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Abstract. A key challenge in building face recognition systems —
biologically-inspired or otherwise — is evaluating performance. While
much of face recognition research has traditionally used posed pho-
tographs for evaluation, recent efforts have emerged to build more natu-
ralistic, unconstrained test sets by collecting large numbers of face images
from the internet (e.g. the “Labeled Faces in the Wild”(LFW) test set
[1]). While such efforts represent a large step forward in the direction
of realism, the nature of posed photographs from the internet arguably
represents an incomplete sampling of the range of variation in view,
lighting, etc. found in the real world. Here, we evaluate a family of large-
scale biologically-inspired vision algorithms that has previously proven
to perform well on a variety of object and face recognition test sets [2],
and show that members of this family perform at a level of performance
that is comparable with current state-of-the-art approaches on the LFW
challenge. As a counterpoint to internet-photo based approaches, we use
synthetic (rendered) face images where the amount of view variation is
controllable and known by design. We show that while there is gross
agreement between the LFW benchmark and synthetic benchmarks, the
synthetic benchmarks reveal a substantially greater degree of tolerance
to view variation than is apparent from the LFW benchmark in models
containing deeper hierarchies. Furthermore, such an approach yields im-
portant insights into which axes of variation are most challenging. These
results suggest that parametric synthetic benchmarks can play an impor-
tant role in guiding the progress of biologically-inspired vision systems.

Keywords: biologically-inspired, computer vision, face recognition,
performance evaluation.

1 Introduction

The face recognition abilities of biological visual systems are currently unri-
valed by artificial systems, particularly in unconstrained environments. A natu-
ral strategy that follows from this observation is to seek direct inspiration from
biology, building artificial visual systems that attempt to capture aspects of the
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computational architecture of the brain, in the hope of eventually mimicking its
abilities. Such efforts to model visual computations done by the brain have a
long history, at least dating back to Fukushima’s Neocognitron (1980; [3]). More
recent experiments with biologically-inspired models have shown them to be
highly competitive in a variety of different face and object recognition contexts
[4, 5, 6, 7, 8].

Recently, interest in unconstrained face recognition has grown, driven largely
by the creation of the Labeled Faces in the Wild (LFW) face recognition test
set, which has provided a standardized benchmark against which to measure
progress. While much work has been done on face recognition in relatively con-
strained environments (e.g. posed photographs, under controlled lighting condi-
tions [9, 10, 11, 12, 13, 14]), until recently, relatively few available image sets have
tackled face recognition in less controlled circumstances. More recently, thanks
in large part to the rise of the internet, it has become possible to assemble large
collections of face images “in the wild” in the sense that they come from a wide
variety of sources and were not posed for the purpose of research.

As in other computer vision domains, biologically-inspired models have
achieved highly-competitive performance on the LFW challenge since its incep-
tion [7, 15]. More recently, Pinto et al. [2] described a large-scale feature search
approach in which thousands of candidate biologically-inspired feature sets are
rapidly “screened” to find model architectures that are well suited to a given
problem domain. Here, we apply this method to the LFW challenge, and find
that it achieves high levels of performance, on par with state-of-the-art methods,
even without using any particularly sophisticated machine-learning backend.

However, while these models achieve excellent performance on the LFW chal-
lenge set, this set provides little direct insight into why one model performs
better than another, and the extent to which the LFW set — which is primarily
composed of posed photographs of celebrities — is reflective of the “real” prob-
lem of unconstrained face recognition is not entirely clear. In particular, it is not
clear that this set contains an accurate sampling of the range of view variation
found in the real world [7, 15] since most images are frontal views, and some of
the examples of a given individual are taken on the same day, at the same event
(e.g. multiple photos of Halle Berry taken from the academy awards ceremony).
Thus, while the LFW challenge is clearly useful, and an improvement over more
controlled sets, it does not provide an obvious path to the full evaluation of a
vision model, nor is it clear how performance on the LFW sets will transfer to
other real-world scenarios.

As an complement to the LFW set, we here draw upon carefully-crafted
synthetic image sets. While synthetic images have fallen out of favor in the
computer vision community in recent years, advances in 3D rendering software
have increasingly narrowed the gap between real and synthetic imagery, and
rendered images offer several critical advantages over collected photographs. In
particular, rendered images allow for complete knowledge and control over the
view, position, scale, lighting, presence of other objects etc. in a scene. As a re-
sult, synthetic test sets that span whatever range of variation the experimenter
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desires can be easily generated, and tasks of parametrically variable difficulty
can be constructed. Importantly, such data sets also allow one to specifically
test the performance of a model as a function of variation in view, lighting, etc
[6]. The ability of a model to tolerate such variation – referred to as “invariance”
in the parlance of neuroscience — is a critical property of natural vision systems,
and is a key stumbling block in the creation of artificial systems.

2 Methods

2.1 Biologically-Inspired Visual Representations

In the experiments presented below, we studied a family of biologically-inspired
visual representations designed to model various stages of visual cortex in the
brain.

We used two basic sub-classes of models: 1) V1-like, a simple one-layer model
with fixed parameters, designed to mimic cortical visual area V1 [6], and 2)
multi-layer “High-Throughput” (HT) models, generated by way of a large scale
screening approach [2].

Both models classes are characterized by a cascade of linear and nonlinear
processing steps (see Figure 1), with V1-like having just one layer (and with fil-
ters kernels constrained to be Gabor wavelets), and the HT models having either
two or three layers (referred to hereafter as HT-L2 and HT-L3, respectively).

Our V1-like implementation was taken without modification from [6, 7].
Similarly, the HT-L2 and HT-L3 models were generated according the high-
throughput screening approach described in [2] except with randomly generated
filters instead of filters trained using an unsupervised learning approach. The
details of the HT-L2 and HT-L3 models are described in greater detail below.

2.2 High-Throughput-Derived Multilayer Visual Representations:
HT-L2 and HT-L3

In this study, we considered the best two- and three-layer models generated from
a high-throughput screening model selection procedure. An important feature of
the generation of these representations, according to the scheme set forth in [2], is
the use of a massively parallel, high-throughput search over the parameter space
of possible instances of a large class of biologically-inspired models. Details of
this model class and the high-throughput screening (model selection) procedure
have been described before [2] but are summarized below for convenience.

Model Architecture: Candidate models were composed of a hierarchy of two
(HT-L2 ) or three layers (HT-L3 ), with each layer including a cascade of linear
and nonlinear operations that produce successively elaborated nonlinear feature-
map representations of the original image. A diagram detailing the flow of op-
erations is shown in Figure 1, and, for the purposes of notation, the cascade of
operations is represented as follows:
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Fig. 1. A schematic diagram of the system architecture of the family of models consid-
ered. Each model consists of one to three feedforward filtering layers, with the filters
in each layer being applied across the previous layer.

Layer0 :

Input
Grayscale−→ Normalize−→ N0

Layer1 :

N0 Filter−→ F1 Activate−→ A1 Pool−→ P1 Normalize−→ N1

and generally, for all � ≥ 1:

Layer� :

N�−1 Filter−→ F� Activate−→ A� Pool−→ P� Normalize−→ N�

Details of these steps along with the range of parameter values included in the
random search space are described next.

Input and Pre-processing. The input of the HT-L2 and HT-L3 models were
100x100 and 200x200 pixel images, respectively. In the pre-processing stage, re-
ferred to as Layer0, this input was converted to grayscale and locally normalized:

N0 = Normalize(Grayscale(Input)) (1)
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where the Normalize operation is described in detail below. Because this nor-
malization is the final operation of each layer, in the following sections, we refer
to N �−1 as the input of each Layer�>0 and N � as the output.

Linear Filtering. The input N �−1 of each subsequent layer (i.e. Layer�, � ∈
{1, 2, 3}) was first linearly filtered using a bank of k� filters to produce a stack
of k� feature maps, denoted F �. In a biologically-inspired context, this operation
is analogous to the weighted integration of synaptic inputs, where each filter in
the filterbank applied at a particular image location represents a different cell.

Definitions: The filtering operation for Layer� is denoted:

F� = Filter(N�−1,Φ�) (2)

and produces a stack, F �, of k� feature maps, with each map, F �
i , given by:

F �
i = N �−1 ⊗ Φ�

i ∀i ∈ {1, 2, . . . , k�} (3)

where ⊗ denotes a correlation of the output of the previous layer, N �−1 with the
filter Φ�

i (e.g. sliding along the first and second dimensions of N �−1). Because
each successive layer after Layer0 is based on a stack of feature maps, N �−1 is
itself a stack of 2-dimensional feature maps. Thus, the filters contained within Φ�

are, in turn, 3-dimensional, with the their third dimension matching the number
of filters (and therefore, the number of feature maps) from the previous layer
(i.e. k�−1).

Parameters:

– The filter shapes fs
�× fs

�× fd
� were chosen randomly with fs

� ∈ {3, 5, 7, 9}
and fd

� = k�−1.
– Depending on the layer � considered, the number of filters k� was chosen

randomly from the following sets:
• In Layer1, k1 ∈ {16, 32, 64}
• In Layer2, k2 ∈ {16, 32, 64, 128}
• In Layer3, k3 ∈ {16, 32, 64, 128, 256}

All filter kernels were fixed to random values drawn from a uniform distribution.

Activation Function. Filter outputs were subjected to threshold and satu-
ration activation function, wherein output values were clipped to be within a
parametrically defined range. This operation is analogous to the spontaneous
activity thresholds and firing saturation levels observed in biological neurons.

Definitions: We define the activation function:

A� = Activate(F�) (4)

that clips the outputs of the filtering step, such that:

Activate(x) =

⎧
⎨

⎩

γmax
� if x > γmax

�

γmin
� if x < γmin

�

x otherwise
(5)
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Where the two parameters γmin
� and γmax

� control the threshold and saturation,
respectively. Note that if both minimum and maximum threshold values are −∞
and +∞, the activation is linear (no output is clipped).

Parameters:

– γmin
� was randomly chosen to be −∞ or 0

– γmax
� was randomly chosen to be 1 or +∞

Pooling. The activations of each filter within some neighboring region were
then pooled together and the resulting outputs were spatially downsampled.

Definitions: We define the pooling function:

P� = Pool(A�) (6)

such that:

P�
i = Downsampleα(

p�
√

(A�
i)

p� � 1a�×a�) (7)

Where � is the 2-dimensional correlation function with 1a�×a� being an a� × a�

matrix of ones (a� can be seen as the size of the pooling “neighborhood”). The
variable p� controls the exponents in the pooling function.

Parameters:

– The stride parameter α was fixed to 2, resulting in a downsampling factor
of 4.

– The size of the neighborhood a� was randomly chosen from {3, 5, 7, 9}.
– The exponent p� was randomly chosen from {1, 2, 10}.

Note that for p� = 1, this is equivalent to blurring with a a� × a� boxcar filter.

When p� = 2 or p� = 10 the output is the Lp�

-norm 1.

Normalization. As a final stage of processing within each layer, the output
of the Pooling step was normalized by the activity of their neighbors within
some radius (across space and across feature maps). Specifically, each response
was divided by the magnitude of the vector of neighboring values if above a
given threshold. This operation draws biological inspiration from the competitive
interactions observed in natural neuronal systems (e.g. contrast gain control
mechanisms in cortical area V1, and elsewhere [16, 17])
Definitions: We define the normalization function:

N� = Normalize(P�) (8)

such that:

N � =

{
ρ� · C� if ρ� ·

∣
∣
∣

∣
∣
∣C� ⊗ 1

b�×b�×k�

∣
∣
∣

∣
∣
∣
2
< τ�

C�
∣
∣
∣
∣

∣
∣
∣
∣
C�⊗1

b�×b�×k�

∣
∣
∣
∣

∣
∣
∣
∣
2

otherwise (9)

1 The L10-norm produces outputs similar to a max operation (i.e. softmax).
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with

C� = P � − δ� · P
� ⊗ 1b�×b�×k�

b� · b� · k� (10)

Where δ� ∈ {0, 1}, ⊗ is a 3-dimensional correlation over the “valid” domain
(i.e. sliding over the first two dimensions only), and 1b�×b�×k� is a b� × b� × k�

array full of ones. b� can be seen as the normalization “neighborhood” and δ�

controls if this neighborhood is centered (i.e. subtracting the mean of the vector
of neighboring values) before divisive normalization. ρ� is a “magnitude gain”
parameter and τ � is a threshold parameter below which no divisive normalization
occurs.

Parameters:

– The size b� of the neighborhood region was randomly chosen from {3, 5, 7, 9}.
– The δ� parameter was chosen from {0, 1}.
– The vector of neighboring values could also be stretched by gain values ρ� ∈

{10−1, 100, 101}. Note that when ρ� = 100 = 1, no gain is applied.
– The threshold value τ � was randomly chosen from {10−1, 100, 101}.

2.3 Final Model Output Dimensionality

The output dimensionality of each candidate model was determined by the num-
ber of filters in the final layer, and the x-y “footprint” of the layer (which, in
turn, depends on the subsampling at each previous layer). In the model space
explored here, the possible output dimensionality ranged from 256 to 73,984.

2.4 Screening (Model Selection)

A total of 5,915 HT-L2 and 6,917 HT-L3 models were screened on the LFW
View 1 “aligned” set [18]. We selected the best model from each “pool” for
further analysis on the LFW View 2 set (Restricted Protocol). Note that LFW
View 1 and View 2 do not contain the same individuals and are thus mutually
exclusive sets. View 1 was designed as a model selection set while View 2 is used
as an independent validation set for the purpose of comparing different methods.

Examples of the screening procedure for HT-L2 and HT-L3 models on the
LFW View 1 task screening task are shown in Figure 2. Performance of randomly
generated HT-L3 models ranged from chance performance (50%) to better than
80% correct; the best five models were drawn from this set and are denoted
HT-L3-1st, HT-L3-2nd, and so on. An analogous procedure was undertaken to
generate five two-layer models, denoted HT-L2-1st, HT-L2-2nd, etc. For the
purposes of the present paper, we only considered the best model from each
group (i.e. HT-L2-1st and HT-L3-1st).

2.5 Synthetic Face Images

In order to assess model performance on an image set with a known amount of
variation, we generated a set of 3D-rendered face images. 3D face meshes were
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top 5 models
LFW view 1 performance

Fig. 2. The high-throughput screening process used to find good representations. Here,
data is shown for the screening of HT-L3 models. A distribution of the performance
of approx. 7,000 randomly generated models is shown on the left, with the top five
high-performing models replotted on the right. Following screening, the models were
evaluated exclusively with sets that do not overlap with the screening set.

Table 1. Performance of the family of biologically-inspired models on the LFW chal-
lenge set (restricted view 2). For the HT-L2 and HT-L3 models, the cross-validated
performance of the top 5 randomly-generated models is shown (e.g. 1st, 2nd, etc.). The
performance of the simpler single layer V1-like model [7] is provided for comparison.

5th 4th 3rd 2nd 1st
V1-like 77.0 ± 0.5
HT-L2 77.8 ± 0.4 81.3 ± 0.4 81.5 ± 0.6 80.8 ± 0.4 81.0 ± 0.3
HT-L3 82.8 ± 0.6 82.3 ± 0.4 83.3 ± 0.4 83.9 ± 0.3 84.1 ± 0.3

randomly generated using the FaceGen [19] software package and were rendered
using the free POV-Ray ray-tracer [20]. For each rendered image, a model rotation
(azimuth and elevation), position (x and y), and scale were drawn from a uniform
distribution and the models were rendered with a common light source (Figure
3(a)). For the experiments presented here, rotation, size, and position were com-
bined into a single composite “variation level” wherein the variation in the pixel-
level euclidean norm was equalized for each kind of variation (e.g. one “unit” of
rotation variation produced an equivalent pixel-level change as one “unit” of po-
sition variation). Examples of several variation “levels” are shown in Figure 3(a).

The rendered face/head was next composited onto one of four kinds of back-
grounds: no background, a white noise background, a phase-scrambled natural
background (approximately equivalent to 1/f noise), and a randomly chosen nat-
ural background, chosen from a large pool of outdoor background images (Figure
3(b)). Care was taken to ensure that the same background image was never used
in more than one final image.
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no variation variation level 2 variation level 6

(a) View, position an scale variation

no background white noise phase scrambled
background (~1/f )

natural background

(b) Background variation

Fig. 3. Synthetic face stimuli

2.6 Classification and Performance Evaluation

To evaluate the performance of a given model with a given stimulus set, we
trained a multi-class support vector machine (SVM) classifier [21] using a one-
vs-all configuration [22] for each target class. Training and test data were strictly
segregated, and performance was evaluated using five 250 train / 50 test ran-
dom folds of the data. Error bars in all plots show the standard deviation of
performance across these five folds.

3 Results

3.1 LFW Performance

Performance on the LFW data set for these models is presented in Table 1.
Performance ranged as high as 84.1% percent correct for the best HT-L3 model,
achieving performance within a few percent of state-of-the-art methods [23, 24].
While more sophisticated kernel blending techniques have previously been used
to achieve better performance on the LFW challenge set by leveraging multiple
feature representations (e.g. [15]), we here restrict ourselves here to unblended
model performance for the sake of clarity. Further, for simplicity, we also here
only consider the best-performing model from each group (i.e. HT-L2-1st and
HT-L3-1st).
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Fig. 4. Model performance on synthetic faces as a function of level of variation

3.2 Performance as a Function of Variation Level

The synthetic face evaluation sets used here provide us with the ability to para-
metrically control the level of rotation, position and scale variation that our
models are required to tolerate. Figure 4 shows the performance the best models
from each model class (V1-like, HT-L2, HT-L3) as a function of (composite)
variation level for an eight-way face classification task.

3.3 Effect of Number of Faces to Be Discriminated

To further explore the behavior of our models with a controlled stimulus, we
examined model performance as a function of the number of faces to be discrim-
inated. In particular, we considered cases with two, four, six, and eight faces.
Performance, grouped by model is shown in Figure 5, and is shown grouped by
variation level in Figure 6. Predictably, absolute performance level is depressed as
a larger number of faces is considered, as is the chance performance level (dotted
line). Interestingly, the rate at which performance falls off varies between models
as a function of both number of faces to be discriminated, and as a function of
variation level. The stability of the performance of the largest/deepest model —
HT-L3-1st — is most pronounced when large number of faces and large amounts
of variation are considered. Differences between models are far less pronounced
with smaller numbers of faces and lesser degrees of variation.

3.4 Effect of Background

To explore the role of background variation, we evaluated model performance
with four different background conditions: no background, white-noise back-
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Fig. 5. Effect of number of synthetic faces to be discriminated, sorted by model

ground, phase-scrambled natural backgrounds (i.e. approx. 1/f noise), and nat-
ural backgrounds. Performance as a function of background and variation level
is shown Figure 7. Choice of background was found to have a profound effect on
model performance. In the absence of a background, the performance for most
models remained high, even at relatively high levels of variation in view, position,
and scale (e.g. greater than 90% performance at variation level 4 for the HT-L3-
1st and V1-like models). However, the inclusion of any background resulted in
a precipitous drop-off in performance for all models, except for the HT-L3-1st
model, whose performance degraded gradually. In general, progressively more
realistic backgrounds proved increasingly difficult for all models.

4 Discussion

While it is standard practice to test computer vision algorithms with standard-
ized “natural” image test sets such as the LFW set, the performance obtained on
such a set provides a relatively narrow window onto behavior of a given system.
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Fig. 6. Effect of number of synthetic faces to be discriminated, sorted by
variation level. Note that the performance was 100% in all cases for the zero variation
condition (data not shown).

Here, we used synthetic test images, rendered with known amounts of variation,
to provide a much richer multidimensional assessment of the invariance proper-
ties of a class of models that have achieved high levels of performance on the
LFW set.

While the ordinal performance of the one-, two- and three-layer models con-
sidered here is roughly the same as is observed for the LFW set (i.e. V1-like <
HT-L2 < HT-L3), tests with synthetic sets reveal that the model with the deep-
est hierarchy (HT-L3) is substantially better able to tolerate variation in view,
position, scale and background as compared to the other models considered here.
This dramatic difference was not at all apparent from the LFW performance,
where the best HT-L3 model performed only a few percent higher than its near-
est rivals. While there is no hard evidence one way or another, we speculate that
the relatively compressed range of performance between the various models on
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Fig. 7. Effect of background type on performance with synthetic faces. Note
that the performance was 100% in all cases for the zero variation condition (data not
shown).

the LFW set is reflective of the relatively limited range of view variation found
in that set. Indeed, when we examine a relatively low level of variation with our
synthetic faces, we see a similarly compressed range of performance variation
across the models.

More broadly, our results suggest that the level of variation present in a set,
both in terms of view and in terms of background can have a large effect on the
“dynamic range” within which one has the ability to distinguish between models.
Indeed, without any background, and at low levels of variation, the differences
between models can become vanishing small, and in some cases can even reverse.
These results underscore the importance of building sets, be they synthetic or
natural, that contain more realistic ranges of variation.
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