
Time Series Prediction for Energy-Efficient

Wireless Sensors: Applications to Environmental
Monitoring and Video Games

Yann-Aël Le Borgne and Gianluca Bontempi

Machine Learning Group, Computer Science Department, CP212,
Faculty of Sciences, Université Libre de Bruxelles,

Bd Triomphe, Brussels, 1050, Belgium
{yleborgn,gbonte}@ulb.ac.be

http://mlg.ulb.ac.be

Abstract. Time series prediction techniques have been shown to signif-
icantly reduce the radio use and energy consumption of wireless sensor
nodes performing periodic data collection tasks. In this paper, we pro-
pose an implementation of exponential smoothing, a standard time series
prediction technique, for wireless sensors. We rely on a framework called
Adaptive Model Selection (AMS), specifically designed for running time
series prediction techniques on resource-constrained wireless sensors. We
showcase our implementation with two demos, related to environmental
monitoring and video games. The demos are implemented with TinyOS, a
reference operating system for low-power embedded systems, and TMote
Sky and TMote Invent wireless sensors.

Keywords: Wireless sensors, energy-efficiency, machine learning, time
series prediction, exponential smoothing.

1 Introduction

Wireless sensor measurements typically follow temporal patterns, which are well
approximated by time series prediction techniques. Different approaches have
been proposed in the literature to approximate, by means of parametric pre-
dictive models, the measurements collected by wireless sensors [5, 9, 13, 15]. The
rationale of these approaches is that, if the parametric predictive model follows
the sensor’s measurements with sufficient accuracy, then it is enough to com-
municate the parameters of the model instead of the real measurements. In [7],
a generic framework called Adaptive Model Selection was proposed, which en-
compassed previously proposed approaches based on time series prediction for
wireless sensors. AMS was shown to provide, for a wide range applications, sig-
nificant communication and energy savings.

In this paper, we investigate the use of exponential smoothing techniques in
the AMS framework. Exponential smoothing (ES) is a standard time series pre-
diction technique, known to perform well in many real-world applications [12].
We implement ES in TinyOS [14], a reference operating system for low power

F. Martins, L. Lopes, and H. Paulino (Eds.): S-Cube 2012, LNICST 102, pp. 63–72, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

64 Y.-A. Le Borgne and G. Bontempi

embedded systems, on TMote Sky and TMote Invent sensors [10]. We show that
ES can be efficiently implemented, using negligible memory and computational
requirements. We showcase our implementation with two different demos. The
first demo implements a simple environmental monitoring system. A Java in-
terface displays approximated light measurements collected by a wireless node.
The second is a labyrinth game, where the player controls a ball on a 3D board
by means of wireless inclinometers. We show that up to 90% of communication
savings can be achieved using ES and AMS.

We summarize the rationale of the AMS framework in Section 2, and present
how exponential smoothing can be implemented in the AMS in Section 3. Section
4 details the environmental monitoring and video gaming implementations.

2 Adaptive Model Selection

Adaptive Model Selection (AMS) [6,7] aims at reducing the radio and energy use
of wireless sensors performing periodic data collection tasks, by using predictive
models which approximate the real measurements.

Periodic data collection is typical of many wireless sensors’ applications. For
example, in environmental monitoring applications, the user’s interest lies in the
evolution of some physical quantity (temperature, humidity, light, . . .) at peri-
odic, fixed intervals. In gaming applications such asWii games, the accelerometer
embedded in the Wii controller device sends its measurements to the console at
a predefined and high sampling rate. Denoting by x[t] the measurements col-
lected by a sensor at time t, we illustrate periodic data collection in Figure 1. A
wireless sensor collects measurements at a predefined sampling rate, and sends
them to a base station, i.e., a high-end computing unit which will get the same
measurements as the sensor. Depending on the applications, the measurements
are either displayed to the user (environmental monitoring), or processed for
further actions (video gaming).

In many applications, it is often enough to collect an approximation of the
sensor measurements. For instance, in plant growth studies, ecologists report
that it is sufficient to have an accuracy of ±0.5◦C and 2% for temperature and
humidity measurements, respectively [1]. It is therefore not necessary for a sensor
to transmit all its measurements. This is the rationale of AMS [7], where models
are used to approximate the measurements collected by a wireless sensor by
means of time series prediction techniques

Base
station

Wireless node

x
[t
]

t

x[t]

x
[t
]

t

Fig. 1. Periodic data collection: all measurements x[t] are transmitted to the base
station, which gets the same measurements as those collected by the wireless sensor

Time Series Prediction for Energy-Efficient Wireless Sensor 65

In AMS, a model refers to a parametric function which predicts, at time t+m,
m ∈ N

+, the measurement of the sensor. Formally, the model is a function

hθ : X → R

x �→ x̂[t+m] = hθ(x)

where x ∈ X is the input to the model (typically a vector of measurements), θ is a
vector containing the parameters of the model, and x̂[t+m] is the approximation
of the model h to the measurement x[t+m] at time t+m.

Fig. 2. Approximated data collection: the parameters θ of a predictive model are sent
instead of the sensor measurements. Approximations of the measurements are obtained
at the base station by means of the predictive model.

In AMS, the parameters of the model are sent instead of the measurements,
as illustrated in Fig. 2. The models are estimated by the sensor node on the basis
of its past measurements. Given an application-dependent error tolerance ε (for
example ε = ±0.5◦C), the sensor node can locally assess if the prediction x̂[t+m]
made by the model at time t+m is within ±ε of the true measurement x[t+m].
When the prediction is more than ε from the real measurement, a new set of
model parameters is sent to the base station. At the base station, the model
parameters are used to get approximations to the sensor measurements. AMS
therefore guarantees that all the approximated measurements obtained
at the base station by means of predictive models are within ±ε of the
real measurements.

As an example, let us detail the use of AMS with the constant model. The
constant model is the most simple predictive model, and was proposed in [8, 9].
The model assumes that the measurement at time t +m is the same than that
collected at time t, i.e.,

hθ : X → R

x �→ x̂[t+m] = x[t].

With a constant model, there is no model parameter, i.e., θ is empty. Fig. 3
illustrates how a constant model represents a temperature time series. The time
series was obtained from the Solbosch Greenhouse of the University of Brussels,
during a sunny summer day. Data were taken every 5 minutes, for a one day
period, giving a set of 288 measurements. The measurements are reported with
the red dashed lines, and the approximations obtained by a constant model with

66 Y.-A. Le Borgne and G. Bontempi

0 5 10 15 20

20
25

30
35

40
45

Accuracy: 1°C
 Constant model

Time (Hour)

T
em

pe
ra

tu
re

 (
°C

)

● ● ● ●●●●●●●●●● ●●●●●● ●●●●● ●●●●●● ●●● ● ● ● ●● ● ● ● ● ●

Original
Approximated

Fig. 3. A constant model acting for a one-day period on a temperature time series
from the greenhouse at the University of Brussels, with a constant model and an error
threshold set to ε = 1◦C.

an error threshold of ε = 1◦C are reported with the black solid line. Updates are
marked with black dots at the bottom of the figure. Using AMS, the constant
model allows to reduce to 43 the number of measurements transmitted, resulting
in about 85% of communication savings.

When the dynamics of the time series is not known a priori or in case of
non-stationary signals, a set of models with different modeling abilities can be
computed and assessed by a sensor node. The set of models is denoted by {hi

θ},
1 ≤ i ≤ K, where K is the number of models computed by the sensor node. The
models are all assessed in parallel by the sensor node. When a model update
is necessary, the parameters θ of the model that best approximates the sensor’s
measurements are sent to the base station.

3 Implementation of Exponential Smoothing in AMS

This section presents exponential smoothing (ES) and details its implementation
in TinyOS and the adaptive model selection framework.

Exponential Smoothing

Exponential smoothing is a time series prediction technique [3] which has been
shown to perform well for a wide variety of time series [2]. Different flavours of

Time Series Prediction for Energy-Efficient Wireless Sensor 67

the technique have been proposed. The most simple one is the simple exponential
smoothing, which consists in a weighted average of the past measurements. The
weighted average is computed with

s[t] = αx[t − 1] + (1− α)s[t− 1]

where 0 ≤ α ≤ 1 is referred to as the data smoothing factor. Predictions are
given with x̂[t+m] = s[t]. Better approximations can usually be obtained using
double exponential smoothing, with

s[t] = αx[t− 1] + (1− α)(s[t− 1] + b[t− 1])
b[t] = β(s[t]− s[t− 1]) + (1− β)b[t− 1]

(1)

where 0 ≤ β ≤ 1 is referred to as the trend smoothing factor. Predictions are
obtained with

x̂[t+m] = s[t] +mb[t]. (2)

Note that the simple exponential smoothing is a particular case of double ex-
ponential smoothing, with β = 0. Exponential smoothing is computationally
thrifty, which makes it suitable for implementation on resource-constrained wire-
less sensors.

Implementation in AMS

The use of exponential smoothing requires the specification of the values of the
data and trend smoothing factors α and β. For our implementation, we chose to
compute models with α ∈ {0.2, 0.4, 0.6, 0.8, 1} and β ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}, so
that the wireless node assesses a set of K = 5 ∗ 6 = 30 models.

The parameters of the model is the couple θ = (s[t], b[t]) (Eq. 2). Note that θ
is sufficient to compute x̂[t+m], m ∈ N

+, at the base station without knowledge
of the true measurements x[t] (See Eq. 2). The initialization is performed at time
t = 1 by setting s[1] = x[1] and b[1] = 0 both on the sensor node and at the base
station, for each of the 30 models.

Models are assessed on the sensor node by means of the relative update rate [7],
which is the average frequency at which packets are sent to the base station.
Formally, let Ui[t] be the update rate of model hi

θ at time t, with Ui[1] = 1.
When running AMS, the update rate of each model hi

θ is updated at every time
t with

Ui[t] =
(t− 1) ∗ Ui[t− 1] + 1

t
(3)

if model hi
θ requires to send an update of its parameters θ, and

Ui[t] =
(t− 1) ∗ Ui[t− 1]

t
(4)

otherwise. The relative update rate reflects the percentage of transmitted packets
with respect to periodic data collection. Note that the relative update rate for
periodic data collection is 1 since it requires the transmission of the totality of

68 Y.-A. Le Borgne and G. Bontempi

Initialization

ε, {hi
θ}, U i

θ[1] = 1, i∗ = 1, t = 1

Collect measurement x[t]

Update and for all models θ U i
θ[t]

of model more than away
from ?

Update and

send parameters of to base station
Do nothing

t = t+ 1

x̂[t] hi∗
θ

x[t]

i∗ = argmini U
i
θ[t]

hi∗
θ

ε

Yes No

Fig. 4. Adaptive model selection algorithm

the measurements, and that any lower value indicates a gain in the number of
transmitted packets. At time t, the best performing model denoted by hi∗

θ is the
one which minimizes the relative update rate, i.e., i∗ = argmini Ui[t].

At runtime, only one model is shared between the sensor node and the base
station. In our implementation, the first shared model is arbitrarily set to i∗ = 1,
i.e., the first model of the collection. Once the approximation for this model is
±ε away from the real measurement, the node updates i∗ to the model which
minimizes the relative update rate, and sends the parameters of that model to
the base station. A summary of the algorithm is given in Fig. 4.

Energy Efficiency

The rationale of AMS is to compute predictive models in order to reduce radio
communication. We motivate in the following that the energy cost incurred by
the computation of the predictive models is negligible compared to the energy
saved by reducing communication.

Time Series Prediction for Energy-Efficient Wireless Sensor 69

The ratio of the energy spent in sending one bit of information to the energy
spent in executing one instruction has been estimated to be around 2000 for a
variety of real sensor network platforms [11].

Let us first assess the computational overhead of AMS. In the proposed im-
plementation, the sensor node runs and estimates the relative update rate of 30
exponential smoothing models. This requires the sensor node to update, at each
time t, the models’ parameters (Eq. 1), as well as their relative update rates (Eq.
3 or 4). For one exponential smoothing model, the computational costs of these
updates is very low, i.e., on the order of 20 multiplications and additions, depend-
ing on the implementation details. For 30 models, the computational overhead
of AMS is therefore on the order of 600 CPU cycles.

Let us now assess the communication cost of a packet transmission. We relied
in our implementation on TinyOS, a reference operating system for wireless
sensor nodes. The standard TinyOS packet structure is detailed in Table 1. The
packet overhead, i.e., the extra bytes of information, is 16 bytes. With AMS and
exponential smoothing, the packet contains the model parameters s[t] and b[t],
each stored on two bytes, giving a total packet size of 20 bytes.

Table 1. Detail of the TinyOS packet structure [14], with the size of each packet
component (in bits). The packet overhead is 128 bits, i.e., 16 bytes.

Length fcfhi fcflo dsn dest addr type group Packet content str lqi crc ack time

8 8 8 8 16 16 8 8 Model size 8 8 8 8 16

Sending a packet of 20 bytes (160 bits) therefore amounts to 160 ∗ 2000 =
320000 CPU cycles, i.e. running AMS over about 320000/600 ≈ 530 time in-
stants. This means that if one of the shared predictive model is correct only
once every 530 time instants, then AMS provides energy gains. This rough esti-
mate suggests that the energy cost related to running the AMS is in most cases
largely compensated by the energy gained in communication savings.

4 Demos and Implementation Details

This section presents two demos in which we apply our implementation of AMS
with exponential smoothing. The first demo consists in an environmental moni-
toring application, and the second a video gaming application. The code for the
demos is made available at [16].

Demo 1: Environmental Monitoring

In this demo, a TMote Sky wireless sensor, based on the TelosB prototype plat-
form for research [10], is used to collect light measurements with ES and AMS.
The sensor node is programmed in TinyOS v2.1 [14]. A demonstration mode is
implemented, allowing to retrieve both the real measurements and the model

70 Y.-A. Le Borgne and G. Bontempi

parameters on a laptop or desktop computer. The measurements and approxi-
mations are displayed by means of a Java interface, see Fig. 5.

The snapshot shows the variations of light measurements (in Lux) in an office
exposed to sunlight, for a one minute period, during which the sensor followed
a 360 degree rotation around a vertical axis. The sampling rate was of 8Hz
(i.e., around 60*8=480 measurement were collected), and the error tolerance
maxt|x̂[t] − x[t]| = 10 Lux. AMS identified that, out of the 30 models, α = 0.2
and β = 0.6 provided the most adapted smoothing factors. During that one
minute period, almost 90% of the communications could be saved (i.e., around
50 model updates), while providing a qualitatively good approximation of the
real measurements as can be seen on the user interface.

Fig. 5. Environmental monitoring interface displays light measurements collected by a
TMote Sky sensor. Top chart shows real measurements, middle chart shows approxi-
mated measurements (ε = 10 lx), bottom chart shows the predictive model error.

The stripped down version of the TinyOS code for periodic data collection
takes 16546 bytes of RAM and 531 bytes of ROM.With AMS, the size of the code
increases to 20334 bytes of RAM and 1155 bytes of ROM. AMS was therefore
implemented using very little overhead in terms of computational resources.

Demo 2: Video Gaming

In this demo, a TMote Invent sensor node, also based on the TelosB design [10],
is used to control a video game with a dual axis wireless inclinometer. The video
game is a 3D labyrinth standing on a virtual board (see Fig. 6), where the goal

Time Series Prediction for Energy-Efficient Wireless Sensor 71

Fig. 6. 3D labyrinth game, controlled by TMote Invent inclinometers

is for the player to move the ball through the labyrinth while avoiding the holes.
The game is implemented with Java 3D, and available as open source at [4].
The dual axis inclinometer measurements are used to control the orientation of
the board. The node is programmed using Boomerang OS, a TinyOS version
specifically designed for TMote nodes [14].

The error tolerance was fixed at 1◦, so that approximations did not impair the
fluidity and playability of the game. The amount of communications which can be
saved depend on how fast the player moves the TMote Invent. Interestingly, since
moving the ball through the labyrinth requires to gently control the sensor, we
observed that significant communication savings could be saved, reaching more
than 90% in most of the games played.

5 Conclusion

In this paper, we discussed an implementation of exponential smoothing in the
adaptive model selection framework. The approach allows to perform approx-
imated periodic data collection by relying on time series prediction models.
We showed that the method can be implemented using little computational
resources, and that significant communication and energy savings could be ob-
tained in practical settings. We illustrated its use on two demos showcasing
environmental monitoring and video gaming. In both cases, around 90% com-
munication savings were obtained.

72 Y.-A. Le Borgne and G. Bontempi

Acknowledgements. This work was supported by the ICT4Rehab project,
sponsored by Brussels Institute for Research and Innovation, Innoviris, Belgium.
Authors would like to thank the BA3 students of the University of Brussels for
their contributions in designing the demos.

References

1. Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J., Hong, W.: Model-driven
data acquisition in sensor networks. In: VLDB 2004, pp. 588–599 (2004)

2. Gardner Jr., E.S.: Exponential smoothing: The state of the art. Journal of Fore-
casting 4(1), 1–28 (1985)

3. Holt, C.C.: Forecasting seasonals and trends by exponentially weighted moving
averages. International Journal of Forecasting 20(1), 5–10 (2004)

4. Labyrinth 3D game. Java source code. Project Website,
http://www.javafr.com/codes/LABYRINTHE-BILLE-JAVA3D_32818.aspx

5. Lazaridis, I., Mehrotra, S.: Capturing sensor-generated time series with quality
guarantee. In: ICDE 2003, pp. 429–440 (2003)

6. Le Borgne, Y.: Learning in Wireless Sensor Networks for Energy-Efficient Envi-
ronmental Monitoring. PhD thesis, ULB, Brussels, Belgium (2009)

7. Le Borgne, Y., Santini, S., Bontempi, G.: Adaptive model selection for time series
prediction in wireless sensor networks. Journal of Signal Processing 87(12), 3010–
3020 (2007)

8. Olston, C., Jiang, J., Widom, J.: Adaptive Filters for Continuous Queries over
Distributed Data Streams. In: SIGMOD 2003, pp. 563–574 (2003)

9. Olston, C., Loo, B.T., Widom, J.: Adaptive precision setting for cached approxi-
mate values. ACM SIGMOD Record 30, 355–366 (2001)

10. Polastre, J., Szewczyk, R., Culler, D.: Telos: enabling ultra-low power wireless
research. In: IPSN 2005, pp. 364–369 (2005)

11. Raghunathan, V.S., Srivastava, C.S.P.: Energy-Aware Wireless Microsensor Net-
works. IEEE Signal Processing Magazine 19(2), 40–50 (2002)

12. Santini, S.: Adaptive sensor selection algorithms for wireless sensor networks. PhD
thesis, ETH Zurich, Zurich, Switzerland (2009)

13. Santini, S., Römer, K.: An adaptive strategy for quality-based data reduction in
wireless sensor networks. In: INSS 2006, Chicago, IL, USA, pp. 29–36 (2006)

14. TinyOS. An Open-Source Operating System Designed for Wireless Embedded Sen-
sor Networks. Project Website, http://www.tinyos.net

15. Tulone, D., Madden, S.: PAQ: Time Series Forecasting for Approximate Query
Answering in Sensor Networks. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN
2006. LNCS, vol. 3868, pp. 21–37. Springer, Heidelberg (2006)

16. Wireless Lab - University of Brussels. Code and datasets. Project Website,
http://www.ulb.ac.be/di/labo/datasets.html

http://www.javafr.com/codes/LABYRINTHE-BILLE-JAVA3D_32818.aspx
http://www.tinyos.net
http://www.ulb.ac.be/di/labo/datasets.html

	Time Series Prediction for Energy-Efficient Wireless Sensors: Applications to Environmental Monitoring and Video Games
	Introduction
	Adaptive Model Selection
	Implementation of Exponential Smoothing in AMS
	Demos and Implementation Details
	Conclusion
	References

