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Abstract. Much research has been concerned with the notion of bottom-
up saliency in visual scenes, i.e. the contribution of low-level image fea-
tures such as brightness, colour, contrast, and motion to the deployment
of attention. Because the human visual system is obviously highly opti-
mized for the real world, it is reasonable to draw inspiration from human
behaviour in the design of machine vision algorithms that determine re-
gions of relevance. In previous work, we were able to show that a very
simple and generic grayscale video representation, namely the geometric
invariants of the structure tensor, predicts eye movements when view-
ing dynamic natural scenes better than complex, state-of-the-art models.
Here, we moderately increase the complexity of our model and compute
the invariants for colour videos, i.e. on the multispectral structure tensor
and for different colour spaces. Results show that colour slightly improves
predictive power.
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1 Introduction

The human visual system uses a sophisticated approach to efficiently cope with
the vast amounts of data that enter the eye and which need to be processed
in real time. Only information from a small central fraction of the visual field,
the fovea, is processed at high spatial resolution; more peripheral information
is processed only at a very coarse scale and is used mainly for action guidance.
One particular problem that the human vision system seems to solve surprisingly
well is then when and where to direct the fovea via eye movements to sample all
relevant aspects of a visual scene.

Early work found that fixated image regions differed from non-fixated regions
in their low-level features such as contrast [10] or higher-order statistics [7].
Nevertheless, it is still a matter of debate whether these altered image statistics
at fixation are actually causal of eye movements [4], or whether it is high-level
objects that draw attention [3].

For machine vision applications and systems, however, the distinction between
a causal and a mere correlative contribution of saliency to eye movement guid-
ance is rather philosophical. It is safe to assume that the human visual system
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is highly optimized for the real world, and thus mimicking its performance will
find the most informative regions in a scene. Consequently, many models have
been developed for saliency on both static images and videos [6,5,8,13]. Typi-
cally, these models first extract a range of biologically-inspired low-level features,
such as brightness, colour, contrast, orientation, and motion on multiple spatio-
temporal scales, and then fuse this information into a single saliency map that
assigns a single value of “interestingness” to each image location.

Contrary to these often complex models with a high number of parameters,
in previous work we have successfully modelled eye movements using a simple
and very generic video representation: the geometric invariants of the structure
tensor that capture the amount of spatio-temporal intensity variation [11]. Based
on these invariants, we can derive the intrinsic dimensionality of the video, that
is the number of degrees of freedom that are used locally. For example, at a
stationary edge, the signal changes in only one spatio-temporal direction (or-
thogonal to the edge), and thus edges constitute i1D regions; transient corners,
on the other hand, change in all directions and are therefore i3D. One impor-
tant finding is that the predictive power increases with intrinsic dimensionality:
in other words, corners are more informative than edges, and transient features
are more informative than their stationary counterparts. A further, surprising
finding is that prediction based on this generic video representation outperforms
complex state-of-the-art models [12].

So far, the geometric invariants were only computed in grayscale on the luma
channel. In the following, we shall compute the invariants on a multispectral
structure tensor in order to investigate whether the incorporation of colour in-
formation can improve eye movement predictability in dynamic natural scenes.

2 Methods

2.1 The Multispectral Structure Tensor

To estimate the intrinsic dimension of a given video region Ω, we choose a linear
subspace E ⊂ R

3, of highest dimension, such that

∂f

∂v
= 0 for all v ∈ E,

with the intrinsic dimension of f = 3 − dim(E) [9]. E can be estimated as the
subspace spanned by the set of unity vectors that minimize the energy functional

ε(v) =

∫
Ω

∣∣∣∣∂f∂v
∣∣∣∣
2

dΩ = vT Jv,

where the structure tensor J [1] is given by

J =

∫
Ω

∇f ⊗∇fdΩ
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with the tensor product ⊗. Alternatively, we can then write

J = ω ∗
⎛
⎝fxfx fxfy fxft

fxfy fyfy fyft
fxft fyft ftft

⎞
⎠

with a spatio-temporal lowpass filter kernel ω and partial derivatives fx, i.e. fx =
∂f/∂x. Therefore, E is the eigenspace associated with the smallest eigenvalue
of J , and the intrinsic dimension of f corresponds to the rank of J . Instead of
performing an eigenvalue analysis, the intrinsic dimension can also be obtained
from the symmetric invariants of J :

H = 1/3 trace(J) = λ1 + λ2 + λ3 (iD ≥ 1)
S = |M11|+ |M22|+ |M33| = λ1λ2 + λ2λ3 + λ1λ3 (iD ≥ 2)
K = |J | = λ1λ2λ3 (iD = 3).

For a multispectral image sequence, we look for the subspace E of highest
dimension such that, in Ω,

∂f

∂v
= 0 for all v ∈ E.

Note that f is now a vector from R
q (for an image sequence with q colour

channels), so we choose an appropriate scalar product for y = (y1, . . . , yq) and
z = (z1, . . . , zq) such that y ·z =

∑q
k=1 akykzk, with positive weights ak that can

be used to assign higher importance to certain colour channels, and we arrive at
the multispectral structure tensor

J =

∫
Ω

⎡
⎣ ‖fx‖2 fx · fy fx · ft

fx · fy ‖fy‖2 fy · ft

fx · ft fy · ft ‖ft‖2

⎤
⎦dΩ.

In our implementation, we chose 5-tap spatio-temporal binomials for ω and for
smoothing the video sequence before taking the derivatives, and J was computed
for a spatio-temporally downsampled version of the original video (factor four
in space and time). Saliency was then determined as the average energy of the
geometric invariants in an 8x8 pixel window around a location.

2.2 Colour Spaces

The colour space RGB is commonly used in computer graphics and stores images
with red, green, and blue components. Video formats, however, often exploit the
reduced colour resolution of the human visual system and thus our original
videos had been recorded in the Y ′CbCr format with one luma and two chroma
channels (of halved resolution). When using Y ′CbCr directly, the dynamic range
of the luma channel is much larger than that of the chroma channels, and the
contribution of colour to JY′CbCr is small. We therefore computed the standard
deviation of each channel in our set of videos (Y ′: 124.8; Cb: 39.7; Cr : 44.9)
and used their inverse for the weights ay, acb, acr to obtain the colour space
Y ′CbCr weighted. As a baseline, we computed the invariants in grayscale on the
Y ′ channel only.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Example frames for colour saliency. a) Invariant H computed on the luma chan-
nel only (inverted for legibility). b) Original video frame. c) H on JRGB. d) Absolute
difference between a) and c). Even though colour information is represented in RGB,
the difference is small. e-f) H on JY′CbCr weighted and absolute difference to a).

2.3 Experimental Data

We used a large eye movement database of about 40000 saccades obtained from
54 subjects watching 18 high-resolution movies (1280 by 720 pixels, 29.97 fps,
about 20 s duration each) described in detail elsewhere [2]. For a set of negative
examples, we did not generate random data, but shuffled scanpaths on different
movies in order to keep the spatio-temporal distribution of positive and negative
samples over all movies constant. These samples were then classified with a
Maximum Likelihood classifier based on one of the invariants.

3 Results

The ROC scores for the geometrical invariants H , S, and K on the multispectral
structure tensor for different colour spaces are shown in Fig. 2. We can replicate
the previous result that regions with higher intrinsic dimensionality are also
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Fig. 2. ROC scores for eye movement predictability of the geometrical invariants of
the multispectral structure tensor in different colour spaces. The higher the intrinsic
dimension, the higher the predictability (K > S > H); saliency on colour video predicts
eye movements better than on grayscale video (Y ′).

more predictive of eye movements (K > S > H). Furthermore, the inclusion of
colour information improves predictive power, but only slightly. The differences
between the different colour spaces are very small, except for the invariant K on
RGB, which performs worse even than the grayscale K.

4 Conclusion

We have previously found that a simple, generic model of spatio-temporal in-
tensity variation can predict eye movements on natural videos at least as well
as complex state-of-the-art models. In the present manuscript, we have incorpo-
rated colour information into our model while maintaining its conceptual sim-
plicity (but at increased computational cost). Results show that indeed colour
improves predictive power, but only moderately so. Whether this is due to a
ceiling effect or to a relatively small contribution of colour to eye guidance in
dynamic natural scenes remains to be determined. Future work will also incor-
porate further colour spaces, such as HSV, which is particularly sensitive for skin
colour, or the perceptually equidistant LAB space.
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