
Program Equivalence Using Neural Networks

Tiago M. Nascimento1,2, Charles B. Prado1, Davidson R. Boccardo1,
Luiz F.R.C. Carmo1, and Raphael C.S. Machado1

1 INMETRO - National Institute of Metrology, Normalization and Industrial Quality
Rio de Janeiro - Brazil

2 UFRJ - Federal University of Rio de Janeiro - Brazil
{tmnascimento,cbprado,drboccardo,lfrust,rcmachado}@inmetro.gov.br

Abstract. Program equivalence refers to the mapping between equiva-
lent codes written in different languages – including high-level and low-
level languages. In the present work, we propose a novel approach for
correlating program codes of different languages using artificial neural
networks and program characteristics derived from control flow graphs
and call graphs. Our approach correlates the program codes of different
languages by feeding the neural network with logical flow characteristics.
Our evaluation using real code examples shows a typical correspondence
rate between 62% and 100% with the very low rate of 4% false positives.

1 Introduction

Equivalence between two programs can be characterized by their executing be-
havior. The behavior equivalence can be established between distinct languages
– including high-level and low-level languages. The equivalence problem refers to,
given two programs, deciding if they present the same executing behavior or not.
In the following, we present some scenarios of Software Engineering concerned
with the equivalence problem.

1. Platform migration. Consider a developer who, for historic reasons, has a
small part of a certain system written in a distinct programming language
from the rest of the system. For maintainability reasons, this developer may
track the homogeneity of the system by rewriting the routines in the predom-
inant language of the system. One way to determine whether the “rewritten
routines” were properly coded is to verify if they are equivalent to the “older
routines”.

2. Legacy software recovering. Consider a developer who has a software
system in production that, due to difficulties in its software configuration
management, needs to “recover the baseline” of the software system in pro-
duction, i.e., for each software module that has a binary code in execution,
the developer must identify among several versions of source code, which
corresponds to that binary in execution. One possibility for this task could
be recompiling the distinct source code modules, comparing the generated
binaries with the ones in the production environment. This approach how-
ever, besides being impractical – given the huge amount of versions and

J. Suzuki and T. Nakano (Eds.): BIONETICS 2010, LNICST 87, pp. 637–650, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

638 T.M. Nascimento et al.

compilations that should be conducted, still has the possibility of failure in
the case that the setting parameters are not exactly the same as those used
in the compilation of the modules currently in the production.

3. Introduction of non-intentioned behavior in the compilation pro-
cess. This scenario refers to the fact that the compilation process is a part
of the software development and must be validated. In fact, the compilation
process may introduce bugs and non-intentioned behavior in the software [1].
Besides, the software code and the compiler may be deliberately corrupted
by the insertion of a malicious behavior (backdoor). Hence, it becomes in-
teresting to have tools to directly compare the behavior described by source
and binary code, independently of the compilation process.

4. Software acquisition management. Assume that a software manufac-
turer wishes to outsourcing the development of some libraries in a project.
For so, the manufacturer gives some specifications to an independent de-
veloper, which returns the specified product developed. Naturally, such a
product should be submitted to a battery of tests in order to characterize it
according to the specifications. However, these tests normally are ineffective
with hidden malicious behavior. Such a behavior is typically activated by
the insertion of hidden undocumented commands — for instance, by using a
counterintuitive sequence of keystrokes1. The detection of hidden behavior
only can be done through of code analysis. In this case, the manufacturer
may require not only the binary code but also the associated source code.
Once the source code be analyzed, further step requires the mapping (equiv-
alence) between the source and the binary code.

In the previous examples, we see that frequently the equivalence problem refers
to the mapping of a binary code from a source code or of a binary code from
another binary code, which we term “traceability”. A simple and direct way of
performing such “traceability” is to reproduce exactly the development environ-
ment of the software developer and to compile the source code, verifying whether
the generated binary code is as expected. For this approach we must assure that
the compilation environment is the same. Such a hypothesis, however, may be
impractical — as the case (2), in which the compilation settings may be lost due
to flaws in the configuration management, or as the case (4), which would restrict
the developer to a unique environment. Another drawback is related to the cost
and the complexity required to keep several software development environments.
Moreover, as demonstrated in the Thompson Turing Award Lecture [1]: unless
the “language transformation” performed by the compiler can be completely
characterized — which would require a binary analysis of the compiler code —
it is not possible to guarantee that the compilation process, itself, does not in-
troduce some kind of flaw or malicious behavior into the software (this is closely
related to the example in case (3)). Another way of performing the software
traceability is to audit the software development environment of the software
developer. Such an approach presents disadvantages similar to those described

1 These sequences of commands are sometimes called easter eggs.

Program Equivalence Using Neural Networks 639

in the previous paragraph, and it is likely to be ineffective when dealing with a
malicious developer.

Summarizing, binary code verification is the only true way to detect hidden
capabilities, as demonstrated by Thompson in his Turing Award Lecture [1].
Lest Thompson’s paper be considered theoretical, his ideas have been put into
practice by the malware W32.Induc.A [2]. On large and complex systems, how-
ever, binary verification can require long and laborious work to integrally track
variable manipulations and to perform vulnerability analysis, so that a usual
approach is to conduct such verification on the source code. Depending on the
architectural complexity of the software, this software can be explicitly submit-
ted to a white-box approach entailing a source code analysis. However, source
code verification is not sufficient enough to give any guarantee about the behav-
ior of the related binary code. To certify that the binary code being executed
works properly, one must guarantee that such binary code was, in fact, generated
from the approved source code through an honest compilation process.

Source code verification does not preclude the verification as to whether the
binary code corresponds to its source code. Traceability of executable codes is
the process for establishing the correspondence between source and object codes.
That is, once the source code of a given software version is analyzed, evaluated
and approved, it is necessary to verify whether a given binary code — which will
be, in fact, in execution — corresponds to that source code.

In the present work we propose a different strategy to verify whether two
programs of different languages (typically source code and binary machine code)
describe the same software behavior. This paper presents a novel approach for
performing program equivalence of program codes of different languages by using
artificial neural network (ANN). More specifically, we collected properties of the
control flow graphs and call graph, such as number of edges, number of nodes and
number of functions, and we used an ANN to discover the degree of similarity
of the program languages based on the collected properties.

The rest of the paper is structured as follows. Section 2 discusses the related
works on program equivalence. Section 3 describes our proposed method by
characterizing the properties extraction of program languages and by showing
the application of an artificial neural network to discover the degree of similarity
of the program languages. Section 4 presents the empirical evaluation of the
method presented, followed by our concluding remarks.

2 Related Works

There are not many contributions related with program equivalence in the lit-
erature. However, there were works for verifying and analyzing of source and
binary codes that may assist in achieving the proposed approach.

Quinlan et al. [3] proposed a framework for software defects verification (bi-
nary or source). However, it does not compare source and binary codes. Hassan
et al. [4] observed that the architecture of some programs is intrinsically re-
lated with the their source and binary codes. They used two types of extractors:

640 T.M. Nascimento et al.

a transfer control extractor of a code binary (LDX) and a label extractor of a C
source code (CTAGX). After the extraction process, they conducted a compari-
son of the obtained results in order to infer the software architecture. Hatton [5]
investigated the defect density as a relationship between a binary code and a
source code. For so, he used the size (number of rows) of the source code and
its defect per 1,000 lines to seek the relationship with the binary code. Neither
of these works addresses the program equivalence problem.

Buttle [6] utilizes the program logical structure (control flow graph) of the
binary code to match with the program logical structure of the source code. We
also use program flow characteristics to match binary codes, however, in our
approach other relationships that may coexist between source and binary codes
in order to obtain a better matching were considered.

On a tangential direction there has been significant work in binary differing
with the intent to review sequential versions of the same piece of software, to
analyze malware variants of the same high-level language and to analyze security
updates [7,8]. Most of these works use graph matching to compare the binaries.
A good summary of these works may be found in [9], which also introduces
anti-differing techniques with the intent to thwart algorithms based on graph
matching. Research results from differing binaries [7,8,9], may thus be borrowed
for the program equivalence problem for analogous constraints.

Some contributions in security use neural networks for cryptography ap-
proaches. A new digital image encryption algorithm using neural networks is
presented in [10]. Such algorithm employs a hyper-chaotic cellular neural net-
work using chaotic characteristics of dynamic systems.

Artificial intelligence based methods for software validation, verification and
reliability can be found on the literature. The approaches in [11] and [12] propose
the use neural networks for software reliability prediction. The former uses the
prediction for software defects fix effort, while the second the prediction system
is based on neural network ensembles. In [13], a neural network is used to predict
a fault-prone module in a web application. In [14], a self-organizing system for
reliability of modules is constructed.

The use of artificial neural networks was previously considered in [15], which
described a method for verifying the correspondence between source and binary
codes using artificial neural networks. The approach described in this paper
improves upon that work by refining the extracted properties and by applying
the method for program equivalence of distinct languages.

3 Proposed Approach

Our approach for program equivalence involves two steps. In the first step, we
use software tools to extract characteristics of distinct program languages. Such
characteristics could be simple ones, such as size, or more sophisticated ones, such
as those derived from the control flow graphs or call graphs. In the second step,
we use a nonlinear nondeterministic classifier to determine the correspondence
of the program languages. In this section, we show how this approach was put in

Program Equivalence Using Neural Networks 641

practice with the use of four characteristics (size, number of procedures, number
of nodes of control flow graph and number of edges of control flow graph) and
an artificial neural network as classifier.

3.1 Extraction Process

In the compilation process there is a lot of lost information that should be taken
into account when designing a program equivalence approach. The amount of
available information of the compiled code is platform and compiler-specific. In
the following, we mention some properties regardless of the source and binary
codes, which may be explicitly or implicitly available, in order to give insights
about the complexity of designing a program equivalence method.

Considering the fact that most embedded softwares are written in imperative
language, properties such as variable names, variable types and procedure names
may be lost during the compilation process since the compiler goal is to maximize
the performance. This process normally decreases the legibility of the binary
code, so representing low confidence for the mentioned properties to use in our
program equivalence problem.

Data contents are not explicitly available in the source and binary codes.
Nonetheless, these contents may be computed by data-flow analysis. The scope
of the data-flow analysis for source and binary is faintly different. In the source
code, the scope is at the variable level, meanwhile, in the binary code it is
at memory and registers. This difference certainly increases the number of in-
structions contained in the binary in comparison to the respective number of
the source code. Besides being positive for compiler data optimizations since it
tracks fine-grained transitions, it requires more memory to analyze more code
lines. Since the extraction of this property is complex, it is not suitable for our
program equivalence problem.

The control sequentiality is certainly kept in the binary, albeit, its tree of
execution is not clearly structured as such in the source code. A good summary
of algorithms to structure the control sequentiality may be found in [16]. The
control sequentiality describes the program logic of a certain code, and it can be
characterized by call graphs and the individual function flow graphs. The call
graphs show the caller-callee relationship. The individual function flow graphs
represent the basic blocks and its flow of information based on conditional and
unconditional branches.

The characteristics used in our program equivalence method are based on
the program logic of the code (control sequentiality). These characteristics are
number of nodes, edges and functions. The sizes in bytes of the codes were also
used in our method. The sizes of the codes were obtained in a straightforward
manner, however, the number of nodes and edges of the control flow graph
for the source code were obtained by using a shell script that counted these
properties. Such a control flow graph of the source code was built from the Gnu
Compiler Collection with the parameter “fdump-tree-cfg”. For the extraction
of the same characteristics from the control flow graph in the binary code, we
used an idapython script over the IDA disassembler [17]. The number of the

642 T.M. Nascimento et al.

functions for the source codes and binary codes were extracted from the call
graphs, generated by the GNU cflow [18] tool for the source code and by the
IDA disassembler for the binary code.

3.2 Artificial Neural Network

The fundamental point in program equivalence is to establish an association
of the program languages by linking their intrinsic logical characteristics. For
such, it is fundamental to find an efficient approach that combines the four
different parameters extracted from logical program code (number of nodes,
edges, functions, and the sizes of the codes (in bytes)).

At first analysis, some linear separation methods could be investigated to solve
this problem. However, as will be shown in the further sections, this problem
is both nonlinear and highly complex to solve using a linear method. For these
reasons, we examine the use of artificial neural networks.

Neural networks, with their remarkable ability to derive meaning from compli-
cated or imprecise data, can be used to extract patterns and detect trends that
are too complex to be noticed by either humans or other computer techniques.
A trained neural network can be thought of as an “expert” in the category
of information it has been given to analyze. Obviously, there are many kinds
of Back-propagation networks applied to a large set of different problems, like:
classification, recognition, prediction and others.

In this work, the main focus will be on neural networks applied to the clas-
sification problem. For that, we propose the use of Cascade-Forward Back-
propagation Neural Networks, since they are widely used in this context
[19,20,21]. In the next section, the details of neural network implementation
will be presented.

Neural Network Implementation. To design a neural network, four char-
acteristics (number of nodes, edges, functions, and the sizes of the codes (in
bytes)) were fed into the input nodes of the one fully-connected cascade forward
network using the Back-propagation training procedure [22]. From the empirical
analysis, the best neural configuration was built with two neurons in the hidden
layer. For the output layer, only one neuron was used (see Figure 1).

In order to simulate the neural network, the Matlab Neural Network Tool-
box [23] was used. The selected activation function for the neurons was the
hyperbolic tangent sigmoid. The target vector for the training phase was de-
fined by establishing a target value of 1 when the input parameters represent
equivalent codes (called class of true association), otherwise the target value was
set to -1 (called class of false association).

4 Experimental Evaluation

We now present the results of an empirical evaluation for mapping equiva-
lent codes written in distinct languages. Three evaluations were performed:

Program Equivalence Using Neural Networks 643

Fig. 1. Neural Network Topology

1) evaluation of malware modified binaries, 2) evaluation of binaries of different
platforms and 3) evaluation of binaries generated from different compilers.

For all the evaluations, the percentage used for training phase was ≈70% and
the remaining samples were used to verify the capacity of generalization of the
ANN. We studied the improvements of our method by comparing it against Sup-
port Vector Machine (SVM) — a technique typically applied to the construction
of classifiers [24,25]. Our empirical evaluation shows that our method produces
more precise results than SVM.

4.1 Evaluation of Malware Modified Binaries

Since most malwares are predominant for Windows environment, we performed
the evaluation in this environment. Before starting to infect the system in order
to extract the characteristics of the infected codes, we established some security
policies to avoid malware dissemination. We setup an isolated machine for the
malware infection and characteristics extraction. The extracted characteristics
of the infected codes were used to build the set of false association.

For this evaluation, we collected 94 source codes, taken from [26,27] and com-
piled them using the gcc compiler of Windows platform. Figure 2 shows the
training set of true association, i.e., characteristics extracted from 70 pairs of
correlated source and binary codes. The 24 remaining were utilized in the eval-
uation phase. The histograms show the distribution of the normalized variables:
edges, nodes, functions and size, respectively, in the x-axis and their frequency
in the y-axis. The control flow graph characteristics (edges and nodes) were fed
into input #1 and input #2 of the ANN, respectively. The number of functions
(extracted from the call graph) was fed into input #3, and the size into input
#4. All the characteristics were correlated by subtracting the source code char-
acteristic from the binary code characteristic except for the size characteristic,
in which a division was applied. Before inputing such parameters into the ANN,

644 T.M. Nascimento et al.

a normalization step was necessary since our ANN only accepts values in the
interval [-1,1]. The normalization of the parameters was calculated by dividing
all data of each parameter by the largest value of the same parameter.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70
Edges

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70
Nodes

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70
Functions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70
Bytes

Fig. 2. Training set of the true association using correlated binary and source codes

The false association was created by infecting the 94 codes with four mal-
wares (Virus.Cabanas.a, Virus.Win32.NGVCK.1003, Virus.Win32.Qudos.4250,
Virus.Win32.Artelad.2173). Figure 3 shows the training set of false association
using characteristics extracted from 280 infected samples (70 for each malware),
in which the characteristics were correlated by subtracting the source code char-
acteristic from the infected binary code except for the size characteristic, in
which a division was applied. All the characteristics were normalized before in-
puting into the ANN. The 96 remaining infected samples were utilized in the
evaluation phase.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

Edges

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70
Nodes

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70
Functions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70
Bytes

Fig. 3. Training set of the false association using malware modified binaries

Figures 4 and 5 show the sets utilized for the evaluation of the ANN. Table 1
shows the neural network results with respect to the number of hits and mis-
takes for both classes (true and false association). The data shows ≈4% (4/96)
false positives and ≈37% (9/24) false negatives. The results of our approach are
promising since the program equivalence is mainly concerned with a low rate of
false positives.

Table 1. Neural network results of the evaluation of malware modified binaries

Class True association False association

True association 15 9
False association 4 92

Program Equivalence Using Neural Networks 645

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Edges

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Nodes

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Functions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Bytes

Fig. 4. Evaluation of the ANN using correlated binary and source codes

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Edges

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Nodes

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Functions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Bytes

Fig. 5. Evaluation of the ANN using non-correlated binary and source codes

We compare the results of our proposed ANN with the results achieved using
a Support Vector Machine (SVM). The classifier used was a two-norm and soft-
margin SVM. The kernel function that maps the training data into kernel space
was linear and the method to find the separating hyperplane was quadratic
programming. However, the SVM did not converge to any separating hyperplane
for the training sets exhibited in Figures 2 and 3. However, using only one
malware (Virus.Cabanas.a) for the false association we found a division of the
4d-space — that is, a 3-d hyperplane that divides the 4-d space into two semi-
spaces. In this experiment, the SVM correctly identified 19 among the 24 pairs
of corresponding codes, with 7/23 (≈30%) ratio of false positives. Observe that
the SVM method achieved a reasonable accuracy regarding the identification of
corresponding codes (exactly the same 19/24 as the ANN), but with a much
higher number of false positives (7/23 against the 1/24 ratio of the ANN).

4.2 Evaluation of Binaries of Different Platforms

For this evaluation, we compiled 81 source codes using both gcc compiler on the
Windows environment and gcc compiler on a Linux-like environment to build the
true association. Figure 6 shows the training set of true association, i.e., charac-
teristics extracted from 60 pairs of correlated Windows binary and Linux binary.
The 21 remaining were utilized in the evaluation phase. The normalization and
extraction processes are analogous to the ones of the previous evaluation.

Figure 7 shows the training set for the false association, created naively by
random values. Figures 8 and 9 show the sets utilized for the evaluation of the
ANN. Table 2 shows the neural network results with respect to the number of
hits and mistakes for both classes (true and false association). The data shows
≈9% (2/21) false positives and zero false negatives. We used the same training
sets exhibited in Figures 6 and 7 to feed the SVM. The SVM correctly identified

646 T.M. Nascimento et al.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 11
0

10

20

30

40

50

60
Edges

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60
Nodes

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60
Functions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60
Bytes

Fig. 6. Training set of true association using correlated binaries of different platforms

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60
Edges

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60
Nodes

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60
Functions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60
Bytes

Fig. 7. Training set of the false association using non-correlated binaries of different
platforms

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Edges

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Nodes

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Functions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Bytes

Fig. 8. Evaluation of the ANN using correlated binaries of different platforms

Table 2. Neural network results of the evaluation of binaries of different platforms

Class True association False association

True association 21 0
False association 2 19

all the 21 pairs of corresponding codes as the results of our ANN, with 3/21
(≈14%) ratio of false positives against 2/21 ratio of our ANN approach.

4.3 Evaluation of Binaries Generated from Different Compilers

For this evaluation, we compiled 83 source codes using the gcc compiler and the
Borland C++ compiler, both on the Windows environment. Figure 10 shows the
training set of true association, i.e., characteristics extracted from 63 pairs of
correlated binary generated from the compilers above. The 20 remaining were
utilized in the evaluation phase. The normalization and extraction processes are
analogous to the ones of the previous evaluation.

Figure 11 shows the training set for the false association, created naively by
random values. Figures 12 and 13 show the sets utilized for the evaluation of the
ANN. Table 3 shows the neural network results with respect to the number of

Program Equivalence Using Neural Networks 647

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Edges

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Nodes

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Functions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Bytes

Fig. 9. Evaluation of the ANN using non-correlated binaries of different platforms

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60 # Edges

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60
Nodes

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60
Functions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60 # Bytes

Fig. 10. Training set using correlated binaries generated by different compilers

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60
Edges

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60
Nodes

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60
Functions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60 # Bytes

Fig. 11. Training set using different non-correlated compiled binaries

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Edges

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Nodes

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Functions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Bytes

Fig. 12. Evaluation of the ANN using correlated binaries generated by different
compilers

Table 3. Neural network results of the evaluation of binaries compiled with distinct
compilers

Class True association False association

True association 19 1
False association 1 19

hits and mistakes for both classes (true and false association). The data shows
5% (1/20) false positives and 5% (1/20) false negatives. We used the training sets
exhibited in Figures 10 and 11 to feed the SVM. The SVM correctly identified
18/20 pairs of corresponding codes against 19/20 of our ANN, with 10/20 (50%)
ratio of false positives against 1/20 ratio of our ANN approach.

648 T.M. Nascimento et al.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Edges

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Nodes

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Functions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
Bytes

Fig. 13. Evaluation of the ANN using non-correlated binaries generated by different
compilers

5 Conclusions

This paper deals with the issue of program equivalence of different languages
— including high-level and low-level languages. The problem is fundamental for
software validation: since the software evaluation is frequently based on source
code analysis, it is important to guarantee that the compilation process did not
introduce security flaws, backdoors or unwanted behaviors.

In the present work, we tackle the problem of program equivalence by extract-
ing meaningful characteristics of program codes, obtaining such characteristics
from program call graphs and control flow graphs. We use such characteristics to
feed a nondeterministic classifier that decides whether a binary code corresponds
to a given source code or whether a binary corresponds to another binary of a
different platform or compiler. The originality of our approach lies on the extrac-
tion of characteristics of the call graphs and control flow graphs of the program
codes, and on the use of an artificial neural network to decide the legitimacy of
a binary code based on those characteristics. The performance of the proposed
approach is well characterized through an experimental evaluation that, besides
confirming a very low rate of false positives (considered as a basic requirement),
also provides a reasonable amount of false negatives.

It could be argued that the proposed approach would not work in detecting
simple binary code modifications that do not alter call graphs and control flow
graphs, such as a change of a constant. We observe, however, that such modifica-
tion would be immediately noted by the conventional functional tests performed
on devices under verification. The kind of modification that our approach pro-
poses to encounter is more subtle. For example, a malicious manufacturer could
leave a backdoor that when activated transfers the execution control to a mali-
cious behavior. Such a malicious modification would hardly be noticed by func-
tional tests. However, it would not be possible for the manufacturer to include
a backdoor without modifying the call graph and the control flow graph of the
binary code. This makes the malicious modifications exactly the ones amenable
to our approach based on call graph and control flow graph parameters.

An open question in the proposed approach, and the subject of ongoing re-
search, concerns the necessity of also considering obfuscated codes during the
training phase, to better understand its implications. For example, control-flow
obfuscation alters the flow of control of the application by reordering state-
ments, procedures, loops, obscuring flow of control using opaque predicates and

Program Equivalence Using Neural Networks 649

replacing transfer flow instructions. Using such obfuscation some properties used
in our approach may change, so violating our results. Other possible avenues of
research involve merging our current technique with data-flow strategies to cir-
cumvent attacks such as modification of variable contents. Finally, in future
works we plan to investigate which other graph invariants — crossing number,
cycle covering, chromatic number etc. — are meaningful to improve the corre-
spondence of codes written in different languages.

References

1. Thompson, K.: Reflections on trusting trust. Commun. ACM 27(8), 761–763 (1984)
2. McDonald, J.: Delphi falls prey (2009),

http://www.symantec.com/connect/blogs/delphi-falls-prey (last accessed
October 2009)

3. Quinlan, D., Panas, T.: Source code and binary analysis of software defects. In:
CSIIRW 2009: Proceedings of the 5th Annual Workshop on Cyber Security and
Information Intelligence Research, pp. 1–4. ACM, New York (2009)

4. Hassan, A.E., Jiang, Z.M., Holt, R.C.: Source versus object code extraction for re-
covering software architecture. In: WCRE 2005: Proceedings of the 12th Working
Conference on Reverse Engineering, pp. 67–76. IEEE Computer Society, Washing-
ton, DC (1995)

5. Hatton, L.: Estimating source lines of code from object code. In: Windows and
Embedded Control Systems (2005),
http://www.leshatton.org/Documents/LOC2005.pdf

6. Buttle, D.L.: Verification of Compiled Code. PhD thesis, University of York, UK
(2001)

7. Wang, Z., Pierce, K., McFarling, S.: Bmat - a binary matching tool for stale profile
propagation. The Journal of Instruction-Level Parallelism (2002)

8. Flake, H.: Structural comparison of executable objects. In: Proc. of the Conference
on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA).
IEEE Computer Society (2004)

9. Oh, J.: Fight against 1-day exploits: Diffing binaries vs anti-diffing binaries. In:
Blackhat Technical Security Conference (2009)

10. Zhenga, J.: A digital image encryption algorithm based on hyper-chaotic cellular
neural network. Journal Fundamenta Informaticae (2009)

11. Zeng, H., Rine, D.: A neural network approach for software defects fix effort esti-
mation. In: IASTED Conf. on Software Engineering and Applications, pp. 513–517
(2004)

12. Zhenga, J.: Predicting software reliability with neural network ensembles. Expert
Systems with Applications (36), 2116–2122 (2007)

13. Reddy, C.S., Raju, K.V.S.V.N., Kumari, V.V., Devi, G.L.: Fault-prone module
prediction of a web application using artificial neural networks. In: Proceeding
(591) Software Engineering and Applications (2007)

14. Lenic, M., Povalej, P., Kokol, P., Cardoso, A.I.: Using cellular automata to predict
reliability of modules. In: Proceeding (436) Software Engineering and Applications
(2004)

15. Boccardo, D.R., Nascimento, T.M., Machado, R.C., Prado, C.B., Carmo, L.F.R.C.:
Traceability of executable codes using neural networks. In: Proceedings of the In-
formation Security Conference (2010) (to appear)

http://www.symantec.com/connect/blogs/delphi-falls-prey
http://www.leshatton.org/Documents/LOC2005.pdf

650 T.M. Nascimento et al.

16. Moretti, E., Chanteperdrix, G., Osorio, A.: New algorithms for control-flow graph
structuring. In: CSMR 2001: Proceedings of the Fifth European Conference on
Software Maintenance and Reengineering, p. 184. IEEE Computer Society, Wash-
ington, DC (2001)

17. IdaPro: Ida pro - disassembler (2010), http://www.hex-rays.com/idapro/ (last
accessed January 2010)

18. Poznyakoff, S.: Gnu cflow (2010), http://savannah.gnu.org/projects/cflow

(last accessed January 2010)
19. Ciocoiu, I.B.: Hybrid feedforward neural networks for solving classification prob-

lems. Neural Processing Letters 16(1), 81–91 (2002)
20. Asadi, R., Mustapha, N., Sulaiman, N.: New supervisioned multi layer feed forward

neural network model to accelerate classification with high accuracy. European
Journal of Scientific Research 33(1), 163–178 (2009)

21. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall (1998)
22. Hertz, J.A., Krogh, A.S., Palmer, R.G.: Introduction to the Theory of Neural

Computation. Addison-Wesley, Redwood City (1991)
23. Moler, C.B.: MATLAB — an interactive matrix laboratory. Technical Report 369,

University of New Mexico. Dept. of Computer Science (1980)
24. Men, H., Wu, Y., Gao, Y., Kou, Z., Xu, Z., Yang, S.: Application of support vector

machine to heterotrophic bacteria colony recognition. In: CSSE (1), pp. 830–833
(2008)

25. Angulo, C., Ruiz, F., González, L., Ortega, J.A.: Multi-classification by using tri-
class svm. Neural Processing Letters 23(1), 89–101 (2006)

26. Burkard, J.: C software (2010), http://people.sc.fsu.edu/~burkardt/ (Last ac-
cessed January 2010)

27. Oliveira Cruz, A.J.: C software (2010),
http://equipe.nce.ufrj.br/adriano/c/exemplos.htm (last accessed January
2010)

http://www.hex-rays.com/idapro/
http://savannah.gnu.org/projects/cflow
http://people.sc.fsu.edu/~burkardt/
http://equipe.nce.ufrj.br/adriano/c/exemplos.htm

	Program Equivalence Using Neural Networks
	Introduction
	Related Works
	Proposed Approach
	Extraction Process
	Artificial Neural Network

	Experimental Evaluation
	Evaluation of Malware Modified Binaries
	Evaluation of Binaries of Different Platforms
	Evaluation of Binaries Generated from Different Compilers

	Conclusions
	References

