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Abstract. We consider a variant of graph developing system and show
various behavior with one type of graph-rewriting. This system is based
on rewriting of 3-regular graphs with two possible states per node. We
focus on a simple case of fixed number of nodes. The development pro-
cesses include interaction among rather stable subgraphs. Some simple
behaviors, such as clustering and declustering of states, are shown by
simulation.
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1 Introduction

Recently, there has been increasing attention on adaptive networks [2]. There,
co-evolution of topology (network) and states has been studied in various con-
texts such as complex networks. In modeling, analyzing or designing systems
comprising many elements in full detail, it is important to clarify the dynam-
ics of each element and the relations among elements. In most cases, structures
and states are coupled closely in the sense that the global structure constrains
the behavior of each element and the behaviors of the elements affect on the
structure. One of the interesting behavior of such graph development in our
concern is emergence of hierarchy such that graph is decomposed appropriately
into subgraphs, and the overall dynamics is described by the interaction among
subgraphs and dynamics in subgraphs.

We have been studying a particular class of graph dynamics called graph-
rewriting automata [4]. It is an extension of cellular automata to dynamic graph
structures. As in cellular automata, the number of neighbors of each cell is un-
changing. Graphs are rewritten synchronously according to several types of local
rules with changing capabilities of the number of nodes. Though our framework
only treats 3-regular graphs [1], it is sufficiently general to represent various
behaviors of network evolution such as self-organization or self-reconfiguration
including self-replication.

In this paper, we restrict our attention to the behavior of planar graphs with
fixed number of nodes and focus on cluster formation. The model is based on
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rewriting of 3-regular planar graphs with two possible states per node. As for
structural rewriting, we adopt a variant of a rule called commutation in the
previous study [4]. It changes local connective relation of a pair of connected
nodes. As a simple cluster, we adopt a connected subgraph all of whose nodes
have the same state, connected to other subgraphs with different states. We see
clusters are formed by a rewriting rule through simulation. In the development
process, interaction occurs among clusters whose structure is rather stable.

In the following, formulation of our framework is given, and then simulation
setting and results are shown. Finally, the conclusion follows.

2 Graph-Rewriting Automata

Let us introduce the framework that we consider in this paper. It is a variant
of graph-rewriting systems, called a graph-rewriting automaton. (Evolution of
networks based on similar rewriting rules is discussed in [7].) We assume that the
base graph structure is a 3-regular planar graph: each node has three neighbor
nodes. Different from ordinary graphs, a cyclic order of links is defined on each
node. Each node has an internal state chosen from a finite set. More formally, it
is defined as follows. The set of all two element subsets of a set A is denoted by
P2(A), i.e., P2(A) = {{x, y}|x, y ∈ A and x �= y}. Let I = {0, 1, 2}.

Definition 1. A base graph G is a triplet 〈V,E, ξ〉, where V is a finite set of
vertices, E is a set of edges defined in the following, and ξ : V → S is a function
that assigns a state to each vertex. Each edge specifies two incident vertices
with link indices I; more formally, E is a subset of P2(V × I) such that for every
〈u, i〉 ∈ V × I there exists just one 〈v, j〉 ∈ V × I such that {〈u, i〉, 〈v, j〉} ∈ E.

This definition permits multiple edges or self-edges (loops). Hereafter, base
graphs are also called graphs for simplicity. In this paper, we use only two states
0 and 1, i.e., S = {0, 1}, denoted by white and black nodes respectively in the
figures. Also, three incident links of a node are drawn clockwise on this order
around the node in sections 2 and 3.

Isomorphism between two graphs are defined by, in addition to the usual
condition, that states of the nodes are the same and that cyclic order of the
links defined on each node are the same. (As for link indices, only the order
rather than the number is in concern.) In the following, isomorphic graphs are
identified. An example of non-isomorphic graphs due to the link order is shown
in Fig.1.

We allow two types of rewriting, cw and ccw, as shown in Fig. 2. The above
cyclic order is used to uniquely determine the nodes that are connected to the
involved nodes in each structural rewriting.

A link is called applicable if its incident nodes have different states. At each
time step, one applicable link is chosen randomly and one rewriting is applied.
When the target link is one of double links, a loop is generated as in Fig. 3, in
which rewriting is applied to the bold link of the left graph.
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Fig. 1. Non-isomorphic graphs by link order
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Fig. 2. Structural rewriting

Fig. 3. Application to one of double links

This rewriting is complete for planar connected graphs with the same number
of nodes in the following sense. If we omit the states and focus only on the
connective relation among nodes, we can rewrite any connected graphs into any
connected graph with the same number of nodes by choosing an appropriate
sequence of links to which the rewriting is applied.

Depending on the states of target and neighbor nodes, a rewriting rule specifies
which rewriting is executed. We use two kinds of rewriting rules, called phobic
and philic, as defined below. In the following, s(n) is the state of node n. Let
su = s(n2) + s(n4) and sl = s(n3) + s(n5).

– phobic rule:
⎧
⎨

⎩

cw, if s(n0) = 0 and su < sl or s(n0) = 1 and su > sl,
ccw, if s(n0) = 0 and su > sl or s(n0) = 1 and su < sl,
randomly chosen, if su = sl.

– philic rule:
⎧
⎨

⎩

cw, if s(n0) = 0 and su > sl or s(n0) = 1 and su < sl,
ccw, if s(n0) = 0 and su < sl or s(n0) = 1 and su > sl,
randomly chosen, if su = sl.
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Fig. 4. Cluster merging and separation by phobic rule

The phobic rule tends to phase separation (like oil and water), whereas the philic
rule tends to mixing.

3 Mesoscopic View

Graph development processes are generally complicated when a large number
of nodes and intricate connective relation among nodes are involved. Instead of
viewing the whole graph at the level of individual nodes, viewing it at an appro-
priate level of abstraction might be useful, if possible. One desirable description
would be such that the whole graph is divided into parts, i.e., subgraphs, so
that the dynamics of the whole graph is determined by the interaction among
subgraphs, and that the interaction is described by a kind of states of the sub-
graphs. Then the whole behavior could be described at the level of subgraphs.
Such will lead to hierarchical description of the graph development processes.
This is suitable when graphs are developed in the hierarchical manner like liv-
ing things with some organizing principle. Similar idea was partly explored as a
meta-node in [5], but it was complex and given a priori.

In this paper, we try the simplest case for such description by using two kinds
of rules: phobic and philic. As a simple cluster, we adopt a connected subgraph all
of whose nodes have the same state, connected to other subgraphs with different
states. In the development process, nodes within clusters have the same state,
and hence are rather stable because structural rewriting is not applied between
the nodes with the same node state. On the other hand, at the interface of
two clusters, structural rewriting is performed, which leads to cluster merging
and separation (see Fig. 4). The rewriting has different effects to the clusters
depending on the global connective relation. In the following, the effect of these
rules is examined through simulation.

4 Simulation

We conduct simulation for 10 initial graphs G1, . . . , G10 with varying number
of nodes.1 Each graph includes equal number of nodes with state 0 and 1. G1

and G2 are shown, together with G0, in Fig. 5 at the individual node level. The

1 Each graph Gi is obtained by the system in [4] using a rule set ‘div 0, (0, 1, 1), 0’,
‘div 1, (0, 0, 1), 1’, and ’com 0, 1’ from an initial graph G0 (in Fig. 5 ), composed
of four nodes, at i-th step.
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G0 G1 G2

Fig. 5. Graphs for simulation

Table 1. The number of nodes and clusters in initial graphs

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

#nodes 12 20 28 52 84 148 260 428 692 1140
#clusters 6 6 14 18 26 42 66 102 174 282

1 432

5 876

9 10

Fig. 6. Initial graphs G1, . . . , G10 at the cluster level

number of nodes and clusters are shown in Table 1. Figure 6 shows the graphs
in the cluster level. Each black or white circle indicates one cluster, and its size
is proportional to the number of its member nodes.

We conducted simulation of phobic and philic rules for 100 trials from these
initial graphs in 10,000,000 steps. Figure 7 indicates the change of average num-
ber of clusters by phobic rule. In the development process by phobic update,
clustering is performed, i.e., the number of clusters tend to decrease. Depending
on the total number of nodes, the number is different in the simulated steps.

The above figure only shows the average number for 100 trials, and the number
deviates by each trial. Figure 8 details the result for G5 with error bars. The bars
indicate minimum and maximum numbers. Figure 9 shows an example of cluster
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Fig. 7. The average number of clusters by phobic rule

change in one execution at steps 10i for i = 1, . . . , 6. The number of clusters is
shown in parentheses. We can observe by these results in Figs. 7, 8 and 9 that
the number of clusters once grows before reducing.

Fig. 10 shows the change of average number of clusters for 100 trials by the
philic rule. The number of clusters tend to increase by the philic rule. Depending
on the total number of nodes, the number is different. In this simulation setting,
the final number of applicable links was about 65–70% of the total number of
links. Some of the obtained graphs from G5 by philic rule are shown as clusters
in Fig. 11.
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Fig. 8. The number of clusters obtained by phobic rule from G5. Error bars indicate
minimum and maximum.
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t=1 (26) t=10 (17) t=100 (8) t=1000 (10)

t=10000 (11) t=100000 (9) t=1000000 (15) t=10000000 (6)

Fig. 9. Clusters obtained by phobic rule from G5
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Fig. 10. The average number of clusters by philic rule

5 Conclusion

We have considered a variant of graph developing system and showed behaviors
with phobic and philic graph-rewriting rules. This system is based on rewriting
of 3-regular graphs with two possible state per node. We focused on a simple case
of fixed number of nodes. Simple behaviors, such as clustering and declustering
of graphs, are shown by simulation. The phobic rule appears to resulting in
clustering, and the philic rule in mixing, regardless of graph and starting state.
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Fig. 11. Examples of obtained clusters by philic rule from G5

There is much future work. We need to investigate more complex processes.
In many cases the phobic rule leaded to two giant clusters in the simulations, but
effects of the initial graphs on the behavior are not examined enough. Also, we
need more analysis to clearly describe the dynamic behavior of clusters. Devel-
opment processes were depicted mainly as the change of the number of clusters.
This reflects only a limited aspect of the dynamics. The process of clustering
was not straightforward and affected by the global structure. We need to de-
velop better methods for describing the process including dynamic structural
changes. In addition, analysis of structures and dynamics in a cluster are also
necessary.
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