
J. Suzuki and T. Nakano (Eds.): BIONETICS 2010, LNICST 87, pp. 497–504, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

An Algorithm for Automatically Discovering
Dynamical Rules of Adaptive Network Evolution

from Empirical Data

Hiroki Sayama

Collective Dynamics of Complex Systems Research Group
Departments of Bioengineering & Systems Science and Industrial Engineering

Binghamton University, State University of New York
P.O. Box 6000, Binghamton, NY 13902-6000, USA

sayama@binghamton.edu

Abstract. An algorithm is proposed for automatic discovery of a set of
dynamical rules that best captures both state transition and topological
transformation in the empirical data showing time evolution of adaptive
networks. Graph rewriting systems are used as the basic model framework to
represent state transition and topological transformation simultaneously.
Network evolution is formulated in two phases: extraction and replacement of
subnetworks. For each phase, multiple methods of rule discovery are proposed
and will be explored. This paper reports the basic architecture of the algorithm,
as well as its implementation and evaluation plan.

Keywords: Adaptive networks, automatic rule discovery, graph rewriting
systems, generative network automata, algorithm.

1 Introduction

Modeling and predicting state-topology coevolution in adaptive networks is now
becoming well recognized as one of the most significant challenges in complex
network research [1-3]. To provide a novel framework for modeling adaptive network
dynamics, I proposed to use graph rewriting systems [4,5] as a means of uniform
representation of state-topology coevolution. This framework, called Generative
Network Automata (GNA), is among the first to systematically integrate graph
rewritings in the representation and computation of complex network dynamics that
involve both state transition and topological transformation. However, it has remained
an open question how one could derive a rule set of a GNA-based model from
empirical data of network evolution.

Here I propose an algorithm that automatically discovers a set of dynamical rules
that best captures state transition and topological transformation expressed in the
empirical data. Network evolution is formulated using the GNA framework and the
subnetwork extraction and replacement phases are analyzed separately. Multiple
methods are proposed and will be tested for each phase. This paper reports the basic
architecture of the algorithm, as well as its implementation and evaluation plan.

498 H. Sayama

2 Generative Network Automata

The theoretical framework used in this paper is Generative Network Automata (GNA)
[4,5]. Its working definition is described below.

Configuration: In the GNA framework, a network consists of dynamical nodes and
directed links between them. Undirected links can also be represented by a pair of
directed links symmetrically placed between nodes. Each node takes one of the
(finitely or infinitely many) possible states defined by a node state set S. The links
describe referential relationships between the nodes, specifying how the nodes affect
each other in state transition and topological transformation. Each link may also take
one of the possible states in a link state set S’ (not considered within the scope of this
paper). A configuration of a GNA at time t is a combination of states and topologies
of the network. Formally, it is defined as Gt = < Vt, Ct, Lt >, where:

• Vt : A finite set of nodes of the network at time t.
• Ct : Vt → S : Node states at time t.
• Lt : Vt → {Vt × S’}* : Links and their states at time t. This maps each node to

a list of destinations of outgoing links and the states of those links.

Dynamics: States and topologies of a GNA are updated through repetitive GNA
rewriting events, each of which consists of the following three steps:

1. Extraction of part of the GNA (subGNA) that will be subject to change.
2. Production of a new subGNA that will replace the subGNA selected above.
3. Embedding of the new subGNA into the rest of the whole GNA.

The GNA evolution model can be formally defined by the following triplet <E, R, I>:

• E: An extraction mechanism that determines which part of the GNA is
selected for the updating. It is defined as a function that takes the whole
GNA configuration and returns a specific subGNA in it to be replaced.

• R: A replacement mechanism that produces a new subGNA from the
subGNA selected by E and also specifies the correspondence of nodes
between the old and new subGNAs. It is defined as a function that takes a
subGNA configuration and returns a pair of a new subGNA configuration
and a mapping between nodes in the old subGNA and nodes in the new
subGNA.

• I: An initial configuration of the GNA.

The above <E, R, I> triplet is sufficient to uniquely define a specific GNA evolution
model in this framework. Figure 1 illustrates how these mechanisms work together in
a rewriting event.

The function of the extraction and replacement mechanisms (E and R) may be
defined as either deterministic or stochastic, as opposed to typical deterministic graph
grammatical systems [6]. A stochastic representation of GNA dynamics will be
particularly useful when applied to the modeling of real-world complex network data,

 An Algorithm for Automatically Discovering Dynamical Rules 499

Fig. 1. GNA rewriting process (from [4,5]). (a) The extraction mechanism E selects part of the
GNA. (b) The replacement mechanism R produces a new subGNA as a replacement of the old
subGNA and also specifies the correspondence of nodes between old and new subGNAs
(dashed line). This process may involve both state transition of nodes and transformation of
topologies. The “bridge” links that used to exist between the old subGNA and the rest of the
GNA remain unconnected and open. (c) The new subGNA produced by R is embedded into the
rest of the GNA according to the node correspondence also specified by R. In this particular
example, the top gray node in the old subGNA has no corresponding node in the new subGNA,
so the bridge links that were connected to that node will be removed. (d) The updated
configuration after this rewriting event.

in which a considerable amount of random fluctuations and observation errors are
inevitable.

Also, the GNA framework is unique in that the mechanism of subGNA extraction
is explicitly described in the formalism as an algorithm E, not implicitly assumed
outside the replacement rules like what other graph rewriting systems typically adopt
(e.g., [7]). This algorithmic specification makes global rewriting events possible (as
well as local rewriting ones) and allows more flexibility in representing diverse
network evolution and less computational complexity in implementing their
simulations.

3 Proposed Algorithm

In this section, I describe the proposed algorithm for automatic discovery of rewriting
rules from network evolution data. Within the scope of this paper, I will simplify the
problem by requiring the data to satisfy the following:

1. A given data set is a series of configurations of labeled directed networks
in which labels (states) and topologies coevolve over discrete time steps
(Fig. 2 (a)).

2. The data set contains information about the correspondence of nodes
between every pair of two successive time points (Fig. 2 (a)).

3. States are discrete, finite, and assigned only to nodes, not to links.

500 H. Sayama

4. Changes that take place between successive time points are reasonably small
so that they can be identified as one small network rewriting event per each
time step.

5. The extraction mechanism E and the replacement mechanism R are
memoryless, i.e., they produce outputs solely based on inputs given to them.

Here I note that the GNA framework has a significant advantage for the algorithm
design. It formulates the network evolution using two separate phases, i.e., the
extraction of subGNA (performed by E) and its replacement (performed by R).
Therefore, the estimation and construction of models of E and R can be conducted
independently and concurrently using separate training data sets, which will make the
algorithm simple and tractable.

A general procedure of the proposed algorithm is explained below (Fig. 2).

(1) Preprocess the original network evolution data using data-dependent heuristics,
if necessary, so that they meet all the aforementioned requirements.

(2) Detect the difference between each pair of configurations at two successive time
points (Gt, Gt+1) and represent it as a rewriting event st ≡> rt (Fig. 2 (b)), where
st is a subGNA to be replaced, rt is another subGNA that replaces st, and “≡>”
denotes correspondence from nodes in st to nodes in rt.

The difference between two configurations (Gt = <Vt, Ct, Lt>, Gt+1 = <Vt+1,

Ct+1, Lt+1>) will be detected in the following way:

i. Let A be a set of nodes in Gt which disappeared in Gt+1

(}|{ 1+∉∧∈= tt VxVxxA).

ii. Let B be a set of nodes in Gt+1 which did not exist in Gt
(}|{ 1 tt VxVxxB ∉∧∈= +).

iii. Add to A and B all the nodes whose states or neighbors changed between
Gt and Gt+1
())}()()()((|{ 111 xLxLxCxCVxVxxD tttttt +++ ≠∨≠∧∈∧∈= ,

DAA = , DBB =).

At this point, A and B contain the nodes that experienced some changes

(enclosed by solid lines in Fig. 2 (b)).

iv. Add to A and B all the nodes which have a link to any of the nodes in A
(}}0{)(|{' 1 /≠∧∈∧∈= + AxLVxVxxD ttt  , 'DAA = , 'DBB =).

The above step includes in A and B additional nodes that may have
influenced the rewriting event (enclosed by dashed lines in Fig. 2 (b)).

v. Let st and rt be subgraphs of Gt and Gt+1 induced by nodes in A and B,

respectively.

 An Algorithm for Automatically Discovering Dynamical Rules 501

Fig. 2. Overview of the proposed algorithm. (a) Original network evolution data starting with
the initial configuration I. (b) Detection of rewriting events at every time step. (c) Training data
for the extraction mechanism E. (d) Training data for the replacement mechanism R. (e, f)
Construction of models of E and R based on the training data. (g) Final GNA model.

502 H. Sayama

Then the detected rewriting event is represented as st ≡> rt , where “≡>” is the
set of all the node correspondences between st and rt present in the original data.

(3) Construct a model of the extraction mechanism E by using { (Gt, st) } as training

data, where Gt is the input given to E and st the output that E should produce
(Fig. 2 (c), (e)).

This step is the most challenging part in this algorithm development effort.

The task to be achieved in this step is to identify an unknown mechanism that
chooses a subset of a given set of nodes. Exact identification of an unknown
computational mechanism is theoretically not possible in general. Therefore, I
will test several heuristic approaches as candidates of practical solutions,
including:

i. Statistical analysis of node properties

I will first test a simple statistical approach, where correlations will be
measured, for the whole training data, between several node properties and
the probability of a node to be selected for rewriting. Node properties to be
used will include state, degree (absolute or relative) and local clustering
coefficient (absolute or relative), among others. If a clear correlation is
found, it will be used as the mechanism of E.

ii. Statistical selection from multiple mechanisms

In the second approach, I will assume several predefined candidate
mechanisms (e.g., random selection, preferential selection based on node
degrees, etc.) and calculate the probability for each extraction result given
in the training data to occur with each candidate mechanism. If a
mechanism includes parameters, they will be optimized to attain the
maximal probability. This calculation will be conducted and aggregated
for the whole training data to evaluate how likely the given training data
could result from each of the candidate mechanisms. Then the mechanism
with highest likelihood will be returned as the estimated mechanism of E.

iii. Parameter estimation for a preprogrammed mechanism
In some situations the actual extraction mechanism E may be known to the
researcher. If this is the case, the mechanism can be preprogrammed in
detail, with several parameters left unspecified to give room for fitting to
the training data. Then I will use the same probability calculation method
as in the second approach to optimize the parameters.

iv. Evolutionary search with Genetic Programming
I will also test an evolutionary approach, where possible mechanisms of E
will be represented by short pseudo codes and be evolved using Genetic
Programming techniques.

 An Algorithm for Automatically Discovering Dynamical Rules 503

(4) Construct a model of the replacement mechanism R by using { (st, st ≡> rt) } as
training data, where st is the input given to R and st ≡> rt the output R should
produce (Fig. 2 (d), (f)).

In this step, the task can be achieved in a much simpler manner than in step

(3), though technically it still remains identification of an unknown mechanism.
This is because a single rewriting event typically involves just a few nodes so the
number of possible inputs given to the replacement mechanism R is virtually
finite in contrast to the number of possible inputs to E that is virtually infinite.
Therefore I will use straightforward pattern matching methods to construct a
model of R from the data.

Specifically, the algorithm will construct R as a simple procedure that searches
for a rewriting event in the training data whose left hand side matches the given
input. If there is only one such event found, the event itself will be the output of
R. If multiple events are found, the output will be determined either
deterministically (e.g., event with greatest frequency) or stochastically (e.g.,
random selection with weights set proportional to event frequencies). Or, if no
event is found, either identity (“input ≡> input”; no change) will be returned or
seek similar events will be sought using partial graph matching schemes.

(5) Construct a complete GNA model by combining the results of the above steps (3)

and (4) together with the initial configuration I (Fig. 2 (g)).

4 Summary and Future Work

In this paper, I proposed an algorithm for automatic rule discovery of adaptive
network evolution from empirical data, and described its outline as well as multiple
candidate methods for some of its components. The implementation of the algorithm
is currently ongoing in Python, partly based on the existing NetworkX module [8].
The completed implementation will be made freely available to researchers and other
professionals under an open-source license.

The implemented algorithm will be evaluated firstly via application to abstract data
generated by artificial GNA models used in my preliminary study [4,5]. The
algorithm will be applied to several sample simulation runs selected from those data
to check if they could correctly recover the actual network rewriting rules used to
produce the data. In this testing, the correct answers are already known, so it will be
possible to evaluate the success/failure ratio of each algorithm implementation and
revise it to improve the accuracy of its outputs. Several additional complexities will
also be introduced into the abstract network models, including more than two states
on nodes, more subGNA rewriting options, and simultaneous application of multiple
rewriting events, to test and revise the algorithm under model variations. After this
initial evaluation is completed, I will also plan to test the algorithm by applying it to
real-world network evolution data (such as [9,10]).

504 H. Sayama

As the research progresses, the entire architecture or the details of each step may be
revised as needed. At later stages of the project, expansions of the algorithm to
broader classes of complex adaptive network dynamics will also be considered.
Specifically, I plan to investigate how to incorporate continuous states, how to
incorporate links with states, and how to handle the possibility for E or R to have its
own internal memory.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under Grant No. 1027752.

References

1. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74, 47–97 (2002)

2. Gross, T., Blasius, B.: Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5,
259–271 (2008)

3. Gross, T., Sayama, H. (eds.): Adaptive Networks: Theory, Models and Applications.
Springer (2009)

4. Sayama, H.: Generative network automata: A generalized framework for modeling
complex dynamical systems with autonomously varying topologies. In: Proceedings of
The First IEEE Symposium on Artificial Life, pp. 214–221. IEEE (2007)

5. Sayama, H., Laramee, C.: Generative network automata: A generalized framework for
modeling adaptive network dynamics using graph rewritings. In: Gross, T., Sayama, H.
(eds.) Adaptive Networks: Theory, Models and Applications, pp. 311–332. Springer
(2009)

6. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation, Foundations, vol. 1. World Scientific (1997)

7. Kurth, W., Kniemeyer, O., Buck-Sorlin, G.H.: Relational Growth Grammars – A Graph
Rewriting Approach to Dynamical Systems with a Dynamical Structure. In: Banâtre, J.-P.,
Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 56–72.
Springer, Heidelberg (2005)

8. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and
function using NetworkX. In: Varoquaux, G., Vaught, T., Millman, J. (eds.) Proceedings
of the 7th Python in Science Conference (SciPy 2008), pp. 11–15 (2008), NetworkX,
http://networkx.lanl.gov

9. Fowler, J.H., Jeon, S.: The authority of Supreme Court precedent. Social Networks 30,
16–30 (2008)

10. Fowler, J.H., Joen, S.: Supreme Court Citation Network Data website,
http://jhfowler.ucsd.edu/judicial.htm

	An Algorithm for Automatically Discovering Dynamical Rules of Adaptive Network Evolution from Empirical Data
	Introduction
	Generative Network Automata
	Proposed Algorithm
	Summary and Future Work
	References

