

Once the initial stage is completed, we reduce syntax verbosity for subsequent
measurement reports by removing quotation marks and using abbreviated let-
ter(s) of every XML element and attribute, such as ‘sn’ for ‘sensornode’ and ‘y’
for ‘type’ as shown below. We also encode measurement types in one byte which
provides 255 unique options, enough for all possible values. Assume node’s id
and every letter take one byte and every numeric value takes four bytes (float-
ing point), the abbreviated expression in the following example saves up to 64%
space compared with the previous version. Assume employing the IEEE 802.15.4
radio standard which allows maximum 102 bytes for payload per frame, a single
packet can take up to 5 measurements including location and time attributes
in a row. We use a flag ‘wsn=true’ in the sensor bot to indicate this compact
payload strategy in XML format for efficient wireless transmission. In the case of
big chunk of data set, such as vibration amplitudes and acoustic signals, only the
first and the last packet use XML format to mark the start and the end of packet
streaming. The rest packets in the middle contain only values for serialization.

<sn i=node_1>

<m y=t v=25/>

<m y=l v=100/>

</sn>

4.2 Task Configuration

The second extension uses ‘get/set’ methods in XMPP <iq/> stanza to execute
task configuration. We use get/result transaction to fetch configurable param-
eters on a sensor node and set/result transaction to update parameters’ value.
Since all parameters belong to either hardware sensors or software algorithms, we
embed a new XML element <param/> into <sensor/> and <measurement/>
elements. In the following example, a sensor node returns sampling frequency
for accelerometer sensor and two embedded calculations for light measurement,
average value and threshold filter.



Integrate WSN to the Web of Things by Using XMPP 115

<iq type=‘get’ from=‘niepin@aalto.fi’

to=‘node_1’ id=‘info_1’>

<query xmlns=‘http://aalto.fi/wsn#parameters’/>

</iq>

<iq type=‘result’ from=‘node_1’

to=‘niepin@aalto.fi’ id=‘info_1’>

<query xmlns=‘http://aalto.fi/wsn#parameters’>

<sensor type=‘accelerometer’>

<param name=‘frequency’ unit=‘Hz’/>

</sensor>

<measurement type=‘light’>

<param name=‘average’/>

<param name=‘threshold’/>

</measurement>

</query>

</iq>

When setting parameters, our extension allows independent use of <param/>
to activate or deactivate a sensor or an embedded algorithm. In the following
example, we deactivate accelerometer and set up a threshold filter for light sen-
sor. Successful result or error response is replied from the sensor node. Note that
error message uses predefined code to indicate possible reason.

<iq type=‘set’ from=‘niepin@aalto.fi’

to=‘node_1’ id=‘config_1’>

<query xmlns=‘http://aalto.fi/wsn#parameters’>

<param name=‘accelerometer’ value=‘false’/>

<measurement type=‘light’>

<param name=‘threshold’ operator=‘>’ value=‘100’/>

</measurement>

</query>

</iq>

If success case

<iq type=‘result’ from=‘node_1’

to=‘niepin@aalto.fi’ id=‘config_1’/>

If error case (404 parameter not found)

<iq type=‘error’ code=‘404’ from=‘node_1’

to=‘niepin@aalto.fi’ id=‘config_1’/>

Like the previous extension for node representation, the extension for task
configuration also supports abbreviated expression. Given a certain namespace
in a moderate size of WSN (nodes number< 255), we assume all id and type
values in XML elements can be encoded in one byte letters and numeric values
take four bytes (floating point). Then, the set/result example above can be
squeezed into a single IEEE 802.15.4 radio packet as below:



116 P. Nie and J.K. Nurminen

<iq y=s f=niepin@aalto.fi t=node_1 i=config_1>

<q x=http://aalto.fi/wsn#parameters>

<p n=a v=f/>

<m y=l>

<p n=t o=> v=100/>

</m>

</q>

</iq>

If success case

<iq y=result i=config_1 f=node_1 t=niepin@aalto.fi/>

If error case (404 parameter not found)

<iq y=e c=404 i=config_1 f=node_1 t=niepin@aalto.fi/>

Our XMPP extensions introduce a few new XML elements tailored for WSN
and reuse XMPP core specification. The abbreviated expression presents an
efficient XML format for wireless transmission. In a typical WSN standard IEEE
802.15.4/Zigbee 4, no packet fragmentation is needed. Therefore, our solution
achieves good scalability and interoperability by applying uniform XML format
at little cost of payload redundancy.

5 RFID/NFC Application for Product Validation and
Customer Behavior Analysis

Fake products and expired food are two big problems in many countries. How
to validate products or food in a short time is a challenge for three reasons.
Firstly, there are numerous products and food in the world or just in a local
grocery store. Centralized method is impossible to accommodate all products
and to keep up-to-date information. Secondly, product validation service has
to be ubiquitous for easy access. Meanwhile, this service should be low cost to
motivate people for daily use. Thirdly, the whole validation process must be
quick and responsive to massive requests.

Driven by three concerns above, we propose to use smartphones and our
XMPP sensor bot to build a fast product validation service with RFID/NFC
technology. Correspondingly, there are three advantages in our solution. Firstly,
XMPP provides an open peer-to-peer architecture for direct and instant commu-
nication between producers and consumers through instant messaging and pres-
ence service. Secondly, smartphone is becoming a ubiquitous mobile computing
device in people’s daily life. High speed wireless technologies, such as Wifi and
3G, support wide connectivity via smartphones. Furthermore, equipped with
GPS receiver, smartphones can provide location and time context information
for accurate data processing. Thirdly, RFID/NFC technology on smartphones

4 Zigbee Alliance: http://www.zigbee.org/

http://www.zigbee.org/


Integrate WSN to the Web of Things by Using XMPP 117

enables touch-and-see quick object identification. RFID tag is a cheap passive
circuit which can be attached on any solid product.

We develop an XMPP sensor bot on a smartphone which equips NFC chip to
read RFID tag on the product. RFID tag should contain at least two types of
data, the product’s series number and the JID of the producer’s customer service.
Meanwhile, the sensor bot also reads current location (e.g., GPS coordinate) and
the time. By encapsulating all these information in an XMPP <iq/> stanza,
the sensor bot sends a product validation request to the remote producer and
displays the result on the smartphone. In this way, the customer can easily
validate a product or food at real-time without typing or searching anything.

Similar to the barcode used in warehouse products management, the valida-
tion request consists of four key elements: <product ID, timestamp, location,
dealer’s signature>. By checking the time and the location attribute, the pro-
ducer can validate if the product/food has expired or not. Fake products with
invalid IDs or obsolete valid IDs will not pass the validation because a product’s
series number is unique in a specific area during a certain period. The dealer’s
signature provides basic security feature with a shared secret which can be used
to hash the whole validation request. The producer may also add promotion
information in the response for advertisement. In the following example, the
producer confirms the valid product and also replies discount information. The
dealer’s signature is omitted for simplicity.

<iq type=‘get’ id=‘product_series_number’

time=‘YY:MM:DD-HH:MM:SS’ location=‘City_District_X’

from=‘customer@example.com’ to=‘producer@company.com’>

<query xmlns=‘product#info’/>

</iq>

<iq type=‘result’ id=‘product_series_number’

from=‘producer@company.com’ to=‘customer@example.com’>

<query xmlns=‘product#info’>

<item name=‘product_name’ type=‘wine’ value=‘true’/>

<item name=‘promotion’ type=‘discount’ value=‘promo_code’/>

</query>

</iq>

We implemented a preliminary testbed to evaluate the feasibility and real-
time performance. Our testbed uses the smartphone Nokia C7 to read RFID
tag and forward the data over 3G/WiFi to a proxy which runs a script to en-
capsulate incoming data in XMPP messages and then send to the Gtalk client
on another smartphone and a Jabber client on a laptop. Figure 4 illustrates
the network structure of our testbed. We measured the end-to-end latency. It
takes about three seconds from touching the RFID tag with one smartphone
till the XMPP message appearing on the other smartphone and the laptop. A
round-trip time (RTT) may take six seconds. The major latency comes from the
middle box, a HTTP-XMPP proxy which performs protocols translation for two-
way communication. Our next step is to remove this extra proxy and implement



118 P. Nie and J.K. Nurminen

peer-to-peer XMPP messaging between the smartphone and a Jabber client.
The native XMPP communication will be much faster without any middle box.
In addition, we also notice that 3G connection adds longer delay than WiFi
connection due to the extra signaling overhead with the base station.

Fig. 4. Product validation with smartphone based on XMPP

In order to handle large number of request at low cost, the producer can reg-
ister a JID on public XMPP servers and modify an open-source XMPP client
[30] to automate product validation with a backend product database. More-
over, the producer can use this service to study customer behavior by counting
the number of requests and exploring context information. This application can
provide insights to three important questions that many producers concern:

1. Popularity: what is the total number of received requests during a certain
period?

2. Customer distribution: at what time and in which place do customers buy
this product?

3. Genuine-to-counterfeit ratio: how many fake products exist in the market?

6 Discussion and Conclusion

On highly constrained sensor nodes which cannot afford resources for TCP/IP
stack, our lightweight XMPP extensions work directly on MAC layer for effi-
cient XML encapsulation and transmission. More powerful devices can host our
XMPP sensor bot, such as a smartphones, sink node connected with laptop
or PC and high-end wireless sensor nodes (e.g., SunSPOT and Imote2-linux).
Recently, IPv6 is gaining increasing adoption by many embedded devices and
sensor nodes [31]. A number of efficient and reliable transport protocols have
been also proposed on the lower layers for WSN [32]. Thus, our XMPP sensor
bot will likely be able to run on low-end wireless sensor nodes in the future.
Consequently, machine-to-machine communication will connect multiple XMPP
sensor bots together to create heterogenous WSN applications at larger scale.

In this paper, we propose to use XMPP to integrate WSN to the Web of
Things. Compared with another architecture based on web server and HTTP



Integrate WSN to the Web of Things by Using XMPP 119

communications, our XMPP sensor bot can achieve real-time performance with
small program footprint. We design two XMPP extensions for sensor node rep-
resentation and task configuration. By reusing existing XMPP standards, our
solution makes it easier to integrate WSN on generic XMPP architecture. At
last, we propose a novel application for product validation with RFID/NFC
technology to demonstrate the feasibility of our solution.

Acknowledgements. This research is partly funded by TEKES in the Internet
of Things programme of TIVIT (Finnish Strategic Centre for Science, Technol-
ogy and Innovation in the field of ICT).

References

1. Kuorilehto, M., Hännikäinen, M., Hämäläinen, T.D.: A survey of application dis-
tribution in wireless sensor networks. EURASIP Journal on Wireless Communi-
cations and Networking 2005, 774–788 (2005)

2. Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer
Networks 54 (October 2010)

3. Guinard, D., Trifa, V., Mattern, F., Wilde, E.: From the Internet of Things to
the Web of Things: Resource Oriented Architecture and Best Practices. Springer
(2011)

4. Mottola, L., Picco, G.P.: Programming wireless sensor networks: Fundamental
concepts and state of the art. ACM Computer Survey 43 (April 2011)

5. Saint-Andre, P.: RFC 6120 Extensible Messaging and Presence Protocol (XMPP):
Core (2011)

6. Saint-Andre, P.: RFC 6121 Extensible Messaging and Presence Protocol (XMPP):
Instant Messaging and Presence (2011)

7. Goncalves, J., Ferreira, L.L., Chen, J., Pacheco, F.: Real-Time Data Dissemina-
tion for Wireless Sensor Networks using XMPP. Polytechnic Institute of Porto,
Tech. Rep. (2009)

8. Hornsby, A., Belimpasakis, P., Defee, I.: XMPP-based wireless sensor network and
its integration into the extended home environment. In: IEEE 13th International
Symposium on Consumer Electronics, ISCE (2009)

9. Guinard, D., Trifa, V.: Towards the web of things: Web mashups for embedded
devices. In: International World Wide Web Conference, Workshop on Mashups,
Enterprise Mashups and Lightweight Composition on the Web, MEM 2009 (2009)

10. Guinard, D., Trifa, V., Wilde, E.: A resource oriented architecture for the web of
things. In: Internet of Things, IOT (2010)

11. Sun small programmable object technology (sun spot) theory of operation, Tech.
Rep. (2007)

12. Guinard, D., Fischer, M., Trifa, V.: Sharing using social networks in a composable
web of things. In: 2010 8th IEEE International Conference on Pervasive Comput-
ing and Communications Workshops, PERCOM (2010)

13. Aggarwal, C.C., Abdelzaher, T.: Integrating sensors and social networks. In:
Social Network Data Analytics, pp. 379–412. Springer, Heidelberg (2011)

14. Bröring, A., Echterhoff, J., Jirka, S., Simonis, I., Everding, T., Stasch, C., Liang,
S., Lemmens, R.: New Generation Sensor Web Enablement. Sensors 11 (2011)



120 P. Nie and J.K. Nurminen

15. Botts, M., Percivall, G., Reed, C., Davidson, J.: OGC Sensor Web Enablement:
Overview and High Level Architecture (2007)

16. Schneider, J., Kamiya, T.: Efficient XML Interchange (EXI) Format 1.0 (2011)
17. Cokus, M., Vogelheim, D.: Efficient XML Interchange (EXI) Best Practices (2007)
18. Peintner, D.: EXIficient: an open source implementation of the W3C

Efficient XML Interchange (EXI) format specification in Java (2011),
http://exificient.sourceforge.net/

19. Inc., A.: Efficient XML (2011), http://www.agiledelta.com/product_efx.html
20. Google wave bots (2011), http://googlewavebots.info/wiki/
21. Albano, M., Chessa, S.: Publish/subscribe in wireless sensor networks based

on data centric storage. In: Proceedings of the 1st International Workshop on
Context-Aware Middleware and Services: Affiliated with the 4th International
Conference on Communication System Software and Middleware, COMSWARE
2009 (2009)

22. Millard, P., Saint-Andre, P., Meijer, R.: XEP-0060: Publish-Subscribe (2010)
23. Hornsby, A., Bail, E.: µXMPP: Lightweight implementation for low power oper-

ating system Contiki. In: ICUMT 2009 International Conference on Ultra Modern
Telecommunications and Workshops (2009)

24. Laukkanen, M.: Extensible Messaging and Presence Protocol (XMPP). University
of Helsinki, Department of Computer Science, Tech. Rep. (2004)

25. Saint-Andre, P.: RFC 3923 End-to-End Signing and Object Encryption for the
Extensible Messaging and Presence Protocol, XMPP (2004)

26. Saint-Andre, P.: XEP-0045: Multi-User Chat (2008)
27. Hildebrand, J., Millard, P., Eatmon, R., Saint-Andre, P.: XEP-0030: Service Dis-

covery (2008)
28. Rajagopalan, R., Varshney, P.K.: Data aggregation techniques in sensor networks:

A survey. IEEE Communications Surveys and Tutorials (2006)
29. Nakamura, E.F., Loureiro, A.A.F., Frery, A.C.: Information fusion for wireless

sensor networks: Methods, models, and classifications. ACM Computing Sur-
veys 39(3) (2007)

30. Use XMPP to create your own google talk client (2010),
http://web.sarathlakshman.com/Articles/XMPP.pdf

31. Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.: RFC 4944 Transmission of
IPv6 Packets over IEEE 802.15.4 Networks (2007)

32. Ayadi, A.: Energy-efficient and reliable transport protocols for wireless sensor
networks: State-of-art. Wireless Sensor Network (March 2011)

http://exificient.sourceforge.net/
http://www.agiledelta.com/product_efx.html
http://googlewavebots.info/wiki/
http://web.sarathlakshman.com/Articles/XMPP.pdf

	Integrate WSN to the Web of Things by Using XMPP
	Introduction
	Related Works
	XMPP Architecture for Wireless Sensor Networks
	Generic XMPP Framework
	XMPP Sensor Bot

	XMPP Extensions for Sensor Networks
	Node Representation
	Task Configuration

	RFID/NFC Application for Product Validation and Customer Behavior Analysis
	Discussion and Conclusion
	References




