
Algorithmically Transitive Network:
A Self-organizing Data-Flow Network with Learning

Hideaki Suzuki1, Hiroyuki Ohsaki2, and Hidefumi Sawai1

1 National Institute of Information and Communications Technology
588-2, Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan

{hsuzuki,sawai}@nict.go.jp
2 Graduate School of Information Science and Technology, Osaka University

1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
oosaki@ist.osaka-u.ac.jp

Abstract. A novel non-von Neumann computational model named “Algorithmi-
cally Transitive Network” (ATN) is presented. The ATN is a data-flow network
composed of operation nodes and data edges. The calculation is propelled with
node firing and token creation on the edges. After it finishes, teaching values
are given to the answer nodes and an energy function is evaluated, which causes
backward propagation of differential coefficients with respect to token variables
or node parameters. The network’s topological alteration takes place based on
these calculation/learning processes, and as a result, the algorithm of the network
is refined. The basic scheme of the model is explained, and some experimental
results on symbolic regression problems are presented.

Keywords: data-flow network, learning, neural network, back-propagation,
artificial chemistry.

1 Introduction

For a long time, network and computation have been in a close relationship with each
other in several disciplines of information sciences. Back in the 1970s to 1980s, the
‘data-flow computer’ (DFC) [18] was studied in many institutes in the world in the hope
that parallel algorithms represented by the ‘data-flow network’ might remedy the ‘bottle-
neck’ problem which a von Neumann computer suffers from. Today, the DFC is neither
a commercial-based computer nor a hot research topic, partly because the DFC’s algo-
rithm expressed as a network is difficult for a human to design or maintain. A network
is a very natural way to represent a computational algorithm, but to utilize the data-flow
network, we might have to incorporate an additional function to maintain programs.

Another famous research approach on network-based computation is ‘artificial neu-
ral networks’ [3]. Unlike the data-flow network, an artificial neural network consists
of nodes with (quasi-)homogeneous functions modeled by McCulloch-Pitts [11] or
Hodgkin-Huxley [4]. An algorithm obtained through learning is indirectly and distribut-
edly coded in the weight vectors for synapses. For this reason, it is hard or impossible
for a human to analyze an established algorithm in the artificial neural network.

Though most models for the artificial neural network are primarily focused on the
cellular activities in the brain, a natural neuron is, of course, made up of a huge

J. Suzuki and T. Nakano (Eds.): BIONETICS 2010, LNICST 87, pp. 59–73, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

60 H. Suzuki, H. Ohsaki, and H. Sawai

number of biomolecules from a nanoscopic point of view. These molecules govern all
of the activities in a cell, which makes a cell behave dynamically on signal transmission
processes. To make a more realistic model for the neurons, it might be better to im-
plement molecular agents (agents with active functions) in artificial neurons and make
them move around the neural network, giving rise to a functional change in the neurons.

One such network-based computational model with molecular agents is ‘Modified
Network Artificial Chemistry’ invented by Suzuki [21]. In association with this model,
Suzuki [21] proposed a paradigm of ‘program-flow computing’, wherein programs
(agents) move from node to node, bringing different functions to CPUs (nodes). This is
also closely related to ‘active network’ [26] proposed in the 1990s in the area of com-
puter network. The active network enables a router (node) to have various functions by
delivering packets (agents) with encapsulated programs.

Based upon these studies, very recently, the authors presented a new concept for
computation and learning, named “Algorithmically Transitive Network (ATN)”
[22,23,24]. The distinctive features of the ATN are summarized as:

– A program is represented by a ‘data-flow network’ whose nodes execute arith-
metic/logic operations and edges transmit data, like the DFC.

– After the calculation, triggered from the teaching signals, the network transmits
data backward and revises network parameters, like the artificial neural network.

– The network topology (algorithm) can be modified/improved through execution of
movable agents’ programs.

The ATN’s learning process is primarily done by the famous ‘back-propagation’ (BP)
learning. Since its first proposal by Werbos and Rumelhart et al. [15,16,27], the BP has
been successfully applied to a number of real world problems and has been one of the
most widely-used learning algorithms among the artificial neural network researchers
[17]. Like the BP in the artificial neural network, the BP in the ATN uses the steepest
descent method to revise network parameters. A similar idea was also mentioned by
Kumazawa [9] who considered the possibility of using the BP to train an ‘operation
network’. In both the operation network and the ATN, the node operations transmit
signals from inputs to outputs so directly that the learning coefficient should be adjusted
more minutely in the ATN than in the artificial neural network. The paper presents a
formula for the learning coefficient, as well.

The ATN’s basic concepts [22,23] and an initial experimental result [24] were briefly
given in the previous reports. Following these works, this paper presents the full de-
scription of the model’s framework and experimental results to reveal the performance
of the ATN on a class of symbolic regression problems. In the following, Section 2
explains detailed design of the model, and Section 3 presents the experimental results.
In Section 4, concluding remarks and discussion on the model’s meanings and future
possibility are given.

2 Method

2.1 Data-Flow Network

As in the DFC, the ATN’s nodes read the input ‘tokens’ on their incoming edges, fire,
and create the output tokens on their outgoing edges during calculation. This constructs

Algorithmically Transitive Network 61

Fig. 1. (a) Higher language program of a simple conditional branch, (b) data-flow network (ATN),
and (c) fire-token pedigree produced by the calculation. The variable name s represents the
graph’s input (sensor) signal, and the a represents the graph’s output (answer) value. The pedi-
gree’s top ancestor is the initial fire at the ‘B’ node, and its last descendants are firings at the ‘E’
node or nodes with no outgoing edge. In (b), arithmetic edges are expressed as the solid arrows,
and regulating ones are expressed as the broken arrows.

a ‘fire-token pedigree’ whose nodes (tokens) represent variables or mathematical ex-
pressions in the original program, and whose hyper-edges (firings) represent arith-
metic/logical operations used to create the tokens. An example of these relationships
is shown in Fig. 1. As explained below, the pedigree is used for the BP learning. The
node operations used in this paper are listed in Table 1.

2.2 Simulation Procedure

An ATN simulation proceeds as follows:

Step (1) [Initialization]. Create an initial network randomly or through the transfor-
mation of a higher language program. (More arguments on this matter are given in
Section 4.)

Step (2) [Calculation]. Substitute new sensor value(s) for the s node’s v(s) and make
the Begin node fire. Repeat a forward propagation (FP)’s time step operation that

62 H. Suzuki, H. Ohsaki, and H. Sawai

Table 1. Node operations

Name
Oper.
code

Input
num.

Arith.
/Regu.

X R

Begin B 0 R − 1
End E 1(a) R − −

Negative n 1(a) A −x0 r0
Inverse i 1(a) A 1/x0 r0

Add + 2+ A
∑

xi min(ri)

Multiply ∗ 2+ A
∏

xi min(ri)

Subtract − 2 A x0 − x1 min(r0, r1)

Divide / 2 A x0/x1 min(r0, r1)

Less than < 2 R − R0 = σ ·min(r0, r1)
R1 = (1− σ) ·min(r0, r1)

Greater than > 2 R − R0 = (1− σ) ·min(r0, r1)
R1 = σ ·min(r0, r1)

Equal to == 2 R − R0 = (1− δ) ·min(r0, r1)
R1 = δ ·min(r0, r1)

Not equal to ! = 2 R − R0 = δ ·min(r0, r1)
R1 = (1− δ) ·min(r0, r1)

Logical AND A 2+ R − min(ri)

Logical OR O 2+ R − max(ri)

Logical NOT N 1(a) R − 1− r0
Gate g 2 A x0 min(r0, r1)

Merge m 1(a) A x r

Arith. constant c 1(a) A v r

Regul. constant C 1(a) R − R0 = u, R1 = 1− u

The operations are classified as asynchronous (E, n, i, N, m, c, and C) or synchronous (the
others). ‘(a)’ in the third column represents ‘asynchronous’. An asynchronous node fires every
time a token is created on any incoming edge, whereas a synchronous node fires only when the
tokens are created on all the incoming edges. ‘2+’ in the third column means that the node
can have two or more incoming edges. σ ≡ sig(κβr(x0 − x1)) where sig(z) ≡ 1

1+exp(−z)
,

and δ ≡ delta(κβr(x0 − x1)) where delta(z) ≡ 4sig(z)sig(−z). Note that all the X and R’s
functions have differentiable formulas. The variables v (for c), u (for C), and βr (for judging
operations <, >, ==, and ! =) are the node parameters adjusted by the learning. The inverse
temperature coefficient κ is a predefined constant.

makes nodes fire, until there is no node able to fire. Calculate the final answer of
the network.

Step (3) [Learning]. Calculate partial differential coefficients in tokens on the a’s out-
going edges (the last descendant tokens in the pedigree). Repeat the BP’s time step
operation that ‘extinguishes’ the firings, until the firing on the Begin node is extin-
guished. Calculate the learning coefficient η and revise node parameters.

Step (4) [Topological Reformation]. Conduct the agents’ graph modifying operations.
Move agents to the next nodes/edges if required.

Algorithmically Transitive Network 63

m

Fig. 2. The FP’s unit process in the data-flow network: firing of a ‘+’ node

Step (5) [Supplying Agents]. Randomly choose nodes and supply agents to them at
some constant rates.

Step (6) [Termination or Recursion]. If a certain termination condition is satisfied,
stop the simulation. Otherwise, go to Step (2).

2.3 Calculation by the Forward Propagation (FP)

In the current implementation, each token has a real value vector (x, r) delimited by
−∞ < x < ∞ and 0 ≤ r ≤ 1, where x is the arithmetic value for the calculation, and
r is the regulating value that represents the probability of the token itself existing in the
network. When a node fires, the output vector (X,R) is calculated from the operand
vector(s) (xi, ri)s of the input token(s) using the functions in Table 1. For example, if a
‘+’ node fires, it calculates X =

∑
i xi = x0 + x1 and R = mini(ri) = min{r0, r1},

and creates tokens with (X,R) on all the outgoing edges (Fig. 2).
To make the network learnable, the ATN’s judgment nodes (such as ‘<’) give a

‘fuzzy’ result. See the formulas for R0 and R1 in Table 1. If x0 is much smaller than x1

in a ‘<’ node for example, we get R0 = 0 and R1 = 1, hence, we create a token only
on the outgoing edge with label ‘T’ (we ‘kill’ the token on the ‘F’ edge). If x0 is similar
to x1, on the other hand, we have both positive R0 and R1, hence, we create tokens on
both outgoing edges with labels ‘T’ and ‘F’.

This fuzzy judgment reproduces tokens in judgment nodes, and in general, after the
FP, an a node has two or more firings whose child tokens have vector (xj , rj)s, where
j is the firing number at the a node. With these, we calculate the resultant answer value
as

a =

∑
j xjrj

∑
j rj

. (1)

2.4 Learning by the Backward Propagation (BP)

The ATN’s learning is conducted by propagating differential coefficients vector
(Dx, Dr) from child tokens to parent tokens in the token-fire pedigree. This begins
with the calculatin of the energy function

E =
1

2
(t− a)2 + μ

(

1−
∑

j

rj

)2

+ ν
∑

j

r2j (1− rj)
2 (2)

64 H. Suzuki, H. Ohsaki, and H. Sawai

Fig. 3. The BP’s unit processes in the fire-token pedigree: extinguishing of (b) a ‘+’ fire and (c)
a ‘c’ fire

at the a node. Here, t is a teaching signal given from the outside, a is a value calcu-
lated from Eq. (1), and μ and ν are predefined constants. Again, the summation for j is
taken for all the firings at the a node. The μ- and ν-terms are the ‘penalty’ terms added
in order to make the sum of {rj} be one and make each rj close to zero or one, re-
spectively. By partially differentiating Eq. (2), we can calculate differential coefficients
vector (Dxj , Drj) = (∂E

∂xj
, ∂E
∂rj

) of the a node’s output tokens. (Through this paper,
D� signifies the energy function E’s partial differential coefficients with respect to �.)

Once (DX , DR) is obtained for all the child tokens of a firing (here, (Dx, Dr) is
expressed as (DX , DR) to indicate that it is for a child token), the firing is extinguished
and the parent tokens’ (Dxi , Dri) is calculated with

Dxi =
∑

children

(

DX
∂X

∂xi
+DR

∂R

∂xi

)

, (3a)

Dri =
∑

children

(

DX
∂X

∂ri
+DR

∂R

∂ri

)

. (3b)

∂X
∂xi

, ∂R
∂xi

, ∂X
∂ri

, and ∂R
∂ri

are calculated from Table 1. The summation ‘
∑

children’ is taken
for all the child tokens of the fire (Fig. 3(a)).

Specifically, when a firing is extinguished at a node with parameter {v}, {u}, or
{βr} (which are all expressed as {z} hereafter), we also calculate the partial differential
coefficient of E with respect to z using

Dz =
∑

children

(

DX
∂X

∂z
+DR

∂R

∂z

)

(4)

(Figure 3(b)). ∂X
∂z and ∂R

∂z are also calculated from Table 1. The chain rule (differenti-
ation rule for the composite function) ensures that Dz evaluated from Eq. (4) gives the
partial derivatives of the original energy function E [3].

After Dz is obtained at all of the c, C, and judging firings, we finally revise the node
parameters using the steepest descent method as:

z → z − η
∂E

∂z
= z − ηDz. (5)

Algorithmically Transitive Network 65

Here, with a predefined constant η1p, we require that the revision by a one-pass propa-
gation (a pair of the FP and BP) make E become 1− η1p times the former value as:

(1− η1p) · E({z}) = E

({

z − η
∂E

∂z

})

� E({z})− η
∑

z

(
∂E

∂z

)2

... η =
η1p ·E

∑

z

(
∂E

∂z

)2 . (6)

The linear approximation of the Taylor expansion ofE({z})was used. The convergence
of the parameter learning by Eq. (5) is ensured by Eq. (6).

2.5 Topological Reformation

The topological reformation of an ATN is conducted by agent operations listed up
in Fig. 4. A CON (constantification) agent changes the node operation into c or C
(Fig. 4(a)), a DIV (division) divides a constant node into two (Fig. 4(b)), a BRG (bridge)
constructs a bridge between an edge and a node (Fig. 4(c)), a MKV makes a new vari-
able node (Fig. 4(d)), a MGT merges two adjacent addition/multiplication operations
(tuples) (Fig. 4(e)), and a MGN merges two or more constant operand nodes within
an addition/multiplication operation (Fig. 4(f)). Among these, CON, MGT, and MGN
simplify (reduce the node/edge numbers of) the graph, whereas the others complexify
the graph.

Though not shown in Fig. 4, the seventh agent WAR rewires the background ‘wa’
edges which are compared to ‘van der Waals’ bonds known as the weakest interaction
between bio-molecules [19,20,21]. Some agent operations except for CON and DIV are
concerned with two or more nodes. One way to do such inter-node operations is that
an agent moves through the network and collects information by themselves, but in the
current implementation, most agents stay at nodes and gather information through ‘wa’
edges created by the WAR agents which move around the network in lieu of them.

In what follows, we take CON, DIV, and BRG and explain their detailed operations.
A CON agent usually stays at a variable node. During the stay, it observes (x, r)

of the firings created at the node, and if the value does not change for a long time,
it changes the node operation into c or C depending on whether the node operation
is arithmetic or regulating. At the same time, the incoming edges of the node are cut
except for an edge with the minimum sum of the past r values which is conserved to
make the node ‘firable’.

A DIV agent usually stays at an arithmetic/regulating constant node with two or more
outgoing edges. It observes (Dx, Dr) of firings at the node for a long time, and if they
contradict each other, divides the node into two. After this division, v (or u) of the
divided nodes are able to learn toward different directions.

A BRG agent usually stays at an edge. It randomly chooses a neighboring node ‘a’
and constructs a bridge between the current edge and node ‘a’ as shown in Fig. 4(c).

66 H. Suzuki, H. Ohsaki, and H. Sawai

Fig. 4. Graph modifying operations by agents

Three nodes with the operations *, +, and c (with v = 0.0) are newly created for the
bridge. Since a ∗ 0.0 + b = b, this modification does not change the calculation result;
however, after this operation, differential coefficients propagated to the newly created
c node gradually changes v, which makes node ‘a’ affect the calculation result.

Through all the graph reformation processes, the current implementation prohibits a
‘loop’ from being created in the ATN. The future possibility of loosening this constraint
is discussed in Section 4.

Algorithmically Transitive Network 67

Fig. 5. (a) Initial ATN and (b) final ATN (after 80, 033 time steps) obtained for a regres-
sion problem for the one-variable quadratic function (Eq. (7a)). The graphs are drawn with
a commercial software named aiSee [1]. The final ATN produces the a value with a cubic
function a = 0.965 + (0.169s) + (−0.00548 + 2.57s) + ((−0.00548 + 2.57s)(−0.948 +
(0.817(−0.00548+2.57s))+(2.90(−0.785+((−0.00548+2.57s)(0.149+(0.00374∗2.90)+
(0.0270(−0.00548+2.57s)))))))). The result was obtained from a one-minute simiulation run.

3 Experiments

To demonstrate the ATN’s basic capability to explore algorithms, here we apply the
ATN to some symbolic regression problems. The simulation constants are taken to be:
μ = 1.0, ν = 1.0, βr-init = 0.3 (βr’s initial value), κ = 100.0, η1p = 0.5, Ntgt = 300
(target node number), Mwa-tgt = 5.0 (wa edge’s target degree per node), λ = 1.0
(mean free path for rewiring wa edges; a wa edge is joined to a closer node with a
smaller this value [20]), TxrUcCON = 20 (number of passes until a node is judged to
be constant), rdiff-ngl = 1.0 × 10−4 (threshold of r under which tokens are killed), and
TwatchStblty = 10 (number of passes until DIV decides to split a node). The simulation
program is implemented in Java and is run on a standard desktop computer with Intel
Duo processor (1.86GHz).

3.1 Polynomial Functions

We prepare one-variable quadratic, cubic, and quartic functions

t = 1− 6s+ 10s2 (7a)

t = −0.5 + 11s− 35s2 + 28s3 (7b)

t = 0.2 + 35s− 175s2 + 300s3 − 160s4 (7c)

within the domain 0 ≤ s ≤ 1 as targets, and examine the ATN’s learnability.

68 H. Suzuki, H. Ohsaki, and H. Sawai

Fig. 6. The s-a (sensor-answer) and s-t (sensor-teach) plots for the run in Fig.5

Figures 5 and 6 show a representative result for the quadratic function. In this experi-
ment, we start from a handmade 6-node ATN that represents a linear function a = 0−s
(see Fig. 5(a)), then after 80,000 time steps (about 800 passes), we obtain a 39-node
158-agent network (Fig. 5(b)). Figure 6 shows the change of the s-a (sensor-answer)
plot during this run. We can see from this figure that the final function of the ATN
almost perfectly agrees with the target function within the domain. Results for ten dif-
ferent runs plotted in Fig. 7 show that nine out of ten runs succeed in finding desirable
functions for this regression problem.

Using the same method, we also tested the ATN’s learnability with the cubic and
quartic functions (Eqs. (7b) and (7c)). The representative results are shown in Fig. 8.
For both functions, we tested hundred runs and ten runs with different random num-
ber sequences and found that 60% and 80% runs succeeded in creating the desirable
functions, respectively.

3.2 Fraction Function

Next we apply the ATN to symbolic regression of a ‘fraction’ function defined as

t =
11− 62s+ 88s2

6.5− 32s+ 40s2
(8)

within the domain 0 ≤ s ≤ 1.
We tested ten runs using different random number sequences, but all the runs failed to

create solution networks that produce the desirable answer for this much more difficult
function. Figure 9 shows a representative result.

Algorithmically Transitive Network 69

Fig. 7. s-a and s-t plots obtained for a regression problem for the one-variable quadratic function
(Eq. (7a)). Out of ten different runs that use the same parameter setting, nine runs find desirable
results (only the run with Seed = 4 fails). Note that the s is given only within the domain
0 ≤ s ≤ 1.

70 H. Suzuki, H. Ohsaki, and H. Sawai

Fig. 8. The s-a and s-t plots for representative runs for the (a) cubic function (Eq. (7b)) and (b)
quartic function (Eq. (7c))

Fig. 9. The s-a and s-t plots for a representative run for the fraction function (Eq. (8))

3.3 Conditional Branch

Finally, we take a conditional branch and conduct a preliminary experiment. We set a
teaching function

if s > 0.6, t = 1− s
else t = 4s+ 1

(9)

Algorithmically Transitive Network 71

Fig. 10. s-a and s-t plots obtained for a conditional branch problem (Eq. (9))

within the domain 0 ≤ s ≤ 1. We hand-design the initial ATN whose topology directly
represents Eq. (9) but whose network parameters are different from the target values,
and examine the ATN’s capability of adjusting the parameters towards the desirable
values. No agents for topological reformation are supplied.

Figure 10 shows a representative result. We can see from this figure that the ATN
is able to optimize not only the threshold value but also the branch’s fuzziness para-
meter βr.

4 Discussion

A novel computing and learning model, algorithmically transitive network (ATN), was
proposed. The ATN is represented by a data-flow network used to describe an algorithm
of the data-flow computer (DFC). After the calculation by the forward propagation, the
ATN propagates differential coefficients backward and adjusts node parameters with
the steepest descent method. Moreover, based on the information obtained from this
learning, the ATN modifies topological structure of the network through the agent op-
erations, leading to the renovation of the network’s algorithm. The model was success-
fully applied to a few simple symbolic regression problems, but the limitation of the
learning capability was also found with more complex functions. Revising the model’s
framework and improving the ATN’s learnability remains a future research subject.

4.1 Supervised Learning in Computation

As another auto-programming tool that represents algorithms by a network, we have
Genetic Programming (GP) proposed by Koza [6,7,8]. Though the original GP used
only a program graph with tree topology, but such research as PADO [25], Cartesian
GP [12,13], and GNP [10] adopted networks with free topology and have extended
the GP’s domain. In addition, some researchers have also incorporated reinforcement

72 H. Suzuki, H. Ohsaki, and H. Sawai

learning in the GP: node parameters were adjusted by Q-learning [5,2,10] or by the
multiple linear regression analysis [14]. The ATN, on the other hand, combines the
GP-like program graphs with the artificial neural network and enables more powerful
supervised learning in computation.

4.2 Translation from Programming Language

Though the ATN experiments presented in this paper start from a small random/hand-
made network, if we were able to develop a tool to translate a higher language pro-
gram (written in C, Java, or whatever) into the ATN, the presented method would be
used to improve/optimize programs designed by the humans. Of course, a usual higher
language program includes a number of different control flows not tested in this paper:
loop, subroutine, and so on. Translating a program with these elements into the ATN
and revising it with the presented method are one of the problems to be tackled in the
future.

References

1. aiSee: Commercial software for visualizing graphs with various algorithms such as rubber-
band, http://www.aisee.com/

2. Downing, K.L.: Reinforced genetic programming. Genetic Programming and Evolvable Ma-
chines 2(3), 259–288 (2001)

3. Haykin, S.: Neural networks and learning machines. Prentice-Hall, Inc. (2009)
4. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its appli-

cation to conduction and excitation in nerve. Journal of Physiology 117, 500–544 (1952)
5. Iba, H.: Multi-agent reinforcement learning with genetic programming. In: Koza, J.R., et al.

(eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference (GP 1998),
pp. 167–172 (1998)

6. Koza, J.R.: Genetic Programming: on the Programming of Computers by Means of Natural
Selection. MIT Press, Boston (1992)

7. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT
Press, Boston (1994)

8. Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A.: Genetic programming III: darwinian
invention and problem solving. MIT Press, Boston (1999)

9. Kumazawa, I.: Learning and neural network. Morikita Publishing Company, Tokyo (1998)
(Japanese)

10. Mabu, S., Hirasawa, K., Hu, J.: A graph-based evolutionary algorithm: genetic network pro-
gramming (GNP) and its extension using reinforcement learning. Evolutionary Computa-
tion 15(3), 369–398 (2007)

11. McCulloch, W.S., Pitts, W.: A logical calculation of the ideas immanent in nervous activity.
Bullet. Math. Biophysics 5, 115–133 (1943)

12. Miller, J.F.: An empirical study of the efficiency of learning boolean functions using a carte-
sian genetic programming approach. In: Banzhaf, W., et al. (eds.) Proceedings of the Ge-
netic and Evolutionary Computation Conference, vol. 2, pp. 1135–1142. Morgan Kaufmann
(1999)

13. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic pro-
gramming. IEEE Transactions on Evolutionary Computation 10(2), 167–174 (2006)

http://www.aisee.com/

Algorithmically Transitive Network 73

14. Nikolaev, N.Y., Iba, H.: Regularization Approach to Inductive Genetic Programming. IEEE
Transactions on Evolutionary Computation 5(4), 359–375 (2001)

15. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating
errors. Nature 323, 533–536 (1986)

16. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error
propagation. In: McClelland, J.L., Rumelhart (eds.) The PDP Research Group: Parallel Dis-
tributed Processing, vol. 1. MIT Press, Cambridge (1986)

17. Sejnowski, T.J., Rosenberg, C.R.: Parallel networks that learn to pronounce English text.
Complex Systems 1, 145–168 (1987)

18. Sharp, J.A. (ed.): Data flow computing: Theory and practice. Ablex Publishing Corp., Nor-
wood (1992)

19. Suzuki, H.: Mathematical folding of node chains in a molecular network. BioSystems 87,
125–135 (2007)

20. Suzuki, H.: An approach toward emulating molecular interaction with a graph. Australian
Journal of Chemistry 59, 869–873 (2006)

21. Suzuki, H.: A network cell with molecular agents that divides from centrosome signals.
BioSystems 94, 118–125 (2008)

22. Suzuki, H., Ohsaki, H., Sawai, H.: A Network-Based Computational Model with Learning.
In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds.) UC 2010. LNCS,
vol. 6079, pp. 193–193. Springer, Heidelberg (2010)

23. Suzuki, H., Ohsaki, H., Sawai, H.: Algorithmically Transitive Network: a new computing
model that combines artificial chemistry and information-communication engineering. In:
Proceedings of the 24th Annual Conference of Japanese Society for Artificial Intelligence
(JSAI), pp. 2H1-OS4-5 (2010) (Japanese)

24. Suzuki, H., Ohsaki, H., Sawai, H.: An agent-based neural computational model with
learning. Frontiers in Neuroscience. Conference Abstract: Neuroinformatics (2010),
doi:10.3389/conf.fnins.2010.13.00021

25. Teller, A., Veloso, M.: PADO: Learning tree-structured algorithm for orchestration into an
object recognition system. Carnegie Mellon University Technical Report, CMU-CS-95-101
(1995)

26. Tennenhouse, D.L., Wetherall, D.J.: Towards an active network architecture. ACM Computer
Communication Review 26(2), 5–18 (1996)

27. Werbos, P.J.: The roots of backpropagation: From ordered derivatives to neural networks and
political forecasting. In: Adaptive and Learning Systems for Signal Processing, Communi-
cations and Control Series. Wiley Interscience (1994)

	Algorithmically Transitive Network: A Self-organizing Data-Flow Network with Learning
	Introduction
	Method
	Data-Flow Network
	Simulation Procedure
	Calculation by the Forward Propagation (FP)
	Learning by the Backward Propagation (BP)
	Topological Reformation

	Experiments
	Polynomial Functions
	Fraction Function
	Conditional Branch

	Discussion
	Supervised Learning in Computation
	Translation from Programming Language

	References

