
Representation of Spiking Neural P Systems

with Anti-spikes through Petri Nets

Venkata Padmavati Metta1, Kamala Krithivasan2, and Deepak Garg3

1 Bhilai Institute of Technology, Durg, India
vmetta@gmail.com

2 Indian Institute of Technology, Chennai, India
kamala@iitm.ac.in

3 Thapar University, Patiala, India
deep108@yahoo.com

Abstract. Spiking Neural P(SN P) system with anti-spikes uses two
types of objects called spikes and anti-spikes which can encode binary
digits in a natural way. We propose a formal method based on Petri
nets, which provides a natural and powerful framework to formalize SN
P systems with anti-spikes. This enables the use of existing tools for
Petri nets to study the computability and behavioural properties of SN
P systems with anti-spikes.

1 Introduction

Spiking neural P systems (shortly called SN P systems) introduced in [1] as a
variant of P systems, are biologically inspired parallel and distributed computing
models inspired by the neurobiological behaviour of neurons sending electrical
pulses of identical voltages called spikes to neighbouring neurons.

SN P system with anti spikes (shortly called SN PA system) introduced in [5],
is a variant of an SN P system consisting of two types of objects, spikes(denoted
as a) and anti-spikes(denoted as a) participating in spiking and forgetting rules.
We propose a relationship between SN P system with anti-spikes and Petri nets
to complement the functional characterization of the behaviour of SN PA sys-
tems. The relationship between SN P systems and Petri nets is no means a new
idea. Behavioural aspects of different variants of membrane systems were studied
by translating them into equivalent Petri net models [4,3]. In [8], a formal trans-
lation has been given for basic class of SN P systems with delays into a class of
Petri nets. In these Petri nets, places are used to represent neurons and spikes
are encoded with tokens. Transitions are used to implement rules inside the neu-
rons. Status places are associated with each place to maintain the state(open
or closed) of the each neuron. The inhibitor and test arcs are used to test the
status of the place and to only send the tokens to the open places.

To represent spikes and anti-spikes in SN PA systems, we use coloured Petri
nets [2] in which tokens can of different types. We introduce coloured Petri
nets with localities, with each transition is assigned a location based on the
input place and locally sequential and globally maximal firing semantics to the

J. Suzuki and T. Nakano (Eds.): BIONETICS 2010, LNICST 87, pp. 651–658, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

652 V.P. Metta, K. Krithivasan, and D. Garg

sequential firing in a neuron. The annihilation rule present in each neuron is
encoded as a highest priority transition with exhaustive firing semantics. It is
worth noting that as far as the rules are concerned, SN P systems are highly
concurrent in nature and Petri nets play an important role in the modelling,
analysis and verification of concurrent systems. As the procedure is direct, it
involves less complexity in translation and the rich theoretical concepts and
practical tools from well developed Petri nets can be used in the field of SN PA
systems. We can also prove the correctness of the computation of SN PA system
and also study the some behavioural properties like boundedness by means of
Petri nets.

2 Spiking Neural P System with Anti-spikes

First we recall the definition of SN P system with anti-spikes (or SN PA system).

Definition 2.1 (SN P system with anti-spikes). Mathematically, we represent a
spiking neural P system with anti-spikes of degree m ≥ 1, in the form

Π=(O, σ1, σ2, σ3 ,. . . , σm , syn , i0), where

1. O = { a, a } is the alphabet. a is called spike and a is called anti-spike.
2. σ1, σ2, σ3 ,. . . , σm are neurons, of the form

σi=(ni, Ri) , 1 ≤i≤m, where

(a) ni is the multiset of spikes or anti-spikes contained by the neuron.
(b) Ri is a finite set of rules of the following two forms:

i. E / br → b’ where E is a regular expression over a or a , while b, b′ ∈
{a, a}, and r ≥1.

ii. br → λ, for some r ≥ 1, with the restriction that br /∈ L(E) for any
rule E / br→ b′ of type (1) from Ri;

3. syn ⊆ { 1, 2, 3, . . . , m} × { 1, 2, 3, . . . , m} with (i, i) /∈ syn for 1≤ i ≤m
(synapses among neurons);

4. i0 ∈ { 1, 2, 3, . . . , m } indicates the output neuron.

The rules of type E / br → b′ are spiking rules, and they are possible only if the
neuron contains n b’s such that bn ∈ L(E) and n≥ r. When neuron σi sends a
b, it is replicated in such a way that one b′ is sent to all neurons σj such that
(i, j) ∈ syn. The rules of type br → λ are forgetting rules; r number of b′s are
simply removed (“forgotten”) when applying. Like in the case of spiking rules,
the left hand side of a forgetting rule must “cover” the contents of the neuron,
that is, as→ λ is applied only if the neuron contains exactly s spikes.

There is an additional fact that a and a cannot stay together, so annihilate
each other. If a neuron has either objects a or objects a, and further objects of
either type (maybe both) arrive from other neurons, such that we end with ar

and as inside, then immediately an annihilation rule a a → λ, which is implicit
in each neuron, is applied in a maximal manner, so that either ar−s or as−r

SN PA Systems and Petri Nets 653

remain for the next step, provided that r ≥ s or s ≥ r, respectively. This mutual
annihilation of spikes and anti-spikes takes no time and that annihilation rule
has priority over spiking and forgetting rules, so the neurons always contains
either only spikes or anti-spikes.
lhs(v) and rhs(v) gives the multiset of spikes/anti-spikes present in the left

and right hand sides of rule v respectively. Like in [5], we avoid using rules
ac → a, but not the other three types, corresponding to the pairs (a, a), (a, a),
(a, a). If E=br then we will write it in the simplified form br → b’.

The standard SN P system works in a similar way but with only one type of
object called spike(a) and so there exist no annihilation rules.

Definition 2.2 (Configuration). The configuration of the system is described
C =< n1, n2, · · · , nm > where ni is the multiset written in the form ni = axay,
where x is the number of spikes and y is the number of anti-spikes present
in neuron σi. Because a neuron always contains spikes or anti-spikes, either
ni(a) = 0 or ni(a) = 0.

Definition 2.3 (Vector rule). We define a vector rule V as a mapping with
domain Π such that V (i) = rij , rij is a spiking or forgetting rule from Ri i.e
| V (i) | = 0 or 1 where 1 ≤ i ≤ m. If no rule is applicable from σi then V (i) = ri0.
If a vector rule V is enabled at a configuration C=〈n1, n2, . . . , nm〉 then C can
evolve to C′ =〈n′

1, n
′
2, . . . , n

′
m〉 (after applying annihilation rules in each neuron

in exhaustive way), where
n′
i = ni − lhs(V (i)) +

∑
(j,i)∈syn rhs(V (j))

Definition 2.4 (Transition). Using the vector rule, we pass from one configu-
ration of the system to another configuration, such a step is called a transition.

For two configurations C and C′ of Π we denote by C V
=⇒ C′, if there is a direct

transition from C to C′ in Π .
A computation ofΠ is a finite or infinite sequences of transitions starting from

the initial configuration, and every configuration appearing in such a sequence is
called reachable. Note that the transition of C is non-deterministic in the sense
that there may be different vector rules applicable to C, as described above. A
computation halts if it reaches a configuration where no rule can be used. There
are various ways of using such a device [6].

Example 2.1. Consider the graphical representation of an SN P system with
anti-spikes in Fig.1(a), the neurons are represented by nodes of a directed graph
whose arrows represent the synapses; an arrow also exits from the output neuron,
pointing to the environment; in each neuron we specify the rules and the spikes
present in the initial configuration. It is formally denoted as

Π=({a, a}, σ1, σ2, σ3, σ4, syn , 4), with
σ1 = (a3, {a3/a→ a, a3 → a}), σ2 = (a, {a→ a}),
σ3 = (a, {a→ a}), σ4 = (a, {a→ a , a→ a}),syn={(1, 2), (2, 1), (1,4), (4,1),
(1,3), (3,1)}.

We have four neurons, with labels 1, 2, 3, 4; neuron 4 is the output neuron.
Initially neuron 1 has three spikes with non-determinism between its first two

654 V.P. Metta, K. Krithivasan, and D. Garg

 a

2

a a

1

a

a a

r11
:

r21
:

r41 :
< a3, a , a , a>

(a) (b)

<11, 21,31,41>

3

 a

4

a

a

3

3

a

a

a
3

/

r12
:

r31
:

r42 :a a

 a
a a

< a , a , a , a >

<12, 21,31,41>

< a2 , a , a , >

<10, 20,30,42>

Fig. 1. SN PA system Π

T
31

T12

T
21

P
2

P1

T11

T42

P
4

3a

a

a a

P
3

T41

T1a

T2a

T3a

T4a

a

a

 a

 a

a

a

 a

a

 a

a a

a a

a a

a

a

a

a

a

3a

a

a

a

Fig. 2. CPL-net equivalent to Π

rules and neurons 2, 3 and 4 have one spike each. The initial configuration of
the system is < a3, a, a, a >.

The evolution of the systemΠ can be analysed on a transition diagram as that
from Fig.1(b) because the number of configurations reachable from the initial
configuration is finite, we can place them in the nodes of a graph and between
two nodes/configurations we draw an arrow if and only if a direct transition is
possible between them. In the Fig.1(b), we have also indicated the rules used in
each neuron with the following conventions; for each rij we have written only
the subscript ij; when a neuron i=1, 2, 3, 4 uses no rule, we have written i0.

The functioning can easily be followed on this diagram, so that we only briefly
describe it. We start with spikes in all neurons. Neuron 1 can behave non-
deterministically choosing one of the two rules. As long as neuron 1 uses the
rule a3/a → a, the computation cycles in the initial configuration sending a
spike to neurons 2, 3 and 4; neuron 4 uses its first rule and sends an anti-spike to
environment and neuron 1. Neurons 2 and 3 use their rules and send a spike to
neuron 1. So neuron 1 receives one anti-spike and two spikes (and two spikes are
already present in it), after using annihilation rule, the neuron will have again
three spikes. Neuron 2, 3 and 4 will have one spike each.

If neuron 1 uses its second rule a3 → a, the three spikes are consumed and
an anti-spike is sent to other three neurons. So neuron 1 will have one spike
and neurons 2, 3 and 4 will have one anti-spike each, reaching the configuration
< a, a, a, a >. In the next step neurons 1, 2 and 3 cannot fire and neuron 4
uses the rule a→ a sending a spike to environment and neuron 1 , reaching the
configuration < a2, a, a, λ > and the system halts.

3 Colored Petri Nets

In coloured PN, color refers to the type of data associated with tokens. In other
words, tokens can have arbitrary values determined by their type or color. Each

SN PA Systems and Petri Nets 655

place has an associated color set, which constrains the number and color of
tokens that may reside in the place or move along the arc from that place.

Definition 3.1(Coloured Petri net). A coloured Petri net is represented by a

tuple N df
=(Σ,P, T, C,A,W, Γ,G,M0), where Σ , P and T are finite, non-empty

set of colours, places and transitions respectively.
C:P → Σ is a color function that assigns set of colours to every element of P.
A ⊆ (P × T)∪(T × P) is a set of directed arcs which connect places with

transitions and transitions with places.
W : Assigns a multi-set of coloured tokens from the domain of input places if

f ∈ (P × T) and from domain of output places if f ∈ (T × P).
G: T −→ {true,false}, the guard function maps each transition Ti to boolean

expression, which specifies an additional constraint which must be fulfilled before
the transition is enabled.
M0={m1,m2, · · ·mn} ∈ P , eachmi is a multi set of tokens initially associated

with each place Pi and n is the number of places in the net N .
Coloured Petri nets are drawn in a similar way as simple Petri nets with

coloured tokens drawn as coloured dots (for tokens of different attributes) or as
multi-set inside the places. The directed arcs connecting places to transitions and
transitions to places may be labelled with an arc expression having the multi-set
of tokens of different colours.

Definition 3.2 (Marking). M is a marking which assigns a finite semi-positive
multi-set over C(p) to every p ∈ P . M0 is called the initial marking.
The state or marking of Petri net is changed by the occurrence of transition.
Firing rules in the Petri net model are:

1. Transition Tj is enabled iff Tj satisfies the guard condition and its every
input place has enough tokens of needed colours as specified in the input arc
expression.

2. Upon firing the transition Tj removes number of tokens from each of its
input places equal to the weight of the input arcs and deposits number of
tokens into the output places equal to the weight of output arcs.

Concurrency is also a concept that Petri net systems represent in an extremely
natural way. Two transitions are concurrent at a given marking if they can be
fired at the same time i.e. simultaneously. This determines a new marking in a
net, a new set of enabled transitions, and so on. An important concept in Petri
nets is that of conflict. Conflict occurs between transitions that are enabled by
the same marking, where the firing of one transition disables the other. A ma-
jor feature of net is that they do not define in any way how and when a given
conflict should be resolved, leading to non-determinism in its behaviour. This
non-determinism is inherent in Petri nets.

Definition 3.3 (Step). A step is a multi-set U of transitions which are en-
abled at a marking M and we denote this by M [U〉. The input and output of
places of step U are given by INNU(p)=

∑
t∈U U(t).W (p, t) and OUTNU(p)=∑

t∈U U(t).W (t, p) for each p ∈ P

656 V.P. Metta, K. Krithivasan, and D. Garg

A step U which is enabled at a marking M can be executed leading to the
markingM ′ =M +OUTNU - INNU . We denote this by M [U〉M ′. A step U is
a maximal step at a marking M if M [U〉 and there is no transition t′ such that
M [U + {t′}〉 and for every place p ∈ P , transition t ∈ U , t can only be executed
if it satisfies the guard function.

A Petri net system N with maximal concurrency is such that for each mark-
ings M and M ′ if there is a step U such that M [U〉M ′, then U is a maximal
step.

A computation of a Petri net N is a finite or infinite sequences of executions
starting from the initial marking and every marking appearing in such a sequence
is called reachable.

A major strength of Petri nets is their support for analysis of many properties
and problems associated with concurrent systems such as reachability, bound-
edness and liveness. The reachability problem for Petri net is the problem of
finding if a marking Mi is reachable from the initial marking M0. Formally a
Petri net with a given marking is said to be in deadlock if and only if no transi-
tion is enabled in the marking. A Petri net where no deadlock can occur starting
from a given marking is said to be live. Generally Petri nets are analysed using
tools to study important behavioural properties of the system like reachabil-
ity, liveness, boundedness etc. Before implementation, we introduce the most
appropriate Petri net semantics.

Definition 4.1 (Coloured Petri nets with Localities). A coloured Petri net with

localities (or CPL-net) is a tuple NL df
= (Σ,P, T, C, A,W, Γ,G,M0, ψ, L), where

UND(NL) df
= (Σ,P, T, C,A,W, Γ,G,M0). ψ : T → N defines the priority func-

tion and L : T → N is a location mapping, for the transition set T .
The markings and steps already defined for coloured Petri nets carry over to
CPL-net.

Definition 4.2 (Enabled step). A step U is enabled at a marking M if M ≥
INNLU and, for every place p ∈ P and transition t ∈ U , G(t) = true. Moreover,
an enabled U is: lseq-gmax (locally sequential globally maximal) enabled if t ∈ U
then there is no transition u ∈ U such that L(u) = L(t) and there is no transition
l such that U + l is enabled at M such there L(t) �= L(u) for any u ∈ U . The
priority of all transitions in a step should be the same. So the priority of the step
is same as priority transitions in the step. If two steps are enabled at a marking
then the step with higher priority is executed first. In this paper we consider
prioritized locally sequential globally maximal firing of CPL-nets.

Definition 4.3 (Executed step and Computation). We introduce two modes of
execution of lseq-gmax enabled step U . In minimal execution mode every t ∈ U
is fired only once and is denoted as Umin where as in exhaustive execution mode
every t ∈ U is fired as many times as possible with the same binding for its
controlled variables and we denote this as Uexh.

Let m ∈ {min, exh} be a mode of execution. A lseq-gmax enabled step U at
a marking M can be m-executed leading to the marking M ′. We denote this by
M [U >m M ′. A computation of a CPL-net NL is a finite or infinite sequence

SN PA Systems and Petri Nets 657

of executions starting from the initial marking, and every marking appearing in
such a sequence is called reachable. The step semantics and the execution modes
defined above corresponds to the way rules are fired in the SN PA systems. Using
this correspondence we will give in the next section a faithful translation of SN
PA systems into CPL-nets.

4 SN P System with Anti-spikes to Petri Net

In this section, we propose a formal method to translate SN PA systems into
CPL-nets.

Definition 5.1(SN PA system to CPL-net). Let Π=(O, σ1, σ2, σ3 ,. . . , σm ,
syn , i0) be an SN P system with anti-spikes, then the corresponding CPL-net

NLΠ
df
= (Σ,P, T, C,A,W, Γ,G,M0, ψ, L), where

1. Σ=O
2. P = {P1, P2, · · · , Pm} is the set of places. Pi0 is the output place.
3. T = T1∪T2∪· · ·Tm where each Ti contains a distinct transition Tij for every

rule of rij ∈ Ri and Tia, a transition corresponding to the annihilation rule
implicitly present in each neuron Pi.
For every place p = Pi ∈ P and every transition t = Tjk ∈ T and k �= a,
W (p, t) = lhs(rjk) if i = j, W (t, p) = rhs(rjk) if i �= j and (i, j) ∈ syn,
ψ(t) = 1, L(t) = i and
for every p = Pi ∈ P , W (P, Tia) = aa, ψ(Tia) = 2, L(Tia) = i.

4. For every place Pi ∈ P , its initial marking is M0(Pi)
df
= ni.

To capture the very tight correspondence between the SN P system with anti-
spikes Π and Petri nets NLΠ , we introduce a straight forward bijection between
configurations ofΠ and markings ofNLΠ , based on the correspondence between
places and neurons.

Let C =< n1, n2, · · · , nm > be a configuration of an SN PA system Π . Then

the corresponding marking φ(C) of NLΠ is given by φ(C))(Pi)
df
= ni for every

place Pi of NLΠ .
Similarly, for any vector rule V = (r1j1 , r2j2 , · · · , rmjm) of Π , we define a lseq-

gmax enabled step ξ(V) of transitions of NLΠ such that ξ(V)(Tij)
df
= rij for

every Tij ∈ T and j �= a. It is clear that φ is a bijection from the configurations
of Π to the markings of NLΠ , and that ξ is a bijection from vector rules of Π
to lseq-gmax enabled steps of NLΠ .

We now can formulate a fundamental property concerning the relationship
between the dynamics of the SN PA system Π and that of the corresponding

CPL-net: C V
=⇒ C′ if and only if φ(C)[ξ(V >min [H >exh φ(C′).

where H is lseq-gmax step only containing Tia ∈ T for every 1 ≤ i ≤ m.
Since the initial configuration of Π corresponds through φ to the initial mark-

ing of NLΠ , the above immediately implies that the computations of Π coincide
with the locally sequential and globally maximal concurrency semantics of the
CPL-net NLΠ .

658 V.P. Metta, K. Krithivasan, and D. Garg

The reader might by now have observed that the structure of neurons in Π is
used in the definitions of the structure of the CPL-net NLΠ (i.e., in the defini-
tions of places, transitions and the weight function). Let C be a configuration of
Π and there is a vector rule V enabled at C reaching a configuration C′. As there
is a mapping between configuration and markings, φ(C) is marking of CPL-net
NLΠ corresponding to the configuration C of Π . There is a one-to-one mapping
between the rules in the SN PA system and transitions in CPL-net. For locally
sequential and globally maximal concurrency firing semantics of SN PA systems,
the prioritized locally sequential globally maximal steps are defined CPL-nets. Two
execution modes minimal and exhaustive are defined to encode the working spik-
ing rules and annihilations rules in the SN PA system. So there exists a step ξ(V >
enabled at the marking φ(C). After the execution of the step in the minimal mode,
and after firing the stepH containing the transitions corresponding the the anni-
hilation rules in exhaustive way, the system reaches the configuration φ(C′). We
can prove only if part in the similar way. So the evolution of the CPL-netNLΠ is
same as the evolution of the SN PA system Π . The CPL-netNLΠ corresponding
to the SN PA system Π is given in the Fig.2.

5 Conclusion
In this paper we have proposed an approach to the performance modeling of
the behaviour of SN P systems with anti-spikes through a class of Petri nets,
called coloured Petri nets with localities. The annihilation rule implicitly present
in a neuron is successfully encoded as highest priority sink transition and its
exhaustive firing enables to represent working of annihilation rule. Based upon
the introduction these features, the neural structure can be successfully encoded
as a Petri nets model which permit the description the behavioural state based
process run-time structure change of SN P system with anti-spikes.

References
1. Ionescu, M., Păun, G., Yokomori, T.: Spiking Neural P Systems. Fund. Infor. 71,

279–308 (2006)
2. Jensen, K.: A Brief Introduction to Coloured Petri Nets. In: Brinksma, E. (ed.)

TACAS 1997. LNCS, vol. 1217, pp. 203–208. Springer, Heidelberg (1997)
3. Kleijn, J., Koutny, M.: A Petri net model for membrane systems with dynamic

structure. Natural Computing 8(4), 781–796 (2009)
4. Kleijn, J., Koutny, M., Rozenberg, G.: Towards a Petri Net Semantics for Membrane

Systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005.
LNCS, vol. 3850, pp. 292–309. Springer, Heidelberg (2006)

5. Linqiang, P., Păun, G.: Spiking Neural P Systems with Anti-Spikes. Int. J. of Com-
puters, Communications and Control 4, 273–282 (2009)

6. Păun, G.: Spiking Neural P Systems Used as Acceptors and Transducers. In: Holub,
J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 1–4. Springer, Heidelberg
(2007)

7. Reisig, W., Rozenberg, G. (eds.): APN 1998. LNCS, vol. 1491, 1492. Springer, Hei-
delberg (1998)

8. Venkata Padmavati, M., Kamala, K., Deepak, G.: Modeling Spiking Neural P sys-
tems using Timed Petri nets. In: Int. Conf. on Nature and Biologically Inspired
Computing (NaBIC 2009). IEEE Xplore (2009)

	Representation of Spiking Neural P Systems with Anti-spikes through Petri Nets
	Introduction
	Spiking Neural P System with Anti-spikes
	Colored Petri Nets
	SN P System with Anti-spikes to Petri Net
	Conclusion
	References

