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Abstract. The communications industry is currently witnessing a continued 
increase in energy consumption, and this trend is predicted to increase even 
more in the coming years. This is largely driven by the popularity of the 
Internet, which continues to attract growing numbers of users who now rely on 
the Internet as part of their daily lives. A major factor behind this attraction is 
the multitude of services available on the Internet, ranging from web based 
services (e.g. facebook) to heavy power consuming services such as multimedia 
(e.g. youtube, IPTV). Therefore the data centres housing these services are 
seeing their energy consumption increase proportionally, now leading 
researchers to actively search for solutions to improve the energy efficiency of 
data centres. In this paper we propose a green data centre solution that makes 
data centres and services prioritise the usage of clean, renewable energy 
sources. The solution allows data centres to share information regarding 
renewable energy and cooling, in order to exploit variance between different 
countries energy and temperature profiles by moving services between data 
centres. We employ a genetic-algorithm to find the optimal placement of 
services on the data centres.  

Keywords: Green Data Centres, Energy Efficiency, Genetic Algorithm.  

1 Introduction 

In recent years there has been a growing focus on the impact of the internet, and more 
specifically data-centres, on the environment, in terms of their increasing energy 
usage. Figure 1(a) shows that from 2000-2006 the energy usage for data centres in the 
US [1] more than doubled. It also depicts the predicted trends up to 2010, 
extrapolated based on both the historical data and also based on recent trends towards 
energy efficiency, where both show huge increases in energy usage.  

While these trends do consider the impact of the move towards more energy 
efficient practices, they do not consider the impact that new technologies and 
computing models may have. For instance the growth in the usage of ‘smart’ phones 
in recent years has been exceptional. These phones are in essence resource limited 
computing platforms, where often times much of the processing is done in back-end 
service/application residing on the data-centre. Also, the recent move towards cloud 
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computing holds huge potential for increasing data centre usage. Cloud computing 
proposes to move all the majority of the application processing and data storage into 
the data centre, with ‘thin’ client devices running simple interfaces. These emerging 
trends suggest that data-centres could grow beyond what has been predicted, and 
continue this rate of growth into the future. At the same time, many countries are now 
actively pursuing more renewable sources of energy, through their own capital 
infrastructure projects or through grid feed-in tariff incentive schemes. This is 
illustrated in Figure 1(b), where we show the recent capacity increases in wind and 
solar energy within the EU states.  

 Based on these developments, our work attempts to address the problem of data-
centre energy usage by allowing data-centre operators to determine a service 
placement strategy with the best renewable and cooling energy profile. This in turn 
reduces the overall carbon footprint of the data centre operator. To do this we employ 
a genetic algorithm (GA) based service placement approach, where the GA 
determines the most optimal service/data-centres pairings to maximize data-centre 
usage of renewable energy sources and minimise cooling energy.  

 

 

Fig. 1. (a) Data Centre Energy Trends (b) Wind and Solar Capacity increases of EU countries 

2 Related Work 

There is now an array of work being carried out in the area of energy efficiency for 
data centres. Many of these approaches focus on moving or scheduling workload in 
some way to achieve greater energy efficiency. Many of these have looked at 
consolidating workloads on a minimum number of servers in order to allow certain 
servers to be switched off or sleep to save power [2][3][4][5]. In [6] biological 
mechanisms are used to determine more efficient servers in a data centre where load 
is subsequently moved. Other works investigate how to make the data centres more 
efficient by reducing the load on the cooling systems through better workload 
placement and scheduling within and between data centres [7][8][9][10][11]. A 
similar approach to ours is taken in [12], where traffic load is moved between data 
centres based on electricity costs rather than renewable energy. 
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3 Sustainable Energy Prioritization Solution 

In this section we introduce our proposed solution, outlining the service placement 
process and underlying genetic algorithm. Our goal is to place services on data 
centres in such a way as to maximise renewable energy usage and minimise cooling 
energy. The renewable energy consumption of a data-centre is measured through a 
value we call the renewable energy ratio (RER – Section 4), and this is used as a key 
metric in calculating the data centres which use more renewable energy. In terms of 
cooling, the ambient temperature of the country can have a significant effect on the 
efficiency of the cooling system. This efficiency is measured through a value termed 
the Coefficient of Performance (COP – Section 3.2) and so this value also plays a key 
role in calculating the data centres with the most energy efficient cooling. By using 
these values we can determine the best data-centres to place services on which will 
result in more renewable energy usage and lower cooling energy usage. 

3.1 GA-Based Service Placement 

The service placement process takes place in effectively three stages. Initially all data 
centres must co-ordinate and share information regarding their renewable and cooling 
energy usage levels, service usage details and data centre configuration information. 
This information forms the basis for our genetic algorithm to determine the fittest 
service configuration. In our solution the genetic algorithm is run periodically by a 
specific, pre-selected data centre (referred to as the GA-DC). However, for the 
purposes of redundancy each data centre is capable of running the algorithm and so 
the energy data is shared among all data centres. 

 

Fig. 2. Service Placement Process 
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As mentioned earlier the genetic algorithm will determine the most optimal 
service/data centre configuration, based on maximising the usage of renewable energy 
and minimising the consumption of energy in cooling the data centre. The genetic 
algorithm is described in detail in the following sections.  

Once the optimal configuration has been found, this configuration is disseminated 
to all data centres. Each data centre then examines this configuration and implements 
its recommendations. To do this the data centre determines which of its currently 
hosted services have been selected to move and to what data centre. Once ascertained 
the data centres then migrates the selected services to their newly designated data 
centre. Each data centre is notified of the change in order to update their information 
registries and so that requests for the service at the originating data centre will be 
forwarded to its new location.  

3.2 Genetic Algorithm 

We begin the discussion of our genetic algorithm by looking at the fitness function we 
will use to determine the best solution. The fitness function is composed of two parts, 
the renewable energy consumed and the cooling energy consumed. These are 
conflicting optimization goals, since the data centres with the best renewable energy 
ratio are not necessarily the data centres with the best environmental conditions for 
efficient cooling. Below (1) we present our approach for maximising the renewable 
energy consumed and minimising the cooling energy used. Let the set of services be 
Si = {s1, s2,...si...sN}, where N is the total number of services; the set of Data Centres 
be DCj={DC1, DC2,....DCj.....DCM}, where M is the total number of Data Centres. Let 
RERj be the Renewable Energy Ratio of data centre j, CEj be the Cooling Energy of 
Data Centre j, slij be the service load of service i on data centre j, and DCCj is the 
capacity of data centre j. In (1) below we present our fitness function which attempts 
to maximise the renewable energy consumed and minimise the cooling energy used. 
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To determine the renewable energy consumed we use the renewable energy ratio 
(RERj) of the data centre in question. The RER is the ratio of renewable energy 
production to total energy production in the data centres host country (see Section 4). 
This ratio gives us the best indication possible of what proportion of energy from 
renewable sources the data centre is consuming. However the quantity of renewable 
energy consumed is a factor of the load on the data centre also. As such we need to 
calculate the load exerted on the data centres by the service (sli). 

The cooling energy (CE) of a data centre is calculated based on heat load (HL) to 
be removed from the data centre subject to the efficiency of the cooling system (COP) 
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in removing this heat (see (3)). The heat load is directly related to the energy being 
consumed by the computing equipment, which is then converted to heat. As such we 
calculate the heat load by determining the power being used in the data centre. This is 
shown in (4) , where Pmax is the maximum power a single server consumes at peak 
load, Pidle is the power a single server consumes while idle (load = 0), sl is the load 
exerted on the server by a single service i and ns is the number of servers in the data 
centre. Since the idle power is consumed irrespective of server workload, the 
workload only impacts the power consumed above the idle power (Pmax – Pidle). 
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Before we discuss the COP in more detail, there are constraints on the GA which we 
must mention. The utilisation of the services assigned to a specific data centre cannot 
exceed the capacity of that data centre (2). In addition, a service must be assigned to 
only one data centre (especially important in crossover and mutation). 
 
Coefficient of Performance (COP) 
Critical to the calculation of the cooling energy fitness value is the Coefficient of 
Performance (COP) of each data centre. The COP value indicates the efficiency of the 
cooling system in removing the heat load from the data centre (5). A high COP means 
the thermodynamic process is more efficient.  
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Under the principles of thermodynamics [13], the efficiency of a typical heat pump is 
highly dependant on both the inside (target) temperature and the environmental 
(outside) temperature to which the removed heat is rejected. Therefore the greater the 
outside temperature is (for a set inside temperature) the more inefficient the system. 

In most cases, once the outside temperature drops below the indoor temperature air 
conditioning is typically not required. However in the case of data-centres, the 
primary heat load is not coming from heat transfer from the environment but rather 
the computing equipment, so cooling is still required. In line with best practices of 
data centre cooling, we design each data-centre with a free cooling system in addition 
to conventional cooling. Free cooling allows data-centres to utilize the outdoor 
environmental conditions to part, or even fully, cool the data centres when conditions 

Th = Outside Temperature 

Tc = Inside Temperature 
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allow. Typically this is when the outside temperature is below the indoor temperature, 
thus free cooling is also highly dependant on the weather conditions.  

As a result we employ a COP model based on the assumption that both free-
cooling and electric/mechanical-cooling are employed. Once the outdoor temperature 
is above the required cooling temperature, COP values based on standard electrical 
cooling are employed. However, when the outdoor temperature drops below the 
required indoor temperature we move to free cooling and adapt the COP model inline 
with the changeover. We do not subscribe to a specific free-cooling system, instead 
we generalize based on the assumption that free-cooling provides a significant 
improvement in efficiency of the cooling system. 

For our non-free cooling COP model we adopt COP values from the ORNL [14] 
heat pump simulator. For free cooling we simply adapt the values of the ORNL COP 
such that when the outside temperature drops below the inside temperature, we adjust 
the COP relative to the original COP value (e.g. +40%). This aims to represent that, 
once the outside temperature is cooler than inside, the free-cooling system is in 
operation. However we do not assume that free-cooling COP is uniform, as the energy 
required by a free-cooling system can vary depending on the extent by which the 
outside temperature is cooler than inside. For instance air-pumps may need to pump 
less air to cool the server room the cooler the outside temperature gets. So, using this 
model we can determine the COP based on the known outside and inside temperature. 

The next step in implementing our GA solution is to encode our problem into a 
chromosome representation. In essence each chromosome is required to represent a 
configuration of the entire set of services placed across the nine selected data centres. 
In our representation each gene represents a single service placed on a single data 
centre. Specifically, each gene contains two parts, the service in question and an 
ordered list of binary values indicating the data centre on which the service is placed. 
In this way we must first calculate the fitness of each individual gene, by examining 
the workload details of the service, and the details of the data centre on which it is 
placed. Once each gene’s fitness has been calculated we can then sum these values to 
determine the overall chromosome fitness. 

3.3 Genetic Algorithm Operation 

The algorithm begins by randomly creating a population of chromosomes subject to 
the constraints outlined before (2). Once the initial population has been generated, we 
calculate the fitness of each chromosome. Then, based on the elitism approach, we 
select the two fittest chromosomes to be carried forward to the next generation. In 
order to populate the remainder of the new generation, we select two parent 
chromosomes and perform crossover in order to generate new offspring 
chromosomes. We employ roulette wheel selection to choose the parents and then 
perform single point crossover to create the child chromosome(s). Again care must be 
taken when performing crossover, that the resulting chromosome(s) do not cause any 
data-centre to exceed its maximum capacity. In our algorithm mutation is carried out 
by simply changing one of the binary values representing the data centre on which a 
service resides. In other words this results in the service being placed on a different 
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data-centre than before, and again care must be taken to not break the constraints 
outlined. 

3.4 GA Evaluation 

In this section we perform some initial evaluations of the genetic algorithm itself, to 
ensure its correct operation. We vary the main GA parameters (population size, 
generations, crossover rate) as seen in the results presented in Figure 3.  

 

 

Fig. 3.  (a) - Varying Generation Size (b) Varying Population Size (c) Varying Crossover Rate 

We start by varying the number of generations for which the GA runs, as seen in 
Figure 3. As expected the greater the number of generations the better the overall 
result. The smaller generation size does obtain a reasonable fitness value quickly, but 
the 60 and 100 generation simulations are able to obtain higher values over time. 
Increasing the population size reduces the effects of randomness and gives a more 
diverse starting population. As expected, this leads to a stronger average population 
fitness, increasing in line with the population size increase. Finally, again as we 
would predict, higher crossover rates lead to more diversity in the populations and 
hence allow fitter, more optimal solutions to be found. At a low crossover rate we can 
see that the algorithm struggles to improve the population fitness since it is more 
difficult to breed new solutions from parents with higher fitness values. 

4 Case Study 

In order to properly present our solution we confine it to a fixed case study 
comprising a specific set of data centres and services, which will also be used later in 
the evaluation of our solution. We also specify the real temperature and energy data 
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we have obtained, which are used in the calculation of the fitness function. Nine data 
centres were selected from major European cities, including Dublin, London, Lisbon, 
Madrid, Milan, Athens, Amsterdam, Berlin and Copenhagen. These were chosen in 
an attempt to give a significant variation in both climatic conditions and sources of 
renewable energy used. 

 

Fig. 4. Case Study Configuration 

The data centres are connected in a network topology as depicted above, in line 
with the European Optical Network. The size of each data centre is determined by the 
number of servers it contains, which is relative to the population of the host country. 
Core to the approach taken in this paper is the use of real energy and weather data for 
the countries where the data centres reside. In line with this we have carried out a 
detailed search for data relating to the renewable energy production of each data 
centre host country, as well as temperature variations for a period covering January 
2007 to December 2009. The energy production values, as described subsequently, 
are taken from [15].  

 

Fig. 5. (a) Renewable Energy Production, (b) Renewable Energy/Total Production Ratio 

In Figure 5(a) we show the total renewable production for each of the selected data 
centres countries over the aforementioned period. Instinctively the larger countries 
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will have greater volumes of renewable energy production (e.g. Germany and Spain), 
with the country’s policy for sustainable growth also affecting capacity values. Other 
factors, such as weather conditions and capacity increases account for variations in 
the values from month to month. In Figure 5(b) we present the renewable energy 
values as a fraction of the overall energy production of the data-centres home country. 
This gives a clearer representation of the countries with the most energy production, 
and hence those that are more desirable candidates for services to migrate to. In terms 
of the temperature variations of each country/data centre, we used data from the 
European Climate Assessment & Dataset (ECA&D) [16] project, recording real 
temperature data from across Europe. Also, in order to calculate the cost impact on 
data centres we also used the real energy unit price as reported by the European 
Commission (Eurostat [17]). 

5 Simulation and Results 

In the following section we perform a case study simulation of the potential 
renewable energy gains possible for a small sized data centre operator, based on the 
genetic algorithm and scenario outlined in the previous sections. The operator runs 
nine data centres distributed as seen in Figure 4. Within each of these data centres 
there are a varying number of servers (8-200) and services (16-400), proportionate to 
the population of the country. In terms of the server specifications, we stipulate a 
standardized server across all data centres with a maximum power draw (Pmax) of 
400w and an idle power draw (Pidle) of 150w. To represent the workload exerted on 
the server, each service is randomly assigned a value that denotes how much of the 
servers processing capability it is using. This value effectively represents each 
services utilisation at a given time. In this work we keep the request rate uniform (i.e. 
we do not alter the service workload values) in order to allow clear comparisons in the 
evaluation of our solution. The request does vary between data centres however, 
proportionate to the population of the host country. 

The simulation runs over 23 simulated months where the evaluation of data 
centre/service configurations by the GA takes place each month.  In our simulations 
we compare our proposed approach using the genetic algorithm to the scenario where 
services remain statically on their allocated data centre. In the static case services are 
allocated relative to the size of the data centre and remain there throughout the course 
of the simulation. In Table 1 we show the parameters used for our simulations.  

Table 1. Simulation Parameters 

Parameter Value 
Population Size 100 
Mutation Rate .7 
Crossover Rate .1 
# Generations 60 
Free-Cooling Efficiency +40% 
α 0.5 
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In Figure 6(a) we present the overall quantity of renewable energy used when 
employing both the genetic algorithm approach and the static approach. As you can 
see the GA based solution out performs the static solution. In this case the GA 
utilises, on average, 15.9% more renewable energy than static services which 
accounts for approximately 1566MWh of electricity. The overall energy usage (of IT 
equipment) remains constant for both solutions, indicating that the GA did not 
increase the renewable quantity simply by increasing the total energy utilisation. 

 

 

Fig. 6. (a) Total Renewable Energy (b) Renewable Energy per Data Centre 

In Figure 6(b) we break this renewable energy usage down according to the 
individual data-centre usage. As expected, the change in the level of renewable 
energy used varies from data-centre to data-centre, depending on it’s renewable ratio. 
Many data centres (e.g. Lisbon, Copenhagen, Berlin) increase their renewable usage 
while others (e.g. London, Milan, Athens) perform worse, using more fossil-fuel 
based energy. Increases in renewable energy are as a result of more favourable 
conditions (i.e. higher renewable ratios) in that country and vice versa. We can see a 
strong correlation here with the utilisation as indicated in Figure 8, as data centres that 
increase utilisation also increase renewable enregy utilisation, while those with lower 
utilisation decrease renewable usage. Correlation can also be seen with the renewable 
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ratios in Figure 5(b), as those with generally higher renewable ratios gain renewable 
while those with lower ratios again perform worse.  

 

 

 

Fig. 7.  (a) Total Cooling Energy (b) Cooling Energy per DC (c) COP per DC 

In Figure 7(a) we present the total cooling energy used by both the genetic 
algorithm and static simulations. In the fitness function we aim to minimize the 
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cooling energy expended, where cooling energy is directly proportionate to the COP 
of the data centre and the load exerted on the data centre. Savings in cooling energy 
are made by moving load to countries with lower temperatures and hence better COP 
values. If there is no significant variance in the temperatures of the countries then 
there is little opportunity to make significant savings.  

 

Fig. 8. Utilisation per DC 

In Figure 7(c) we can see that, during the winter periods the COP values for each 
data centre are very close and so the savings observed are very small. During the 
summer periods the COP values begin to diverge and so the GA can find service 
placements that can provide energy savings. In general however the savings observed 
for cooling energy are small (at best 3% for months 6-8), and this is due to the 
geographic proximity of the data-centres. In Figure 7(b) cooling energy values for 
each individual data centre are shown. Again there is a strong correlation here with 
the utilisation values in Figure 8, where DCs with higher utilisation will see higher 
cooling energy. The cooling energy values may appear somewhat counter-intuitive at 
first, given that the data-centres with the best COPs generally show increased cooling 
energy values for the GA (e.g. Dublin, Copenhagen, Berlin). However, given that the 
data centres with the best COP values are targeted for service placement, this will lead 
to increased utilisation and hence increased cooling energy usage. Since these have 
the most efficient cooling conditions, the cooling cost is lower than on those data 
centres with higher COPs for the same load. In other words, by removing load from 
lower-efficiency data centres and placing it on more efficient data centres we reduce 
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the cooling energy consumed. There are some exceptions though, such as London and 
Amsterdam, who generally have good COP values but their cooling values do not 
necessarily reflect this. However we must consider the effects of the renewable aspect 
of the fitness function. Dublin, Copenhagen and Berlin also have good or very good 
renewable energy ratios, which make them more attractive for placement (i.e. higher 
fitness) while London and Amsterdam have poor or very poor renewable values. This 
offsets the effect of a positive COP value.  

Figure 8 presents the utilisation experienced by each data centre over the course of 
the simulation. The utilisation values presented here are relative to the overall 
capacity of the entire data-centre group (i.e. all 9 data centres). As expected we can 
see that many of the data centres in the GA approach decrease capacity compared to 
the static while others increase. The data centres that consistently increase 
(Copenhagen, Lisbon, Dublin, Berlin) can be seen to correspond to those data centres 
that perform well in terms of renewable energy and also cooling energy. It must be 
noted that utilisation is also influenced by the capacity of the data centres. For 
instance Copenhagen is generally the best performer in terms of renewable energy 
and one of the top performers for cooling, yet Berlins utilisation increase is 
significantly larger. This is simply because Berlin is a considerably larger data centre 
and can handle a much larger utilisation increase. In terms of reduced utilisation, we 
can see that London and Milan show significant reductions with Athens, Amsterdam 
and Madrid show varying levels of reduction. For London and Milan, both have very 
poor renewable energy ratios (specifically London).  

 

Fig. 9. Total Cost 

Finally in Figure 9 we show the cost values incurred in both simulations. Since 
cost is not part of the fitness function this is presented only to evaluate the cost impact 
of our solution. Here it can be seen that the cost of our solution is lower than the cost 
of the static approach. However the cost decrease is very small (approx. 2.5% 
average), but the aim here is not to considerably reduce the cost, merely to ensure that 
our proposed approach does not come at a financial burden to the data centre operator. 
This is important in promoting the proposed solution to data centres operators, as 
increased costs will negatively impact the renewable energy benefits of the system.  
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6 Discussion and Future Work 

Here we will briefly discuss some issues and notions that we feel warrant 
highlighting. Firstly, we abstract the energy grid of each country to be a ‘black box’, 
where we assume each energy source is fed into the grid and its source becomes 
indiscernible. In other words, the energy produced from renewable sources is not 
partitioned or reserved for specific usage, but is available in the grid for common 
usage in direct proportion to the rate at which it was produced. In electrical grids, 
detailed forecasting determines the required electrical capacity required at any given 
time. Consumption beyond this capacity requires additional generators to be brought 
online (typically using dispatchable, fossil fuel based energy sources such as natural 
gas) to cater for this additional consumption. In this regard, it may be suggested that 
causing a data centre to consume more energy in fact only utilises more non-
renewable energy. However, when looking at the quantity of additional consumption 
our system places on the data centre, it equates to approximately 2 x 10-5 percent of 
the country’s electricity production. This minute change we believe would be covered 
by the grids forecasting model. If the system were to be adopted in a large scale this 
may present a more significant issue, however, given the disparity in data-centre 
locations it might still not be directly discernable. That is to say that not all data-
centre operators will have data-centres in the same countries, so the load increase will 
not always affect the same countries. However, in future work we aim to factor more 
detailed information from the grid, so that processing load only moves to data centres 
when its energy consumption drops below the forecasted consumption.  

Another issue that we discuss here is the additional energy and latency costs that 
may be incurred by moving quantities of services between data centres. Moving 
services could cause higher loads on networking equipment along the migration path, 
hence increasing their energy consumption. Also, moving services further from the 
source of requests could potentially increase delays times and hence reduce end user 
Quality of Experience (QoE). In future work we plan to expand our simulations to 
evaluate these effects on the underlying network infrastructure. However, we feel that 
these effects could be limited by placing a distance limit on migrating services or 
indeed integrating a distance metric directly into the move metric objective function 
itself. In this way we could ensure that we always attempt to minimise the effects of 
migration on energy and QoS. 

7 Conclusion 

Due to the increasing popularity of the Internet, the communication systems of the 
future are predicted to consume large quantities of energy. In particular, the data 
centres that house various types of Internet services are poised to be the most 
significant consumer of energy. While improving energy efficiency is one objective 
of modern society, another key objective is to move towards green, renewable energy 
sources to reduce our carbon footprint. In this paper we have proposed a green data 
centre solution that uses a GA-based service placement approach based on targeting 
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countries with the highest production of renewable energy and the best conditions for 
cooling. To validate our proposed solution, we carried out some demonstrative 
simulations by gathering data regarding the renewable energy production and 
temperature profiles of each country, and implementing a genetic algorithm that aims 
to maximise the quantity of renewable energy consumed and minimise cooling energy 
expended. From our simulations we have demonstrated that by employing this 
technique it is feasible to make significant improvements in the proportion of 
renewable energy utilised in data centre operation, hence reducing the quantity of 
fossil fuels burned and ultimately carbon emissions. We also demonstrated that 
cooling energy can be reduced in circumstances where there is significant variance in 
the country’s temperature profiles. At the same time, we showed that this improved 
renewable energy utilisation did not come at an increased monetary cost for the 
operator.  
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