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Abstract. Progress on large-scale simulation of neural models depends in part 
on the availability of suitable hardware and software architectures. 
Heterogeneous hardware computing platforms are becoming increasingly 
popular as substrates for general-purpose simulation. On the other hand, recent 
work highlights that certain constraints on neural models must be imposed on 
neural and synaptic dynamics in order to take advantage of such systems. In this 
paper we focus on constraints related to learning in a simple visual system and 
those imposed by a new neural simulator for heterogeneous hardware systems, 
CogExMachina (Cog).  
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1 Introduction 

Building neural models capable of simulating complex behaviors requires simulating 
large-scale models linking the macro-scale of behavior to the micro-scale of 
individual neural events. In recent years a large number of simulation platforms have 
emerged that satisfy different modeling needs, ranging from simulators that include 
the low-level spiking behavior of individual neurons [1] to some that abstract away 
biological details about neurons but try to maintain some of their functions [2]. 
Although large-scale neural modeling has greatly benefited from the introduction of 
supercomputers [3], the potential of heterogeneous computing systems still remains 
largely unexplored. Heterogeneous computing offers many advantages for neural 
modeling, including the possibility to scale simulations at virtually no cost, and to 
employ a variety of hardware accelerators to optimize specific model components. On 
the other hand, heterogeneous computing severely constrains the design of general-
purpose neural network modeling software. This paper addresses the issue of how to 
embed learning in such a system based on our experience with CogExMachina (Cog), 
a new neural simulator designed for heterogeneous computing systems [4].  
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We start in the next section with a brief description of the general modeling 
framework imposed by Cog. Section 3 examines in more detail the constraints that 
relate specifically to learning and presents simulation results of a model of the early 
visual system able to learn orientation preference and ocular dominance maps. We 
conclude with a description of our current efforts on generalizing the learning 
capabilities of the system.  

2 Neural Modeling Framework 

Single neurons in Cog are implemented based on the following neuron model [5]:  

( )xwTfy =  , (1) 

where x and w are the presynaptic input and associated synaptic weight vectors, 
respectively, f is a scalar-valued activation function, and y is the activation value of 

the postsynaptic neuron. The product xwT  is referred to as the partial inference. 
Cog imposes virtually no restrictions on the choice of the activation function, thereby 
leaving the modeler free to determine the kind of computation performed by each 
neuron. However, external input is obtained via partial inference only. This restriction 
ensures that models implemented remain tractable and efficient by removing the need 
for sophisticated synchronization mechanisms to handle parallelism. 

The segregation of computation into a set of partial inferences followed by an 
activation function is a critical bridge between biological and silicon computation 
built into Cog. A neural population can maintain relatively little state, but perform 
potentially highly nonlinear computations. The web of dendrites feeding that 
population has states stored in each synapse, but computes in a much more rigid 
manner. 

This dual-natured computation maps extremely well to heterogeneous computers. 
Conventional general-purpose processors can only work on relatively small sets of 
data efficiently, but include highly robust strategies for handling irregularity and 
nonlinearity. Special-purpose accelerators like graphics processors are designed for an 
opposite set of constraints. They require dramatically higher memory bandwidth, but 
de-prioritize handling of irregular computation. The signal function component of 
computation is best mapped to a conventional processor, where the partial inference 
calculation maps efficiently to a graphics processor. 

Beyond graphics processors, single-purpose hardware offers multiple additional 
orders of magnitude in power efficiency. Graphics processors are vastly more 
efficient than conventional processors for computations like partial inference, but data 
is still not as physically local as needed for power efficiency rivaling biology. A 
graphics card includes its own bank of memory with a very wide connection to the 
processor, but these two components are still physically separated. This separation 
means data must be shuttled from a memory chip, across a bus, and finally in to the 
processor. Efficiency would be dramatically higher if memory could be co-located 
directly on the processor.  
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Memristive crossbar memory is a viable contender for this unification of 
processing and memory. Memristor crossbars can be manufactured directly on top of 
a conventional chip, but with dramatically higher density than existing memory 
technologies. This means a massively multi-core chip designed to handle partial 
inference can localize storage of the weights directly on top of the processing core 
performing calculations – in particular, partial inference and learning - with those 
weights. Weight data need not move more than a few millimeters, resulting in a 
massive increase in energy efficiency. Cog’s design is in part motivated by such 
considerations of locality [4]. 

In summary, the modeling framework provided by Cog limits communication 
between neurons to partial inferences and tries to maintain computation related to 
synaptic weights local to the partial inference processors. The next section addresses 
the impact of these constraints on learning. 

3 Learning 

The above considerations lead to the question of how to efficiently introduce synaptic 
weight learning in a large-scale model instantiated on a distributed, heterogeneous 
network. One way to answer this question is to restrict learning to a single learning 
rule which can then be optimized in the same hardware that computes partial 
inference. From this point of view, one good candidate learning rule might be spike-
timing-dependent-plasticity [6] since it appears to give the most complete account of 
biological synaptic modification mechanisms. Indeed, some large-scale models adopt 
this rule as their only learning mechanism [7]. However, in a system in which 
biological realism is only secondary to functionality, such a choice is no longer 
justified. Moreover, it is fundamentally impossible to determine in advance which 
learning law is most appropriate without knowing exactly which behavioural task the 
model needs to perform. Finally, even if the task is known, it is not always clear 
which learning law will perform best, and if so in what parameter range can it be 
expected to perform well. Thus, learning in Cog follows the approach of 
implementing only a generic form of the learning equation which can then be tailored 
for specific applications. Crucially, the use of a generic form allows for hardware 
acceleration on the same processors that also compute partial inferences.  

3.1 Current General Form of Learning Laws 

Cog currently supports learning laws for which weight changes can be implemented 
in the following general form [8]: 

( )N
ij

C
ij

H
ijij wwwsw Δ+Δ+Δ=Δ λ  , 

(2) 

where λ is a learning rate, s is a sign factor (-1 or +1), and H
ijwΔ , C

ijwΔ and N
ijwΔ are 

weight-change terms related to Hebbian, competitive and normalization operations 
respectively. Presynaptic and postsynaptic units are respectively denoted in Eq. 2 by 
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indexes i and j. This general form was shown in [8] to be able to encapsulate a 
number of learning rules performing independent component analysis and is 
implemented in Cog as the following sequence of three steps: 
 

ijijij xhww +← 01  , (3) 

ijijij
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223
ijjijij wgww −←  . (5) 

 
Eqs. 3, 4 and 5 implement the Hebbian, competitive and normalization steps, 
respectively. Quantities hj and gj incorporate the learning rate λ and sign s and are 
computed by the postsynaptic neuron yj at each time step. Crucially, the forms of hj 
and gj are determined by the user so as to implement a particular learning rule. 

Simulation flow in Cog can thus be described as a sequence of two operations 
performed at each time step. First, all partial inferences are computed and learning is 
performed based on Eqs. 2-5 with feedback terms hj and gj returned from postsynaptic 
neurons computed at the previous time step. Second, all activation functions are 
computed as well as feedback terms hj and gj, which are sent back to the partial 
inference processors to be used at the next time step. 

3.2 Examples 

The simplest example of a learning law that can be implemented in Eqs. 4-6 is 
Hebbian learning: 

jiij yxw λ=  , (6) 

where continuous-time notation is used for simplicity. A sequential implementation of 

this learning rule is easily obtained by setting jj yh λ= in Eq. 3 and skipping the 

remaining steps. A slightly more complicated learning rule is the instar law [9]: 

( ))(twxyw ijijij αλ −=  , (7) 

where learning is gated by postsynaptic activity yj and an additional decay rate, α, 
needs to be specified by the modeler. Another common law used in the literature on 
self-organization is the Hebbian rule with postsynaptic normalization [10, 11]: 
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Eq.8 can be implemented in Cog as follows. First, the Hebbian step is computed 

as jj yh λ= . The competitive step is then skipped by setting 12
ijij ww = , and the 

normalization step is computed as follows: 
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(9) 

where the fact that all weights sum to 1 (due to postsynaptic normalization) is used to 
simplify the denominator. Still, Eq. 9 implies that postsynaptic unit yj needs to have 
access to the unweighted sum of its presynaptic inputs, requiring additional data 
transfers between processors computing the signal functions. Nevertheless, this can be 
accomplished in Cog by allocating an additional synaptic projection consisting of 
constant unit weights (i.e. 1' =ijw ) connecting presynaptic inputs xi to postsynaptic 

neurons yj. This costly duplication of weights illustrates well that any learning rule 
that does not comply naturally with the general form in Eq. 2 cannot be efficiently 
implemented in a large-scale, distributed, heterogeneous system. 

3.3 Simulations 

Learning of orientation preference and ocular dominance maps was implemented in 
Cog as a preliminary test of the simulation framework. The model implemented here 
is based on the LISSOM architecture [11] which builds on a widely popular tradition 
of research starting with the model in [10]. Network topology consists of two retinas, 
each projecting to distinct populations of on-center off-surround and off-center on-
surround LGN cells (Fig.1a). Projections to area V1 consist of bottom-up inputs from 
each LGN population as well as horizontal excitatory and inhibitory connections from 
within V1. Details about the model and training procedure can be found in [11]. The 
network was trained using the Hebbian rule with postsynaptic normalization (Eq. 8) 
which implements competition between synaptic weights and has been shown to be 
efficient at learning cortical maps.  

Figs. 1b-d illustrate the effect of learning using randomly presented inputs on the 
distribution of ocular dominance across V1 cells, where 0 indicates a cell sensitive to 
the left eye and 1, a cell sensitive to the right eye. Before learning, all cells are 
clustered at the center of the x-axis, indicating no strong preference for any eye 
(Fig.1b). After a period of normal rearing, a large proportion of cells become more 
selectively tuned to a particular eye (Fig.1c). In contrast, if the network is trained with 
inputs to the right eye only, all cells become sensitive to the right eye (Fig. 1d).   
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Fig. 1. a) LISSOM model architecture for orientation preference and ocular dominance map 
development. b) Distribution of ocular dominance before learning (0: left eye selectivity; 1: 
right eye selectivity). c) Distribution after a period of binocular training. d) Distribution after 
monocular training.  

Figure 2 shows the topography of orientation maps and ocular dominance maps 
before learning (a and c, respectively) and after a period of learning (b and d, 
respectively).  

 

Fig. 2. Topography of learned feature maps. Panels a) and c) respectively display orientation 
and ocular dominance maps before learning. Panels b) and d) display corresponding maps after 
a period of learning. In a) and b), color codes for preferred orientation, and in c) and d) 
grayscale values indicate ocular dominance. 
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As a large-scale learning experiment in Cog, the LISSOM model can be criticized 
on the grounds that it does not lead to stable representations without concurrently 
decreasing the learning rate, and that it requires a duplication of weights to implement 
synaptic weight normalization (Eq. 9). Both issues remain important topics which we 
are addressing in our current modeling efforts. In particular, on the second issue, the 
instar rule (Eq. 7) can be shown to lead to normalization based on postsynaptic 
activity only, thereby escaping the duplication of weights, but requires that inputs be 
normalized to a fixed constant. Although this assumption does not hold in the 
LISSOM model, it remains to be shown whether strict normalization is necessary in 
general. Another candidate learning rule is the BCM law which also implements 
competition based only on postsynaptic quantities, and also displays stability [12].     

3.4 Toward a Generalized Learning Law Equation 

In order to allow for a more thorough study of learning in large-scale systems, the 
general form in Eq. 2 and its associated three-step procedure in Eqs. 3-6 must be 
generalized to encompass a wider class of learning rules. For example, the outstar 
learning rule [13]: 

( ))(twyxw ijjiij αλ −=  , (10) 

cannot be directly mapped to the existing learning procedure due to the multiplication 

of weights ijw by the inputs ix . As in the case of Hebbian learning with postsynaptic 

normalization, Eq.10 can be implemented by a suitable modification of the network 
topology, but this would reduce the efficiency of the framework.  

Our group recently introduced a new general form of learning law capable of 
handling several classes of learning rules, including Hebb rule derivatives, threshold-
based rules, input reconstruction-based rules and trace-based rules [14]. Crucially, this 
generalization is achieved by inserting only one additional postsynaptic feedback term 
to the already existing two terms (hj and gj) of the current procedure, making it a 
suitable candidate for hardware acceleration as mentioned in Section 2. 

4 Conclusions 

In this paper, we investigated the kind of issues that are likely to be faced when 
implementing learning in a large-scale neural model instantiated on a distributed, 
heterogeneous network. In particular, we argue that learning calculations should be 
local to the partial inference processors, should minimize data transfer to and from 
signal function processors, and should be implementable in a common general form 
equation. Our current efforts are aimed at implementing such a general form, which 
will facilitate the study of learning in large-scale neural network. 
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