SOS Cloud: Self-organizing Services
in the Cloud

Bogdan Alexandru Caprarescu', Nicolo Maria Calcavecchia?,
Elisabetta Di Nitto?, and Daniel J. Dubois?

! West University of Timisoara
Faculty of Mathematics and Computer Science
bcaprarescu@info.uvt.ro
2 Politecnico di Milano
Dipartimento di Elettronica e Informazione
{calcavecchia,dinitto,dubois}@elet.polimi.it

Abstract. Cloud computing is becoming an interesting alternative as
a flexible and affordable on-demand environment for deploying custom
applications in the form of services. This work proposes a bio-inspired,
self-organizing solution to support the allocation and deallocation of vir-
tual machines and the deployment of services on virtual machines in a
cloud infrastructure. The goal is twofold: to meet the service level agree-
ments and to minimize the number of required virtual machines.

Keywords: cloud computing, self-organization, autonomic computing.

1 Introduction

Cloud computing is a distributed computing paradigm with the objective of
leveraging economies of scale in order to offer on-demand, flexible virtual re-
sources. The advantage of running applications in a cloud environment is the
fact that their execution is charged for the amount of resources actually used,
thus reducing the cost of the initial investment and allowing applications to scale
up and down in response to changing computational requirements.

A list of obstacles to the massive adoption of cloud computing was identified
by [3]. The top two obstacles are particularly relevant for our work. The first
one is that specific adaptation has to be provided at the application level in
order to allow services to scale with the traffic demand; the second one is that
services are usually bound to a single cloud provider since there are no lead-
ing interoperable standards yet. Moreover, typical solutions are centralized and
thus unsuitable in contexts characterized by high dynamism, a high number of
applications instances, and constraints that require fast decisions.

The SOS Cloud project aims to provide robust and scalable solutions for ser-
vice deployment and resource provisioning in a cloud infrastructure. The goal is
twofold: to meet the service level agreements (SLA) and to minimize the required
cloud resources (i.e., virtual machines). To meet both quality and functional
goals we borrow inspiration from the self-organizing systems in nature (e.g., ant

J. Suzuki and T. Nakano (Eds.): BIONETICS 2010, LNICST 87, pp. 48-F5] 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Self-organizing Services in the Cloud 49

colonies, flocks of birds, school of fish) which benefit from built-in robustness
and scalability and their goals emerge from the interactions among a myriad of
individuals. With this idea in mind, in our approach each virtual machine will
be instrumented with an autonomic layer that, through cooperation, will make
decisions whether to instantiate new nodes or remove existing ones, deploy ser-
vices on nodes, and route requests. Same as in biological self-organizing system,
the global goals of the system are expected to emerge from local actions.

Existing bio-inspired contributions [1, [2], [6] are limited to the dynamic de-
ployment of a set of services in a cluster with a fixed number of physical servers.
Consequently, their systems cannot accommodate high traffic demands due to
the limited amount of physical resources. Our work targets cloud environments
and aims to provide a self-organizing algorithm that, not only allocates nodes
to services, but also dynamically adjusts the number of nodes to accommodate
high fluctuations in the request rate.

The remaining of this paper is organized as follows. Section [2] describes the
context of this work as well as our assumptions and notations. Section Bl proposes
a self-organizing solution to this problem while some preliminary simulation
results are described in Section Ml Finally, Section [Bl concludes the paper.

2 Context

The context of our problem involves four different actors and it is depicted in
Figure D} (i) cloud providers offer their computing infrastructures under the In-
frastructure as a Service (IaaS) paradigm, (ii) service providers develop services
to be deployed in the cloud and give the SLA that should be respected, (iii) the
cloud broker deploys the services owned by many service providers on virtual
machines rented from the cloud providers, finally (iv) clients access the services
under the Software as a Service (SaaS) paradigm. Basically, the cloud broker
is a company that offers Service Optimization as a Service (SOaaS) to service
providers. Our long term goal is to develop a solution that allows the broker to
rely on several cloud providers. However, this is outside the scope of this paper
where only one cloud provider is considered.

For simplicity, we assume stateless, computation-intensive services without
any form of composition; each service offers exactly one operation. Services are
deployed within virtual computing environments (e.g., Amazon EC2 virtual ma-
chines). We will use the symbols s for a certain service, S for the set of deployed
services and |S| to denote the number of deployed services belonging to the set
S. Specifically, for a service s we assume that SLA consists of two thresholds: the
maximum response time for each request R, and the mazimum rejection rate
P, (number of rejected requests per time unit). A service request is considered
rejected whenever it is not satisfied within R¢ time units; in this case the request
is discarded before the processing. The estimated processing time for service s
is denoted with Dg. Either this value is given at deployment time by the ser-
vice provider or it is computed at runtime. Finally, the number of requests for a
service per time unit is called request rate and denoted with .

50 B.A. Caprarescu et al.

Cloud .
providers Service

Clients

Fig. 1. Context of the SOS Cloud project

Each service may be deployed on several nodes. In this situation, we say that
an instance of that service is running on each of these nodes. The cloud broker
targets services with high request rates for which dozens of service instances are
usually required. We assume that all nodes provided by the cloud infrastructure
are homogeneous (e.g., same hardware capabilities) and that any service can
run on any node. In the following, the symbol n will be used to denote a certain
node. For security reasons (the services belong to different organizations) only
one service is deployed on a node at a time.

3 A Self-organizing Solution

The cloud broker needs a system capable of continuously adjusting the number
of nodes, the number of instances of each service, and the allocation of service
instances to nodes in order to satisfy the SLA of each service and to minimize
the number of nodes. Building such kind of systems that monitor and manage
themselves according to certain objectives represents the goal of autonomic com-
puting. As highlighted in our previous work [4], engineering robust and scalable
autonomic systems continues to remain challenging. This is because many au-
tonomic architectures employ a central manager that acts as a single point of
failure and becomes a scalability bottleneck for large systems.

An approach to design robust and scalable large systems is to take inspira-
tion from the self-organizing systems in nature like ant colonies. These systems
are highly decentralized and their global goals emerge from the local interac-
tions among a myriad of individuals. In our past work [5], we argued that self-
organization can be successfully applied to build robust and scalable autonomic
systems. We also observed that the systems composed of a high number of iden-
tical components are particularly suitable for being designed in a self-organizing
manner. The broker’s autonomic system exhibits this characteristic as it is com-
posed of a large number of homogeneous nodes. Therefore, instead of having
one or a few components that manage the whole system, we provide each node

Self-organizing Services in the Cloud 51

with an autonomic layer that applies local changes. The nodes self-organize and
their autonomic layers collaborate to perform local optimization. The emerging
global solution is usually not the optimal one, but the high robustness and scala-
bility of the architecture pay the trade-off. In this section, we briefly describe the
architecture and the self-organizing algorithm of the broker’s autonomic system.

Like ants, our nodes have only a local view of the overall system. In other
words, each node knows about and communicates with a limited number of
other nodes in the system (called from now on the neighbors of that node). The
nodes form |S| + 1 overlays: one overlay for each service and a system overlay
which connects all nodes. Consequently, each node is simultaneously part of
its service overlay and the system overlay. For example, Figure [2 depicts the
overlays of a system consisting of two services (named s and s2) deployed on
nine nodes. The number of neighbors of each node in an overlay is the same and
is called the degree of the overlay. As described below, the service overlays are
needed for request routing and node provisioning while the system overlay is used
only for service switching (i.e., the current offered service of a node is changed
with another one without restarting the virtual machine). In the following, by
neighborhood of a node we refer to the set composed of the node itself and its
neighbors in a given overlay. As a node is part of two overlays, it is also part of
two neighborhoods: service neighborhood and system neighborhood.

@@

The system overlay The service overlays

Fig. 2. Example of system and service overlays

From the architectural perspective, a node runs a service and is instrumented
with an autonomic layer that executes three decentralized mechanisms: service
optimization, overlays management, and request routing. Service optimization is
the most important function of the autonomic layer. To fulfill it, the autonomic
layer uses a feedback loop with three main activities: monitoring, analysis and
decision, and execution. The autonomic layer stores performance data for the
current node and for its neighbors in the service and system overlays. This data
is then periodically analyzed and a decision is made whether a modification is
needed. There are three possible modifications: allocate a new node in the cloud,
remove the current node from the cloud, and change the service of the current
node. In the following, the three feedback loop activities are described.

The autonomic layer monitors two parameters: the CPU utilization L, and
the number of rejected requests P,. The CPU utilization is computed as the
percentage of the number of requests processed by the application server in a

52 B.A. Caprarescu et al.

time frame (called monitoring time frame) out of the total number of requests
that could have been processed by the application server in the monitoring time
frame (computed at its turn based on the estimated service processing time
D;). The number of rejected requests is computed over the same time frame.
The autonomic layer also maintains one management table for each overlay.
Thus, for each neighbor in one overlay, the management table of that overlay
stores an entry with the following information: data needed to communicate with
that neighbor (e.g., IP address and port number), CPU utilization, number of
rejected requests, and the last update time. The purpose of the management
tables is twofold: to maintain the overlays topology and to store performance
data of neighboring nodes. In order to keep the management tables updated we
use a gossip protocol based on T-Man [7]. More specifically, we customized T-
Man in two ways. First, in order to increase the stability of the topology, when
updating a management table we try to keep many of the existing neighbors.
Second, we make sure that a new node is inserted in the service neighborhood
of the node that decided to create it.

The autonomic layer needs a way to figure out how well the service neigh-
borhood is performing with respect to the goals of the system. For doing that,
a common practice in autonomic computing is to define a utility function that
realizes a trade off among goals. The first goal of our system is to respect SLA,
that is to minimize the number of rejected requests. In order for this goal to be
measurable we define a reward function US4 that associates a numeric reward
to each node based on the maximum allowed number of rejected requests defined
in the SLA and the monitored number of rejected requests.

The second goal is to minimize the number of nodes. As a rule, the more
efficiently the hardware resources of each node are utilized the less nodes are
required. In this paper we assume that services are computation-intensive and
focus on optimizing only one resource, namely the CPU. Normally, the minimum
number of nodes is achieved when the CPU of all or most of the nodes is fully
utilized. However, it is not a good practice to keep the nodes overloaded because,
in case of a sudden increase in the request rate, the system would reject many
requests before the autonomic layer has the chance to allocate new nodes. There-
fore, we define a desired CPU loading L%** and a reward function U¢TV that
associates a numeric reward to a node based on how close the current loading
is from the desired loading. We say that a node is lightly utilized if the current
loading is lower than the desired loading. Otherwise, it is heavily utilized.

The utility function can be further defined as a weighted average of the reward
functions as shown in equation (TI).

U(n) — wSLA A USLA(n) + wC’PU A UCPU(’I’L), where wSLA 4 wC’PU =1 (1)

The utility can be computed not only at node level, but also for a neighborhood
or even for the entire system as the average utility of all nodes in that neighbor-
hood or system, respectively. However, optimizing the utility of a large system
at the global level is usually an inefficient solution that may prevent the system

Self-organizing Services in the Cloud 53

from responding to traffic fluctuations in a timely manner. Therefore, we opted
for a self-organizing algorithm where each node makes those decisions (i.e., add a
new node, change its service or remove itself) that maximize the average utility
of its service and system neighborhoods. To avoid conflicts, a dynamic and de-
centralized election algorithm allows only one member of a service neighborhood
to execute changes at a time. In other words, while a node is effecting a change
its service neighbors are forbidden to also execute changes.

Depending on the level of node utilization, a different algorithm is used for the
analysis, decision, and execution activities of the autonomic layer. Thus, if the
node is heavily utilized, the current average utility of the service neighborhood
is compared with the predicted utility in the situation that a new node is added.
If the predicted utility is higher, then a new node is allocated in the cloud. The
prediction algorithm assumes that the new node will work at desired loading
and will take over an equal amount of traffic from each existing neighbor.

The autonomic layer of a lightly utilized node estimates the utility of the
neighborhood in the case the current node is removed. The estimation is done
based on the assumption that the traffic processed by the removed node is equally
distributed to its service neighbors. Here, by amount of traffic we mean the sum
of processed and rejected requests. If the estimated utility is higher than the
current utility, then, before removing itself, the node tries to switch to another
service. The service switching mechanism works in the following way: for each
service that is being run by its system neighbors, the autonomic layer estimates
the utility of the system neighborhood in the event it would switch to that
service. The node switches to the service that maximizes the predicted system
neighborhood utility. But, if all predicted utilities are lower than the current
utility, the node is deallocated from the cloud.

For request routing we use the simple algorithm proposed by [I]. First of
all, we assume that the requests for a service are randomly distributed to the
nodes of that service overlay. Then, once a request arrives at a node, based on the
current loading and the estimated time to process the request D,, the autonomic
layer decides whether the SLA’s maximum response time P can be met. If it
can, then the node schedules the request on its internal queue. Otherwise, the
request is forwarded to the least loaded neighbor in the service overlay. Finally,
a request is rejected if there is no chance to handle it in the required time even
by an unloaded node because of the time lost in the routing process.

4 Preliminary Results

A custom simulator was implemented in Java. The decentralized functions of
each node (service optimization, request routing, and topology maintenance)
are carried out by a couple of threads. A custom, asynchronous, message-based
mechanism is used for implementing the inter-node communication. The simple
utility function used in the simulator is shown in equations (), @), and (@). In
equation (@), the definition of US4 uses the constant C' to provide a dominant
penalty in the situation the current number of rejected requests becomes higher

54 B.A. Caprarescu et al.

than the double of the maximum allowed number of rejected requests. Other
parameters of the simulator include the monitoring time frame (10 seconds) and
the desired CPU loading (L9¢* = 80%). The analysis is done every 0.5 seconds
and both system and service overlay degrees are set to 10.

_ USLA(TL) + UCPU(TL)

U(n) : 2)
S () = P tn i Py <2- Py 3)
C otherwise
Ln if L, < L4
UCPU(TL) _ { 10%d—Ln n (4)

100 Ldes otherwise

Our preliminary tests addressed the provisioning of nodes as the effectiveness of
a self-organizing service selection was proved by [I]. A simple test configuration
of one client and one service deployed on one node was instantiated and the
client was instructed to progressively send more requests. Figure [B] shows the
variations of the system average utility as a response to traffic bursts. Thus, the
client began by sending 500 requests per minute at a constant rate while a node
at desired loading can process 96 requests per minute. The system responded
by adding 4 new nodes, which raised the utility over 90. After 20 seconds, the
request rate was increased to 2500 requests per minute. The number of nodes
reached 25. Finally, after 60 seconds from the beginning, the request rate was
set to 5000 requests per minute. As the end, 52 nodes were count.

. F i’ . ——— P —
75 fresRery e /,
| P \ _’
/ /
a0 g | \
= ; o | f e
= 25|/ I /
] | ' J
oo |
g | I
a
25 |
£ \ ol
| I{\'
-50 f\
75
] 10 20 30 40 50 80 70 a0 a0 100
Time (s)

Fig. 3. System average utility (normalized between —100 and +100)

In conclusion, it was observed that the system is stable at constant request
rates. When a traffic burst occurs, the utility initially drops, but quickly recovers
after the allocation of new nodes. It is important to be aware that the decision
of adding a new node can be made by any existing node. Moreover, while an
existing node is adding a new node, its service neighbors are locked in the sense
that they are not allowed to add other nodes.

Self-organizing Services in the Cloud 55
5 Conclusion

In this paper, we have proposed an innovative self-organizing approach for service
deployment and resource provisioning in a cloud infrastructure. The additional
benefit of our approach, compared to other existing approaches, is the fact that
we take advantage of the “elasticity” of the cloud in the sense that new resources
may be allocated and deallocated to help services respect contractual SLAs. The
proposed solution has been simulated and the preliminary results have shown
that, after a transitory, services comply with their SLAs and the number of cloud
nodes is comparable to the one obtained in the optimal solution (i.e., the solution
that maximizes the utility function). Future work will include more precise and
accurate simulations as well as a complete description of the architecture and
algorithms of our system.

Acknowledgments. This research has been partially funded by the Euro-
pean Commission, Programme IDEAS-ERC, Project 227077-SMScom, and grant
FP7-ICT-2009-4-246839 (SPRERS).

References

1. Adam, C., Stadler, R.: A Middleware Design for Large-scale Clusters Offering Mul-
tiple Services. IEEE Transactions on Network and Service Management 3(1), 1-12
(2006)

2. Andrzejak, A., Graupner, S., Kotov, V., Trinks, H.: Algorithms for self-organization
and adaptive service placement in dynamic distributed systems. HP Laboratories
Palo Alto, HPL-2002-259 (2002)

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A.,
Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud comput-
ing. Communications of the ACM 53(4), 50-58 (2010)

4. Caprarescu, B.A.: Robustness and scalability: a dual challenge for autonomic archi-
tectures. In: Proceedings of the Fourth European Conference on Software Architec-
ture: Companion, pp. 22-26 (2010)

5. Di Nitto, E., Dubois, D.J., Mirandola, R.: On exploiting decentralized bio-inspired
self-organization algorithms to develop real systems. In: Proceedings of the Interna-
tional Workshop on Software Engineering for Adaptive and Self-Managing Systems,
pp. 68-75 (2009)

6. Jamjoom, H., Jamin, S., Shin, K.: Self-Organizing Network Services. University of
Michigan, CSE-TR-407-99 (1999)

7. Jelasity, M., Montresor, A., Babaoglu, O.: T-Man: Gossip-based fast overlay topol-
ogy construction. Computer Networks: The International Journal of Computer and
Telecommunications Networking 53(13), 2321-2339 (2009)

	SOS Cloud: Self-organizing Services i
n the Cloud
	Introduction
	Context
	A Self-organizing Solution
	Preliminary Results
	Conclusion
	References

