
J. Suzuki and T. Nakano (Eds.): BIONETICS 2010, LNICST 87, pp. 659–666, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Learning in a Distributed Software Architecture
for Large-Scale Neural Modeling

Jasmin Léveillé1, Heather Ames2, Benjamin Chandler2, Anatoli Gorchetchnikov1,
Ennio Mingolla2, Sean Patrick1, and Massimiliano Versace2

1 Department of Cognitive and Neural Systems, Boston University, Boston, MA 02215
2 Center of Excellence for Learning in Education, Science, and Technology, Boston University,

Boston, MA 02215
{jasminl,anatoli,versace,ennio}@cns.bu.edu,

{heather.m.ames,sean.patrick.619,bchandle}@gmail.com

Abstract. Progress on large-scale simulation of neural models depends in part
on the availability of suitable hardware and software architectures.
Heterogeneous hardware computing platforms are becoming increasingly
popular as substrates for general-purpose simulation. On the other hand, recent
work highlights that certain constraints on neural models must be imposed on
neural and synaptic dynamics in order to take advantage of such systems. In this
paper we focus on constraints related to learning in a simple visual system and
those imposed by a new neural simulator for heterogeneous hardware systems,
CogExMachina (Cog).

Keywords: Large-scale system, learning laws, neural networks, neural network
software, heterogeneous computing.

1 Introduction

Building neural models capable of simulating complex behaviors requires simulating
large-scale models linking the macro-scale of behavior to the micro-scale of
individual neural events. In recent years a large number of simulation platforms have
emerged that satisfy different modeling needs, ranging from simulators that include
the low-level spiking behavior of individual neurons [1] to some that abstract away
biological details about neurons but try to maintain some of their functions [2].
Although large-scale neural modeling has greatly benefited from the introduction of
supercomputers [3], the potential of heterogeneous computing systems still remains
largely unexplored. Heterogeneous computing offers many advantages for neural
modeling, including the possibility to scale simulations at virtually no cost, and to
employ a variety of hardware accelerators to optimize specific model components. On
the other hand, heterogeneous computing severely constrains the design of general-
purpose neural network modeling software. This paper addresses the issue of how to
embed learning in such a system based on our experience with CogExMachina (Cog),
a new neural simulator designed for heterogeneous computing systems [4].

660 J. Léveillé et al.

We start in the next section with a brief description of the general modeling
framework imposed by Cog. Section 3 examines in more detail the constraints that
relate specifically to learning and presents simulation results of a model of the early
visual system able to learn orientation preference and ocular dominance maps. We
conclude with a description of our current efforts on generalizing the learning
capabilities of the system.

2 Neural Modeling Framework

Single neurons in Cog are implemented based on the following neuron model [5]:

()xwTfy = , (1)

where x and w are the presynaptic input and associated synaptic weight vectors,
respectively, f is a scalar-valued activation function, and y is the activation value of

the postsynaptic neuron. The product xwT is referred to as the partial inference.
Cog imposes virtually no restrictions on the choice of the activation function, thereby
leaving the modeler free to determine the kind of computation performed by each
neuron. However, external input is obtained via partial inference only. This restriction
ensures that models implemented remain tractable and efficient by removing the need
for sophisticated synchronization mechanisms to handle parallelism.

The segregation of computation into a set of partial inferences followed by an
activation function is a critical bridge between biological and silicon computation
built into Cog. A neural population can maintain relatively little state, but perform
potentially highly nonlinear computations. The web of dendrites feeding that
population has states stored in each synapse, but computes in a much more rigid
manner.

This dual-natured computation maps extremely well to heterogeneous computers.
Conventional general-purpose processors can only work on relatively small sets of
data efficiently, but include highly robust strategies for handling irregularity and
nonlinearity. Special-purpose accelerators like graphics processors are designed for an
opposite set of constraints. They require dramatically higher memory bandwidth, but
de-prioritize handling of irregular computation. The signal function component of
computation is best mapped to a conventional processor, where the partial inference
calculation maps efficiently to a graphics processor.

Beyond graphics processors, single-purpose hardware offers multiple additional
orders of magnitude in power efficiency. Graphics processors are vastly more
efficient than conventional processors for computations like partial inference, but data
is still not as physically local as needed for power efficiency rivaling biology. A
graphics card includes its own bank of memory with a very wide connection to the
processor, but these two components are still physically separated. This separation
means data must be shuttled from a memory chip, across a bus, and finally in to the
processor. Efficiency would be dramatically higher if memory could be co-located
directly on the processor.

 Learning in a Distributed Software Architecture for Large-Scale Neural Modeling 661

Memristive crossbar memory is a viable contender for this unification of
processing and memory. Memristor crossbars can be manufactured directly on top of
a conventional chip, but with dramatically higher density than existing memory
technologies. This means a massively multi-core chip designed to handle partial
inference can localize storage of the weights directly on top of the processing core
performing calculations – in particular, partial inference and learning - with those
weights. Weight data need not move more than a few millimeters, resulting in a
massive increase in energy efficiency. Cog’s design is in part motivated by such
considerations of locality [4].

In summary, the modeling framework provided by Cog limits communication
between neurons to partial inferences and tries to maintain computation related to
synaptic weights local to the partial inference processors. The next section addresses
the impact of these constraints on learning.

3 Learning

The above considerations lead to the question of how to efficiently introduce synaptic
weight learning in a large-scale model instantiated on a distributed, heterogeneous
network. One way to answer this question is to restrict learning to a single learning
rule which can then be optimized in the same hardware that computes partial
inference. From this point of view, one good candidate learning rule might be spike-
timing-dependent-plasticity [6] since it appears to give the most complete account of
biological synaptic modification mechanisms. Indeed, some large-scale models adopt
this rule as their only learning mechanism [7]. However, in a system in which
biological realism is only secondary to functionality, such a choice is no longer
justified. Moreover, it is fundamentally impossible to determine in advance which
learning law is most appropriate without knowing exactly which behavioural task the
model needs to perform. Finally, even if the task is known, it is not always clear
which learning law will perform best, and if so in what parameter range can it be
expected to perform well. Thus, learning in Cog follows the approach of
implementing only a generic form of the learning equation which can then be tailored
for specific applications. Crucially, the use of a generic form allows for hardware
acceleration on the same processors that also compute partial inferences.

3.1 Current General Form of Learning Laws

Cog currently supports learning laws for which weight changes can be implemented
in the following general form [8]:

()N
ij

C
ij

H
ijij wwwsw Δ+Δ+Δ=Δ λ ,

(2)

where λ is a learning rate, s is a sign factor (-1 or +1), and H
ijwΔ , C

ijwΔ and N
ijwΔ are

weight-change terms related to Hebbian, competitive and normalization operations
respectively. Presynaptic and postsynaptic units are respectively denoted in Eq. 2 by

662 J. Léveillé et al.

indexes i and j. This general form was shown in [8] to be able to encapsulate a
number of learning rules performing independent component analysis and is
implemented in Cog as the following sequence of three steps:

ijijij xhww +← 01 , (3)

ijijij

jiji

xhww

hwx

'

'
12

1

−←

←
 , (4)

223
ijjijij wgww −← . (5)

Eqs. 3, 4 and 5 implement the Hebbian, competitive and normalization steps,
respectively. Quantities hj and gj incorporate the learning rate λ and sign s and are
computed by the postsynaptic neuron yj at each time step. Crucially, the forms of hj
and gj are determined by the user so as to implement a particular learning rule.

Simulation flow in Cog can thus be described as a sequence of two operations
performed at each time step. First, all partial inferences are computed and learning is
performed based on Eqs. 2-5 with feedback terms hj and gj returned from postsynaptic
neurons computed at the previous time step. Second, all activation functions are
computed as well as feedback terms hj and gj, which are sent back to the partial
inference processors to be used at the next time step.

3.2 Examples

The simplest example of a learning law that can be implemented in Eqs. 4-6 is
Hebbian learning:

jiij yxw λ= , (6)

where continuous-time notation is used for simplicity. A sequential implementation of

this learning rule is easily obtained by setting jj yh λ= in Eq. 3 and skipping the

remaining steps. A slightly more complicated learning rule is the instar law [9]:

())(twxyw ijijij αλ −= , (7)

where learning is gated by postsynaptic activity yj and an additional decay rate, α,
needs to be specified by the modeler. Another common law used in the literature on
self-organization is the Hebbian rule with postsynaptic normalization [10, 11]:

 Learning in a Distributed Software Architecture for Large-Scale Neural Modeling 663

() ij

k
jkkj

jiij
ij w

yxw

yxw
w −

+
+

=
 α

α
 . (8)

Eq.8 can be implemented in Cog as follows. First, the Hebbian step is computed

as jj yh λ= . The competitive step is then skipped by setting 12
ijij ww = , and the

normalization step is computed as follows:

() +
−=

+
−=

k
kj

k
jkkj

j xyyxw
g

αα 1

1
1

1
1

0
 ,

(9)

where the fact that all weights sum to 1 (due to postsynaptic normalization) is used to
simplify the denominator. Still, Eq. 9 implies that postsynaptic unit yj needs to have
access to the unweighted sum of its presynaptic inputs, requiring additional data
transfers between processors computing the signal functions. Nevertheless, this can be
accomplished in Cog by allocating an additional synaptic projection consisting of
constant unit weights (i.e. 1' =ijw) connecting presynaptic inputs xi to postsynaptic

neurons yj. This costly duplication of weights illustrates well that any learning rule
that does not comply naturally with the general form in Eq. 2 cannot be efficiently
implemented in a large-scale, distributed, heterogeneous system.

3.3 Simulations

Learning of orientation preference and ocular dominance maps was implemented in
Cog as a preliminary test of the simulation framework. The model implemented here
is based on the LISSOM architecture [11] which builds on a widely popular tradition
of research starting with the model in [10]. Network topology consists of two retinas,
each projecting to distinct populations of on-center off-surround and off-center on-
surround LGN cells (Fig.1a). Projections to area V1 consist of bottom-up inputs from
each LGN population as well as horizontal excitatory and inhibitory connections from
within V1. Details about the model and training procedure can be found in [11]. The
network was trained using the Hebbian rule with postsynaptic normalization (Eq. 8)
which implements competition between synaptic weights and has been shown to be
efficient at learning cortical maps.

Figs. 1b-d illustrate the effect of learning using randomly presented inputs on the
distribution of ocular dominance across V1 cells, where 0 indicates a cell sensitive to
the left eye and 1, a cell sensitive to the right eye. Before learning, all cells are
clustered at the center of the x-axis, indicating no strong preference for any eye
(Fig.1b). After a period of normal rearing, a large proportion of cells become more
selectively tuned to a particular eye (Fig.1c). In contrast, if the network is trained with
inputs to the right eye only, all cells become sensitive to the right eye (Fig. 1d).

664 J. Léveillé et al.

Fig. 1. a) LISSOM model architecture for orientation preference and ocular dominance map
development. b) Distribution of ocular dominance before learning (0: left eye selectivity; 1:
right eye selectivity). c) Distribution after a period of binocular training. d) Distribution after
monocular training.

Figure 2 shows the topography of orientation maps and ocular dominance maps
before learning (a and c, respectively) and after a period of learning (b and d,
respectively).

Fig. 2. Topography of learned feature maps. Panels a) and c) respectively display orientation
and ocular dominance maps before learning. Panels b) and d) display corresponding maps after
a period of learning. In a) and b), color codes for preferred orientation, and in c) and d)
grayscale values indicate ocular dominance.

 Learning in a Distributed Software Architecture for Large-Scale Neural Modeling 665

As a large-scale learning experiment in Cog, the LISSOM model can be criticized
on the grounds that it does not lead to stable representations without concurrently
decreasing the learning rate, and that it requires a duplication of weights to implement
synaptic weight normalization (Eq. 9). Both issues remain important topics which we
are addressing in our current modeling efforts. In particular, on the second issue, the
instar rule (Eq. 7) can be shown to lead to normalization based on postsynaptic
activity only, thereby escaping the duplication of weights, but requires that inputs be
normalized to a fixed constant. Although this assumption does not hold in the
LISSOM model, it remains to be shown whether strict normalization is necessary in
general. Another candidate learning rule is the BCM law which also implements
competition based only on postsynaptic quantities, and also displays stability [12].

3.4 Toward a Generalized Learning Law Equation

In order to allow for a more thorough study of learning in large-scale systems, the
general form in Eq. 2 and its associated three-step procedure in Eqs. 3-6 must be
generalized to encompass a wider class of learning rules. For example, the outstar
learning rule [13]:

())(twyxw ijjiij αλ −= , (10)

cannot be directly mapped to the existing learning procedure due to the multiplication

of weights ijw by the inputs ix . As in the case of Hebbian learning with postsynaptic

normalization, Eq.10 can be implemented by a suitable modification of the network
topology, but this would reduce the efficiency of the framework.

Our group recently introduced a new general form of learning law capable of
handling several classes of learning rules, including Hebb rule derivatives, threshold-
based rules, input reconstruction-based rules and trace-based rules [14]. Crucially, this
generalization is achieved by inserting only one additional postsynaptic feedback term
to the already existing two terms (hj and gj) of the current procedure, making it a
suitable candidate for hardware acceleration as mentioned in Section 2.

4 Conclusions

In this paper, we investigated the kind of issues that are likely to be faced when
implementing learning in a large-scale neural model instantiated on a distributed,
heterogeneous network. In particular, we argue that learning calculations should be
local to the partial inference processors, should minimize data transfer to and from
signal function processors, and should be implementable in a common general form
equation. Our current efforts are aimed at implementing such a general form, which
will facilitate the study of learning in large-scale neural network.

666 J. Léveillé et al.

References

1. Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J.M., Diesmann,
M., Morrison, A., Goodman, P.H., Harris Jr., F.C., Zirpe, M., Natschlager, T., Pecevski,
D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E.,
Davison, A.P., El Boustani, S., Destexhe, A.: Simulation of networks of spiking neurons:
A review of tools and strategies. J. Comp. Neurol. 23, 349–398 (2007)

2. O’Reilly, R.C., Munakata, Y.: Computational Explorations in Cognitive Neuroscience:
Understanding the Mind by Simulating the Brain. MIT Press (2000)

3. Markram, H.: The blue brain project. Nat. Rev. Neurosci. 7, 153–160 (2006)
4. Snider, G.: Intelligent Machines built with Memristive Nanodevices. In: 12th IEEE

International Workshop on Cellular Nanoscale Networks and their Applications, CNNA
(2010)

5. Haykin, S.: Neural networks: A comprehensive foundation. Prentice-Hall (1999)
6. Levy, W.B., Steward, O.: Temporal contiguity requirements for long-term associative

potentiation/depression in the hippocampus. Neuroscience 8, 791–797 (1983)
7. Izhikevich, E.: Large-scale model of the mammalian thalamocortical systems. PNAS 105,

3593–3598 (2008)
8. Hyvärinen, A., Oja, E.: Independent component analysis by general nonlinear Hebbian-

like learning rules. Signal Processing 64, 301–313 (1998)
9. Grossberg, S.: Adaptive pattern classification and universal recoding: I Parallel

development and coding of neural feature detectors. Biol. Cybern. 23, 121–134 (1976)
10. von der Marlsburg, C.: Self-organization of orientation-selective cells in the striate cortex.

Kybernetik 15, 85–100 (1973)
11. Mikkulainen, R., Bednar, J.A., Choe, Y., Sirosh, J.: Computational Maps in the visual

cortex. Springer (2005)
12. Bienenstock, E.L., Cooper, L., Munro, P.: Theory for the development of neuron

selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2,
31–48 (1982)

13. Grossberg, S.: Some nonlinear networks capable of learning a spatial pattern of arbitrary
complexity. PNAS 59, 368–372 (1968)

14. Gorchetchnikov, A., Versace, M., Ames, H., Léveillé, J., Yazdanbakhsh, A., Chandler, B.,
Mingolla, E., Snider, G.: General form of learning algorithms for neuromorphic hardware
implementation. In: The International Computational Neuroscience Meeting (CNS), San
Antonio, TX (July 2010)

	Learning in a Distributed Software Architecture for Large-Scale Neural Modeling
	Introduction
	Neural Modeling Framework
	Learning
	Current General Form of Learning Laws
	Examples
	Simulations
	Toward a Generalized Learning Law Equation

	Conclusions
	References

