
F. Martins, L. Lopes, and H. Paulino (Eds.): S-Cube 2012, LNICST 102, pp. 30–44, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Middleware Mechanisms for Agent Mobility
in Wireless Sensor and Actuator Networks

Nikos Tziritas1,2,3, Giorgis Georgakoudis1,2, Spyros Lalis1,2, Tomasz Paczesny4,
Jarosław Domaszewicz4, Petros Lampsas1,5, and Thanasis Loukopoulos1,5

1 Center for Research and Technology Thessaly,
Technology Park of Thessaly 1st Industrial Area, 385 00 Volos, Greece

2 Department of Computer and Communication Engineering,
University of Thessaly,

Glavani 37, 38221 Volos, Greece
{nitzirit,ggeorgak,lalis}@inf.uth.gr

3 Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518067, China

nikolaos@siat.ac.cn
4 Institute of Telecommunications,
Warsaw University of Technology,

Nowowiejska 15/19, 00-665, Warsaw, Poland
{t.paczesny,domaszew}@tele.pw.edu.pl

5 Department of Informatics and Computer Technology,
Technological Educational Institute of Lamia,

3rd km. Old Ntl. Road Athens, 35100 Lamia, Greece
{plam,luke}@teilam.gr

Abstract. This paper describes middleware-level support for agent mobility,
targeted at hierarchically structured wireless sensor and actuator network appli-
cations. Agent mobility enables a dynamic deployment and adaptation of the
application on top of the wireless network at runtime, while allowing the mid-
dleware to optimize the placement of agents, e.g., to reduce wireless network
traffic, transparently to the application programmer. The paper presents the de-
sign of the mechanisms and protocols employed to instantiate agents on nodes
and to move agents between nodes. It also gives an evaluation of a middleware
prototype running on Imote2 nodes that communicate over ZigBee. The results
show that our implementation is reasonably efficient and fast enough to support
the envisioned functionality on top of a commodity multi-hop wireless technolo-
gy. Our work is to a large extent platform-neutral, thus it can inform the design
of other systems that adopt a hierarchical structuring of mobile components.

Keywords: wireless sensor networks, middleware, mobile agents, embedded
systems, performance evaluation, Imote2, ZigBee.

1 Introduction

In the POBICOS project [11] we have produced a platform aimed to simplify the devel-
opment and deployment of monitoring and control applications for the home and office

Middleware Mechanisms for Agent Mobility in Wireless Sensor and Actuator Networks 31

environment, which exploit regular objects with embedded sensing, actuating and wire-
less communication capabilities. Objects do not have any application-specific code
pre-installed and are agnostic about the applications that might run on them. Each appli-
cation is injected into the network (referred to as object community) using a special
device (the application pill), which stores the code of the application and serves as its
controller [6]. To start the application, the user simply pushes a button on the pill, letting
the middleware deploy and execute the application on the object community.

POBICOS applications are programmed as a set of cooperating components, called
agents. Agents are mobile in the sense that they can be instantiated on remote objects
and can be migrated between objects, at runtime. Agent mobility is central to achiev-
ing non-trivial functionality. Firstly, it enables a flexible deployment of the applica-
tion code in the object community, by placing individual agents directly on the
objects that provide the required (computing, sensing, actuating) resources. Secondly,
it allows the programmer to dynamically control the type of agents that execute in the
object community, depending on the application’s internal state. This in turn can re-
duce the amount of code that needs to be kept in the main memory of embedded
nodes at any point in time, especially in the presence of several concurrently running
applications. Thirdly, the middleware can migrate agents between objects in order to
perform certain optimizations, e.g., to reduce the traffic over the wireless network.
Unlike in many other embedded agent systems, agent mobility is transparent for the
programmer who does not have to discover (suitable) objects or to deal with the
placement of agents on objects in an explicit fashion.

This paper describes the protocols and mechanisms that were developed to support
agent creation and agent migration in POBICOS. It also provides an experimental
evaluation based on a prototype implementation of the middleware on Imote2 nodes
that communicate over ZigBee. The results provide valuable insight into the overhead
and performance of the agent mobility operations on top of a popular multi-hop wire-
less technology, showing that they are reasonably efficient and fast enough to support
the envisioned functionality. Notably, this work is to a large extent orthogonal to the
POBICOS platform: as explained in the next section, the basic underlying assumption
is that agents are arranged as a tree according to their parent-child relationship. Hence
the presented middleware support and performance trends can inform the design of
other systems which adopt a hierarchical structuring of mobile components.

The rest of the paper is structured as follows. Sec. 2 provides an overview of the
application model. Sec. 3 describes the implementation of the agent mobility proto-
cols and mechanisms in our middleware. Sec. 4 analyzes their performance, while
Sec. 5 puts the costs and benefits of agent mobility in context of an indicative applica-
tion scenario. Sec. 6 discusses related work. Finally, Sec. 7 concludes the paper.

2 Application Model

The POBICOS application model evolved from that of the ROVERS system [3]. An
application is designed as a collection of cooperating agents, with each agent being
dedicated to a specific, perhaps very simple, task. In the spirit of hierarchical control

32 N. Tziritas et al.

systems [9], agents are organized in a tree. Leaf agents interact with the physical
environment by acquiring information or effecting change through the sensors and
actuators embedded into the objects of the community. The rest of the agents in the
application tree implement higher-level aggregation, processing and control tasks,
using only general-purpose computing resources (CPU and memory). Agents com-
municate via message passing. Being consistent with the hierarchical approach, an
agent can exchange messages only with its parent and children.

Fig. 1a shows the structure of a simple application that turns off lights when there
is no user activity (of course, applications can be more complex). The root agent (R)
employs a user presence inference agent (I), which relies on multiple user activity
agents (A) to detect user activity (and to infer inactivity). The root also employs mul-
tiple light agents (L) to switch off lights when the user presence inference agent (I)
reports user absence, and a notification agent (N) to inform the user about this action.

R

A

A

A N

L

L

A A

I

R

L L N

multiple
instances

multiple
instances

… …

I

notify
user

turn
off

light

user
status

user
activity

 (a) (b)

Fig. 1. (a) Tree structure of a simple light control application; (b) A concrete deployment of the
light control application on top of an indicative object community

The agent tree is formed, at runtime, in a top-down fashion. The root is automati-
cally created by the middleware on the application pill when the application is started.
All other agents are created under the control of the application according to the de-
sired tree structure. The placement of agents in the community is performed by the
middleware, with no direct involvement of the programmer, based on the objects that
are available. In the deployment shown in Fig. 1b, user activity agents are created on
the motion detector, refrigerator and water tap, because these objects can serve as user
activity sensors. Light agents are created on all light sources, while the user notifica-
tion agent is created on the radio, which can issue messages to the user. The middle-
ware can move non-leaf agents between objects in a transparent way. For instance, the
user presence inference agent could be migrated from the application pill on the
motion detector, to communicate locally with the respective user activity agent. Mi-
gration is supported only for non-leaf agents because they are object- and location-
neutral by design; leaf agents remain on the nodes where they are created.

It is worth noting that parts of the agent tree can be instantiated and destroyed
spontaneously, long after the application has been deployed. As an example, the light
control application could create light agents only when the decision is taken to turn

Middleware Mechanisms for Agent Mobility in Wireless Sensor and Actuator Networks 33

the lights off, and then remove them once they perform their task (as opposed to
creating them “statically” at startup). Of course, it is up to the programmer to decide if
such dynamic changes in the application tree are meaningful.

3 Implementation of Agent Mobility

The middleware components involved in the implementation of agent mobility are
shown in Fig. 2. The core functionality is provided by the Agent Manager, which
invokes the Agent Runtime to check resource availability, as well as to initialize, run,
suspend and resume agents. Agent binaries are downloaded via the Code Transport,
employing a stop-and-wait protocol and a cache to avoid fetching the same code re-
peatedly over the network. The Network Abstraction offers a generic datagram inter-
face, used by both the Agent Manager and Code Transport.

Agent Runtime

Agent Manager

Agent Code
Transport

request
code download

Network Abstraction

check resources

retrieve code

init/run
suspend/resume
get state of agent

Fig. 2. Key middleware components and interactions for supporting agent mobility

Our prototype is developed for TinyOS v2.1 running on Imote2 nodes [8] at
104MHz. Wireless communication is done via an external ZigBee modem from the
Z430-RF2480 demo kit of Texas Instruments [14]. The Network Abstraction compo-
nent breaks datagrams into ZigBee packets and implements its own software-based
acknowledgement and retransmission scheme (relying on ZigBee for packet routing).
The middleware is portable, assuming support for TinyOS; obviously, the Network
Abstraction must be adapted to the underlying networking technology. Thanks to a
system component that provides transparent access to external memories (e.g., Flash),
the minimal RAM requirements are below 8KB, making it possible to target more
resource-constrained devices (even though access to certain middleware data struc-
tures would be slower, we believe that the middleware would still work acceptably).

3.1 Micro-agent Code, Execution and State

Nodes provide a platform-neutral runtime on top of which agents execute. The VM is
based on the 8-bit AVR architecture [1]. Agents are written in C and the respective

34 N. Tziritas et al.

binaries are generated via the standard AVR-GCC tool-chain. The binaries are then
processed using a special tool to bind into the POBICOS-specific primitives and re-
duce their size [12].

Agent execution is purely event-driven (agents do not have threads of their own).
The Runtime puts events issued to agents in a FIFO queue, and executes the respec-
tive handlers in a non-preemptive fashion. Agents are migrated only between handler
executions, when the stack is empty and the VM CPU is not being used, which greatly
simplifies the respective suspend-resume process. Also, agents do not use dynamic
memory, so the runtime state that needs to be transferred over the network when a
migration takes place is just the agent’s static data.

The Agent Manager maintains additional data for each local agent, namely entries
for its children and any pending creation requests. In case of a migration, this infor-
mation must also be sent to the destination along with the agent’s state.

3.2 Creation of Leaf and Non-leaf Agents

Agent creation requests issued by the application are processed in an asynchronous
fashion. The process for creating a leaf agent is as follows (see Fig. 3a).

To find nodes that can serve as hosts, a probe is broadcast (1) carrying information
about the agent’s type and resource requirements. When a probe arrives to a node, a
resource check is performed to see whether it is able host such an agent (2). A reply is
generated (3) only if this check succeeds. Replies are collected (4) and sorted based
on how well nodes match the agent’s requirements (the details of this matching are
beyond the scope of this paper). Candidates are then approached one at a time.

A node is asked to create an agent by sending it a creation request (5). On receipt
of such a request, to avoid races, the node repeats the same checks as for a probe (6).
Then, it downloads the agent code from the application pill (7), creates a new instance
(8), recording the sender of the request as the agent’s parent, and sends back a reply
with the agent’s identifier (9). If the reply is positive, a new child entry is added to the
parent (10). Else, if the reply is negative or no reply arrives within a timeout period,
the next candidate is considered.

The creation of non-leaf agents works in a similar way. However, host discovery is
performed only if the local host cannot host the agent, and candidates are contacted in
the arrival order of their replies. The rationale is that since non-leaf agents are object-
neutral it is reasonable to place them, at least initially, close to their parent.

3.3 Migration of Non-leaf Agents

The algorithm for deciding about the migration of a non-leaf agent in order to reduce
the wireless traffic is described in [15]. The idea is to locally record the agent’s mes-
saging activity with its parent and children, and to move the agent towards the center
of gravity, i.e., over the link that accounts for more than half of the total load. We
have implemented the k-hop variant of the algorithm, which assumes knowledge
about the routing structure within a k-hop radius and can pick migration destinations
in this range. In ZigBee tree networks, where node addresses reflect the routing topol-
ogy [10], this information can be gained without any extra communication.

Middleware Mechanisms for Agent Mobility in Wireless Sensor and Actuator Networks 35

 (a) (b)

Fig. 3. Simplified (a) agent creation and (b) agent migration message sequence diagrams

Once a migration decision is taken, the process is as follows (see Fig. 3b). First, the
destination node is asked to download the code (1-3). The code is fetched from the
node that initiates the migration (which, obviously, has the binary). Then, the hosts of
the agent’s parent and children are notified (4) to buffer messages addressed to it, but
also to prohibit concurrent migrations (parents have precedence over their children).
When all acknowledgements arrive (5), the agent is suspended (6) and a migration
request with the agent’s state information is sent to the destination (7). The destina-
tion creates a new instance, initializing it with the received state (8), and sends a con-
firmation to the agent’s old host (9), which removes the obsolete instance (10). It then
informs the agent’s parent and children (11) to update the agent’s contact address and
resume message transmission towards it. Finally, when the parent confirms the ad-
dress change (12), the agent is resumed on the new host (13).

Note that the agent binary is “pre-fetched”, before contacting the agent’s parent
and children or suspending the agent. Consequently, the latency of code transfer does
not affect the execution of the application. As it will be shown in the next section, this
greatly reduces the period during which the application may become unresponsive
due to agent migrations performed by the middleware in the background.

4 Performance Measurements

This section presents measurements on the performance of agent creation and
migration. The cost of the respective protocols is reported as the number of bytes

36 N. Tziritas et al.

exchanged through the Network Abstraction component of the middleware, as well as
through the (lower-level) ZigBee modem interface; the difference is mainly due to
datagram fragmentation. Unless stated otherwise, the network topology is a 4-node
chain, with the ZigBee coordinator at the one end acting as the source and other nodes
as the destinations of the mobility operations (we report results for up to 3 hops be-
cause the network was very unreliable for longer routing paths).

4.1 Agent Creation Overhead

In a first set of experiments, we measure the overhead for creating a leaf agent that
requires a special resource, e.g., a user activity sensor. The results for non-leaf agents
are similar. The local creation delay for such an agent is 1ms.

Table 1. Cost of agent creation protocol, at the network abstraction layer and ZigBee

agent size
[B]

code transport cost [B] signaling cost [B] total protocol cost [B]
Net Abstr. ZigBee Net Abstr. ZigBee Net Abstr. ZigBee

300 352 484 71 107 423 591
600 684 912 71 107 755 1019
900 1032 1392 71 107 1033 1499

50

150

250

350

450

550

650

750
850

950

1050

1150

1250

1350

1450

1550

1650

1-hop 2-hop 3-hop

hop distance between source and destination

ag
en

t c
re

at
io

n
de

la
y

[m
s

]

300B

600B

900B

cached

Fig. 4. Agent creation delay as a function of hop distance for different agent sizes

Table 1 analyzes the protocol cost for different agent sizes. The signaling overhead
is constant and relatively low, corresponding to one host probe and one agent creation
request-reply interaction. Clearly, the dominating component is the code transfer cost,
which grows as expected to the agent size. The relative protocol overhead drops as
code size increases, but the conversion of datagrams to ZigBee packets costs 35-40%.

Fig. 4 plots the creation time as a function of the hop distance between the source
and the destination. The delay rises to the agent size, yet with an economy of scale:
creating a 600B agent requires 80% of the time needed to create two 300B agents, and

Middleware Mechanisms for Agent Mobility in Wireless Sensor and Actuator Networks 37

a 900B agent is created in 75% of the time it takes to create three 300B agents. If the
agent binary is already cached at the destination, only the signaling cost is incurred, as
per Table 1. Hence the respective delay, shown in Fig. 4, is much smaller vs. when
code needs to be transferred over the network, yielding an average speedup of 3.7x,
5.8x and 8.4x for a 300B, 600B and 900B agent.

In all cases, the routing overhead is non-negligible. Nevertheless, creating an agent
on a remote node directly (as in our middleware) seems a better choice than letting an
agent clone itself in a hop-by-hop fashion (as done in other systems). Based on our
results, direct creation over 2 and 3 hops is roughly 1.4x and 1.6x faster vs. cloning
the agent along these paths.

4.2 Agent Migration Overhead

In a second set of experiments, we measure the migration overhead for a non-leaf
agent that is co-located with its parent and has one child on a remote node to which it
migrates directly. The runtime state is set to 256B. The delay for performing a corres-
ponding agent suspend-create-init-resume cycle locally is about 2ms.

Table 2. Cost of agent migration protocol, at the network abstraction layer and ZigBee

agent size
+ state [B]

code transport cost [B] signaling cost [B] total protocol cost [B]
Net Abstr. ZigBee Net Abstr. ZigBee Net Abstr. ZigBee

300+256 352 484 387 543 739 1027
600+256 684 912 387 543 1071 1455
900+256 1032 1392 387 543 1419 1935

400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

1-hop 2-hop 3-hop

hop distance between source and destination

ag
e

nt
 m

ig
ra

tio
n

de
la

y
[m

s
]

300B

600B

900B

cached

Fig. 5. Agent migration delay as a function of hop distance for different agent sizes

The breakdown of the protocol cost is listed in Table 2. The numbers reported for
the code transfer are naturally the same as for agent creation. The signaling cost is
much higher though, because it includes the synchronization with the agent’s parent
and child, as well as the transfer of the agent’s state. As a result, the code transfer
overhead is less dominant compared to agent creation.

38 N. Tziritas et al.

Fig. 5 plots the agent migration time as a function of the hop distance. The trends
are similar to the ones observed for agent creation with the respective delays being
longer due to the higher signaling overhead. Again, the delay rises with code size, but
at a greater economy of scale compared to agent creation, due to the expensive signal-
ing. Namely, the migration of a 600B and 900B agent takes 65% and 57% of the time
required to perform two and three migrations of a 300B agent, respectively. For the
same reason, the speedup achieved by caching vs. when code transfer occurs is less
impressive: 1.7x, 2.2x and 2.9x for a 300B, 600B and 900B agent.

Notably, a direct migration over 2 hops is roughly 1.4x faster vs. two 1-hop migra-
tions, and a direct migration over 3 hops is 1.7x faster than three 1-hop migrations; or
1.5x and 1.8x faster, respectively, when the binary is cached at the destination. This
speaks in favor of performing a single long-distance migration vs. several 1-hop ones,
as supported by our implementation (the range is set at compile time).

The synchronization with the agent’s children also affects the migration delay. To
get a feeling of this overhead, we measured the time required to migrate a 600B agent
with 256B runtime state while varying the number of its children. In this case, a 5-
node star topology is used, with the center node hosting the agent and all children
being hosted on different nodes. The recorded delay is 843ms, 874ms, 945ms and
974ms for 1, 2, 3 and 4 children, rising due to the extra signaling required for each
additional child. The slight non-linearity from 2 to 3 children is due to the increase in
the child information that needs to be transferred along with the agent’s runtime state,
which happens to exceed the datagram payload limit, requiring an additional data-
gram to be sent over the network.

4.3 Summary

Our results show that agent creation is fast enough to support not only the gradual
formation of the agent tree when the application is deployed but also a quick adapta-
tion of the tree structure at runtime. Furthermore, since creation is practically instan-
taneous when the binary is cached at the destination, the repeated instantiation (and
removal) of agents is a perfectly affordable option for the programmer.

Agent migration is reasonably quick too. Most importantly, since the agent remains
fully operational while its code is being fetched by the destination node, the applica-
tion is blocked only during the signaling and state transfer phase. The latter requires
well under 1 second in our experiments (see the values reported for caching), which is
quite acceptable given that the home automation applications we wish to support us-
ing our middleware have rather soft real-time requirements.

Finally, the 1-hop throughput achieved by the agent mobility operations (calculated
as the number of bytes exchanged through the network abstraction layer in order to
perform agent creation/migration divided by the time required to complete this opera-
tion), is 12-14Kbps. This is close to the 15Kbps throughput of the Network Abstrac-
tion component for reliable datagrams.

Middleware Mechanisms for Agent Mobility in Wireless Sensor and Actuator Networks 39

5 Application Scenario

In this section we put the benefit and cost of agent mobility in the context of a con-
crete application scenario. The application structure and logic is kept simple in order
to easily follow its operation (the network setup was constrained by the number of
nodes at our disposal, as well as the difficulties we encountered in setting up a work-
ing network with more than 3 hops). Still, we believe that the results are indicative of
the potential gains for more complex applications and larger scale settings.

5.1 Application, Network Topology and Test Scenario

The test application is a subset of the light control application discussed in Sec. 2,
namely the part used to infer user absence based on the user activity sensors found in
a home. Fig. 6a shows the corresponding tree structure.

n1

n2 n3 n4

n5 n6

added later

app
pill

R

I
R

A A

A

I

I

I

1

23 4

5

A A

I

multiple
instances

…

user
status

user
activity

(a) (b)

Fig. 6. Experiment setup: (a) application tree; (b) nodes, routing topology, and agent placement
at different phases of the test scenario.

When a sensing agent does not detect activity, it sends to the inference agent a 1-
byte report every 5 seconds. As long as user activity is being detected, the reporting
frequency rises to 1 report per 2 seconds. Based on the reports received, the inference
agent sends a 1-byte status report to the root every 10 seconds. The size of the root,
inference, and user activity sensing agent is 50B, 240B and 24B, respectively.

Fig. 6b shows the network used to deploy and run the application. Unlike n1, n4 and
n5, nodes n2, n3 and n6 represent objects which can act as user activity sensors, and
therefore can host a user activity sensing agent. The application is launched from n5
where the root remains fixed. The inference agent can be placed on any node.

The test scenario is as follows:

0. The application is deployed in the network of Fig. 6b without n3 (added later).
The root and the inference agent are created on n5, while user activity sensing
agents are created on n2 and n6.

1. Since the message traffic with its children is greater than the message traffic
with its parent, the inference agent is migrated on n4.

40 N. Tziritas et al.

2. The agent on n2 detects user activity and starts reporting at a higher frequency.
This increase in message traffic drives the middleware to move the inference
agent on n2.

3. User activity stops, and the sensing agent on n2 reverts to the normal reporting
frequency. Consequently, the inference agent is migrated back on n4.

4. Node n3 (which can act as a user activity sensor) is added to the network, leading
to the creation of a sensing agent on it. Due to the reporting activity of its new
child, the traffic for the inference agent via node n1 becomes greater than the
traffic with n5 and n6, so the inference agent is migrated on n1.

5. Finally, n3 is removed, the respective user activity sensing agent disappears, and
the inference agent is moved back on n4.

The dashed lines in Fig. 6b denote the migrations that lead to the different placements
of the inference agent for each stage.

5.2 Results

Table 3 lists the protocol cost for each migration of the inference agent, as well as the
reduction achieved in the wireless network traffic by the resulting placement (after the
migration) vs. the old placement (before the migration). These numbers are reported
for the ZigBee modem interface, adjusted to take into account the routing cost for
each packet as per the topology in Fig. 6b (ZigBee performs routing transparently).
The amortization time for each migration, i.e., the time that must elapse in order for
the traffic reduction achieved by the new placement to outweigh the cost of the migra-
tion that lead to this placement, is also given in Table 3.

Table 3. Cost of migration, wireless traffic reduction achieved by the resulting placement, and
the time (of stable operation) required to amortize each migration of the inference agent.

scenario
stages

migration of
inference

agent

migration
cost [B]

traffic
reduction
[B/min]

relative
traffic

reduction

amortization
time [min]

1 n5 → n4 873 559 30% 1.5
2 n4 → n2 1495 522 22% 2.7
3 n2 → n4 769 486 27% 1.6
4 n4 → n1 1007 174 8% 5.8
5 n1 → n4 511 270 17% 1.9

It can be seen that the migration of the inference agent leads to considerable sav-

ings in network traffic, also at a cost that can be recovered in a rather short amount of
time. More specifically, the first, the third and the last migration can be amortized in
less than 2 minutes, while the second and the fourth migration requires slightly less
than 3 and 6 minutes, respectively. Note that when the inference agent returns to a
node where it was previously hosted (third and fifth migration), caching reduces the
migration cost to 50%, shortening the respective amortization times.

Middleware Mechanisms for Agent Mobility in Wireless Sensor and Actuator Networks 41

In terms of responsiveness (not shown in Table 3), the delay for creating a user ac-
tivity agent is about 200ms on average (e.g., the application is deployed in less than
half a second). Since user activity agents are created just once on the respective
nodes, caching does not apply to this scenario. The average migration delay for the
inference agent is 620ms vs. 390ms when the code is cached at the destination. In any
case, migration delays are far too insignificant to affect the amortization times or the
functionality of the application.

Of course, a migration may turn out to be non-beneficial if the agent tree or the
communication pattern between agents changes very fast. In our implementation we use
two criteria for identifying and suppressing migrations that are unlikely to be beneficial.
Namely, a migration is not performed unless (i) it reduces the amount of network traffic
above a threshold and (ii) it can be amortized within a certain amount of time, assuming
stable operation. These checks can be done based on information that is locally availa-
ble. The gains in network traffic that will be achieved after a migration takes place are
computed based on the agent’s message traffic (the same information is used by the
algorithm to decide for a migration), while the migration cost can be estimated using an
analytical formula. Both checks are disabled in the experiment. Depending on the thre-
sholds, they would simply lead to fewer migrations.

6 Related Work

Code mobility is supported in many platforms targeted at wireless sensor networks. In
the following, we briefly discuss work that is most closely related to ours and give an
indicative performance comparison.

Agilla [4] follows a mobile agent approach like POBICOS. However, the applica-
tion code is written in low-level VM instructions, and the programmer must provide
the agent’s host discovery and migration logic. Agilla agents communicate indirectly
by adding, reading and removing tuples on nodes. Smart Messages [5] (SMs) are
mobile code units written in Java, executed using an adapted version of Sun’s Java
KVM. SMs resemble Agilla agents in that they communicate via the local tag spaces
of nodes, and carry their own host discovery and migration code. Also, in both Agilla
and SMs, to create an agent/SM instance on a remote node, it must be created locally
and then be cloned to the desired destination, typically, in a hop-by-hop fashion. Sen-
sorWare [2] allows TCL-based scripts to be injected in a network. Like in Agilla and
SMs, the programmer is responsible for providing the logic for cloning/migrating a
script, but scripts communicate via message passing. The addressing scheme of Sen-
sorWare is very flexible, allowing for attribute-based descriptions combined with the
invocation of (default or custom) routing protocols.

MagnetOS [7] statically partitions Java applications, and then places them on dif-
ferent nodes at runtime. Communication transparency is achieved via RPCs. Unless
the programmer specifies a placement, the MagnetOS runtime is free to move compo-
nents between nodes to reduce the network traffic. In DFuse [13], applications are
built using so-called fusion points or channels, structured in a hierarchy. Each fusion
point takes input from one or more producers and generates output towards one or

42 N. Tziritas et al.

more consumers. The initial placement of fusion points, computed off-line, is eva-
luated at regular intervals to minimize communication and energy consumption, relo-
cating fusion points accordingly.

Agilla is very lightweight, running on MICA2 nodes. All other systems are proto-
typed on PDA devices, while the reported experiments in MagnetOS were done using
laptops. POBICOS seems to be in the middle ground. In fact, given its modest RAM
needs and the fact that it is based on TinyOS, the POBICOS middleware could be
ported on more constrained platforms than the Imote2. The POBICOS VM can also
be implemented efficiently on AVR-compatible microcontrollers, which are a popular
choice for low-end devices.

The differences in the programming abstractions, platform CPUs (Atmel 8-bit mi-
crocontroller in Agilla, XScale or StrongARM in other systems, except MagnetOS)
but most notably the wireless technologies used (WLAN in all systems but Agilla,
ZigBee in POBICOS), make a direct performance comparison hard and possibly un-
fair. Still, to give an idea of where our prototype stands, we pick a few cases where a
comparison does not seem entirely out of order. In terms of local operations, creating
a POBICOS agent takes about 1ms vs. 2ms for spawning a SensorWare script, or
2.6ms for the creation of a Smart Message using a single 1KB Java class. The sus-
pend-create-init-resume cycle for a POBICOS agent with 256B of state takes 2ms,
which is the time needed for serializing and de-serializing a Smart Message with a
53B stack frame and 2KB of state. In terms of remote 1-hop operations that do not
involve (significant) code transfer, the creation of a cached POBICOS agent requires
95ms vs. 200ms for weakly cloning a null Agilla agent, 35ms for creating an empty
DFuse channel (over WLAN) and 10ms for spawning a 60B script in SensorWare
(over WLAN). The migration of a cached POBICOS agent with 256B of state that is
co-located with its parent and has one child on a remote node requires 410ms vs.
225ms for a null Agilla agent (in which case no communication endpoints need to be
redirected), 200ms for the relocation of an empty DFuse channel with one producer
and consumer (over WLAN) and 12ms for the migration of a cached Smart Message
with 200B bytes of state (no redirection of communication endpoints, over WLAN).

Overall, given the non-triviality of the underlying protocols and the moderate
throughput of our communication subsystem (e.g., compared to WLAN), the perfor-
mance of our agent mobility operations is quite satisfactory.

7 Conclusion

We have described the implementation of agent mobility in hierarchically structured
applications, and have presented a performance evaluation of our middleware proto-
type on Imote2 nodes that communicate over ZigBee. The results show that agent
creation is fast enough to deploy and adapt the application tree structure at runtime.
Furthermore, agent migration can reduce the wireless network traffic significantly,
even for relatively short periods of heavy inter-agent communication. While a faster
communication subsystem would reduce agent mobility delays, the current

Middleware Mechanisms for Agent Mobility in Wireless Sensor and Actuator Networks 43

performance is already sufficient for a wide range of monitoring and control applica-
tions in the home domain.

As future work we plan to implement our own routing on top the native Imote2 ra-
dio to experiment with various cross-layer optimizations. We also wish to investigate
techniques that will allow the middleware to take smarter agent placement and migra-
tion decisions.

Acknowledgements. This work was funded by the 7th Framework Program of the
European Community, project POBICOS, FP7-ICT-223984. We also wish to thank
Mikko Ala-Louko and Markus Taumberger from VTT in Finland, who implemented
the Network Abstraction component of the POBICOS middleware, as well as the
entire low-level support for the ZigBee modem.

References

1. Atmel Corporation: 8-bit AVR Instruction Set, rev. 0856H–AVR–07/09 (2009)
2. Boulis, A., Han, C.-C., Shea, R., Srivastava, M.B.: SensorWare: Programming Sensor

Networks beyond Code Update and Querying. Pervasive and Mobile Computing Jour-
nal 3(4), 386–412 (2007)

3. Domaszewicz, J., Roj, M., Pruszkowski, A., Golanski, M., Kacperski, K.: ROVERS:
Pervasive Computing Platform for Heterogeneous Sensor-Actuator Networks. In: Intl.
Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM),
pp. 615–620 (2006)

4. Fok, C.L., Roman, G.C., Lu, C.: Rapid Development and Flexible Deployment of Adap-
tive Wireless Sensor Network Applications. In: 25th Intl. Conference on Distributed Com-
puting Systems (ICDCS), pp. 653–662 (2005)

5. Kang, P., Borcea, C., Xu, G., Saxena, A., Kremer, U., Iftode, L.: Smart Messages: A Dis-
tributed Computing Platform for Networks of Embedded Systems. The Computer Jour-
nal 47(4), 475–494 (2004)

6. Lalis, S., Domaszewicz, J., Pruszkowski, A., Paczesny, T., Ala-Louko, M., Taumberger,
M., Georgakoudis, G., Lekkas, K.: Tangible Applications for Regular Objects: An End-
User Model for Pervasive Computing at Home. In: 4th Intl. Conference on Mobile Ubi-
quitous Computing, Systems, Services and Technologies (UBICOMM), pp. 385–390
(2010)

7. Liu, H., Roeder, T., Walsh, K., Barr, R., Sirer, E.G.: Design and Implementation of a Sin-
gle System Image Operating System for Ad Hoc Networks. In: 3rd Intl. Conference on
Mobile Systems, Applications and Services (MOBISYS), pp. 149–162 (2005)

8. Memsic, Imote2 node datasheet,
http://www.memsic.com/support/documentation/wireless-sensor-
networks/category/7-datasheets.html?download=134%3Aimote2

9. Mesarovic, M.D.: Multilevel Systems and Concepts in Process Control. Proceedings of the
IEEE 58(1), 111–125 (1970)

10. Pan, M.-S., Fang, H.-W., Liu, Y.-C., Tseng, Y.-C.: Address Assignment and Routing
Schemes for Zigbee-based Long-thin Wireless Sensor Networks. In: 67th IEEE Intl.
Conference on Vehicular Technology (VTC), pp. 173–177 (2008)

11. POBICOS website, http://www.ict-pobicos.eu

44 N. Tziritas et al.

12. Pruszkowski, A., Paczesny, T., Domaszewicz, J.: From C to VM-targeted Executables:
Techniques for Heterogeneous Sensor/Actuator Networks. In: 8th IEEE Workshop on
Intelligent Solutions in Embedded Systems (WISES), pp. 61–66 (2010)

13. Ramachandran, U., Kumar, R., Wolenetz, M., Cooper, B., Agarwalla, B., Shin, J., Hutto,
P., Paul, A.: Dynamic Data Fusion for Future Sensor Networks. ACM Transactions on
Sensor Networks 2(3), 404–443 (2006)

14. Texas Instruments: Z-Accell Demonstration Kit,
http://focus.ti.com/docs/toolsw/folders/print/
ez430-rf2480.html

15. Tziritas, N., Loukopoulos, T., Lalis, S., Lampsas, P.: On Deploying Tree Structured Agent
Applications in Networked Embedded Systems. In: D’Ambra, P., Guarracino, M., Talia,
D. (eds.) Euro-Par 2010. LNCS, vol. 6272, pp. 490–502. Springer, Heidelberg (2010)

	Middleware Mechanisms for Agent Mobility in Wireless Sensor and Actuator Networks
	Introduction
	Application Model
	Implementation of Agent Mobility
	Micro-agent Code, Execution and State
	Creation of Leaf and Non-leaf Agents
	Migration of Non-leaf Agents

	Performance Measurements
	Agent Creation Overhead
	Agent Migration Overhead
	Summary

	Application Scenario
	Application, Network Topology and Test Scenario
	Results

	Related Work
	Conclusion
	References

