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Abstract. Computers since the 1940s have shared the same basic ar-
chitecture described by Turing and von Neumann, in which one central
processor has access to one contiguous block of main memory. This ar-
chitecture is challenged by modern applications that require greater par-
allelism, distribution, coordination, and complexity. Here we show that a
model of protein interactions can serve as a new architecture, performing
useful calculations in a way that provides for much greater scalability,
flexibility, adaptation, and power than does the traditional von Neumann
architecture. We found that even this simple simulation of protein inter-
actions is universal, being able to replicate the calculation performed
on a digital computer, yet without relying upon a central processor or
main memory. We anticipate that the convergence of information- and
life-sciences is poised to deliver a platform that invigorates computing
as it provides insight into the complexity of living systems.

Keywords: simulation, protein, parallel, distributed, complex adaptive
system, architecture.

1 Introduction

For years, our computers have relied on the von Neumann architecture [40], the
endless repetition of “fetch and execute.” The advantage of this serial design is
that it is deterministic: The process is repeatable and predictable. Increases in
performance have arisen from two main sources: increasing density on integrated
circuits [29, 18], and distributing computing tasks across multiple processors [4].
Unfortunately, we are beginning to approach some hard limits with respect to
circuit density, and adapting software to take advantage of multiple proces-
sors remains very difficult [17]. One approach to overcoming these limitations
is to pursue different architectures. Biologically-inspired computing is one such
alternative.

Life processes occur with frantic parallelism that is more widely distributed
than our silicon-based computing, because there is no dependence upon a single
core memory. This distribution comes at a cost: By working outside of the in-
nately serial von Neumann architecture, chemical and biological systems give up
strict determinism, and enjoy repeatability and predictability only probabilisti-
cally. Furthermore, the mechanics of neither cellular biology nor proteomics are
sufficiently well understood to allow us to craft a large-scale, general purpose
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computing machine that takes advantage of all of the parallelism implicit within
single-celled organisms.

Previous work has focused on two fronts: approaching information science
from within the lab; and incorporating laboratory science ideas into program-
ming systems.

1.1 Approaching Information Science from within the Lab

Chemically-inspired computers, such as BZ machines, use a central oscillator as
a synchronization method for molecular computations [1, 5]. Unforunately, the
central oscillator tends to constrain the speed of the entire system (to approx-
imately 10 cycles per second [10]), negating many of the advantages of rapidly
reacting chemical species. In sum, the billions of interacting molecules are do-
ing significantly less work than they are capable of doing, because of the way
they are used in aggregate. This architecture may provide benefits in terms of
being applicable in settings where silicon processing not well suited, but it does
not currently appear to be a viable candidate to provide greater computing
throughput.

DNA computing, in contrast, originally relied upon DNA molecules as inert
data elements operated upon by lab protocol qua software [3, 14], principally
taking advantage of the ability to explore a huge number of combinations of
data solutions simultaneously, albeit in a very manualy-driven process. Since
then, there have been projects that have used DNA in a more active manner,
allowing it to participate in chemical reactions that produce behaviors that are
recognizable as logical functions [35, 11, 34, 37]. MAYA-II was a system, built
from more than 100 different DNA gates, that could play tic-tac-toe [23]. The
team has extended this work, creating a simulation tool that helps to design
and debug these networks of biological circuits [25]; this is important, because it
reflects the impact of emergent complexity on even relatively small bio-chemical
computers.

In vivo computing involves creating information-processing units out of chem-
ical species that occur naturally within organisms (though not in the precise
forms, configurations, or concentrations used). The goal is to use these live com-
puting units to influence one or more of the processes within the organism. This
function could include, for example, disease diagnosis, treatment, and drug de-
livery [2, 24]. Not only does emergence continue to play an important role in
in vivo computing, but it is arguable that its role becomes paramount, as un-
intended side-effects of a computation carried on inside a living organism could
be disasterous.

Where laboratory-based models excel is in making performing simple compu-
tations in settings that are not accessible to traditional processors. What they
lack is an effective way to model the unintended consequences of introducing
interacting chemical species into a complex environment.
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1.2 Incorporating Laboratory Science Ideas into Programming
Systems

One of the first significant proposals for couching computation in terms of chemi-
cal reactions was Banâtre and Le Métayer’s Γ (alternately, GAMMA) [6, 7, 8, 9].
Γ portrays programming as a series of multiset transformations, in which the
resident species are both data and rules. While Γ is parallelizable and proba-
bilistic (in terms of which reactions are run on what data elements), there is one
important accommodation made for halting: Each rule that fires is consumed
as it runs. It is also important that reactions and data species do not support
wild-cards, meaning that all inputs and rules must be enumerated explicitly.
From early on, Banâtre and Le Métayer provided plenty of example programs
demonstrating how Γ could be used to solve general computing tasks such as
identifying an extreme value in a collection.

Following Γ came the chemical abstract machine, or CHAM [12, 13]. CHAM
describes a language derived from Γ , but one that is treated in in much greater,
and more formal, detail. Whereas Γ served to highlight the utility of chemistry as
a computing metaphor, CHAM highlights expresses the expectations and bounds
on the formal language of one chemistry-inspired computing approach. CHAM
was extended to include membranes, a mechanism that is used to provide for
the isolation and localization of computations. Membrane computing is a CHAM
concept.

Giavitto and Michel’s MGS — (encore) un Modèle Géneral de Simulation
(de système dynamique) — superclasses both Γ and CHAM (along with cel-
lular automata, Lindenmayer systems, and Paun systems) [19]. Though it is
weakly typed, MGS is a functional language that has support for a number of
programmer-friendly constructs such as sets, sequences, records, and arrays. In
contrast to Γ and CHAM, though, MGS allows transformation rules to include
wild-cards. The rules have such a rich syntax, in fact, that they represent a rather
wide departure from real chemistry: Rather than having simply A + B → C,
MGS allows A and B to inspect each other, evaluate independent expressions,
and incorporate evaluations into C. One consequence of this flexibility is that
the number of chemical species that MGS must track can become astronomically
large, depending on the program being run: An implementation of a 100-city TSP
problem, for example, would likely exhaust the resources of the local machine.
As an additional aid to the programmer, but what is arguably another departure
from verisimilitude, MGS allows the coder to specify ordered execution within
a rule via statement priority. MGS is a programming environment available for
public download, but it is constrained to operate on only one computer at a
time; there is no cluster-aware version of MGS available.

COPASI — COmplex PAthway SImulator — is a joint project of three univer-
sities, and is designed to perform stoichiometric analysis and simulation [22, 31].
That is, given a set of chemical reactions and a starting set of reagent concentra-
tions, COPASI has multiple methods of predicting how the solution will change
over time, from ordinary differential equations to stochastic simulations based
on Gillespie’s earlier work. COPASI is not a programming tool per se so much
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as it is a tool for (bio)chemists, but it is one of the tools that some of the other
research projects employ while working on chemistry-inspired computing.

Matsumaru et al., for example, have used both MGS and COPASI to explore
chemical organization theory [26, 27, 28]. Their work centers on how to cre-
ate standard computer science constructs — such as flip-flops and oscillators —
using simulated chemical reactions, and how to use graph theory on the stoi-
chiometric description of a system to help bridge the micro-level behaviors with
the macro-level outcomes. Like most of the methods within this family, chemical
organization theory is not constrained by conservation of mass; in fact, violating
this conservation is key to the success of the oscillator they create, as they rely
upon a constant influx of new reagents to drive the oscillator. Matsumaru and
colleagues echo Müller-Schloer’s concerns about organic computing: Emergence
is a key property of chemical systems (and simulations), but the bottom-up ap-
proach to programming is difficult to program (and to control) effectively [30].

Where chemically- and biologically-inspired computing systems excel is in
exploring new methods of parallelization as wellas providing platforms for mod-
eling and controlling complexity and emergence as they can be exhibited in real
systems. What they lack is suitable verisimilitude to real molecules (and any
continuous path to improve this) to allow their results to be more generally appli-
cable to either massively-parallel programming systems or chemically-embedded
systems.

1.3 Simulated Protein Computing

The model presented here is meant to be a hybrid approach between computing-
inspired laboratory methods and lab-inspired computing methods. Its purpose
is to help explore, simultaneously, and in a breadth-first manner, the following:

1. How might an abstract model of chemical interactions be used as the basis for
a new computing architecture? Given that silicon-based models of molecular
interactions are bound to be crude for now, how can we abstract the chemical
model so that it can easily be upgraded over time?

2. How might we develop a (relatively) inexpensive, software-based simulation
that provides the opportunity to explore, quantify, control, and re-use com-
plexity in bottom-up systems such as we find in real, living cells?

Simulated protein computing has no more to do with real proteins [15] — at least
for now — than a genetic algorithm has to do with real DNA molecules [21].
When we speak of crafting protein programs, we are still talking about writing
text files that the computer will interpret and execute. Our intent, though, is not
merely to drape clever coding tricks in superficial biological metaphor, but is to
begin to explore the real capabilities and the real limitations that computer pro-
grams will exhibit when they are expressed as protein molecules. (See Table 1 for
a comparison of traditional computing with simulated protein computing.) Nei-
ther computer science nor proteomics is yet ready for this convergence, but our
experience suggests that the conjunction will be profitable to both disciplines.
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Table 1. Contrasting traditional computing and protein computing

traditional computing simulated protein computing

Advantages:

– determinism
– global memory: there is only one au-

thoritative value for each variable
– familiarity, and the amount of invest-

ment in the current architecture
– simplicity and directness: this method

is well suited for writing operating sys-
tems and word processors

Advantages:

– distributed memory: data proteins are
scattered across the simulation, pro-
viding for concurrent access

– parallelism: functional proteins are in-
dependent enzymes, all copies of which
can execute simultaneously

– distribution: coding enzymes can be
introduced to any location, and can
diffuse to new locations

– localization: proteins can have become
differentially concentrated across lo-
cations, providing for location-specific
computing

– separability: each function is an inde-
pendent particle, so computation is in-
nately separable

– emergence: differential computa-
tion supports experimentation with
self-modifying approaches to solving
difficult problems, such as artificial
intelligence or drug design and delivery

– hybridization: protein computing is in-
spired by, and can inform, both infor-
mation science and life science

Disadvantages:

– serial execution
– difficulty scaling: concurrency must be

handled by the programmer
– inseparability: not all problems are

equally separable

Disadvantages:

– non-determinism
– distributed memory: variable values

can only be established by assay
– novelty: writing code for this architec-

ture requires a different mindset

2 Method

Programming within a living organism will mean fracturing the building blocks
with which we build software. It is tempting to think of a cell as if it were one
processing unit, but this would be a mistake. Though the nucleus may help
to direct cellular activities, these processes occur throughout the cell, albeit
in specialized forms depending on the location, and most often through the
interaction of proteins. Our simulation creates a virtual cell as a collection of
small, uniform volumes within which independent logical proteins interact. In
a real cell, each of these spaces would contain the proteins that react; in our
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simulation, each compartment maintains its own estimate of the proteins that
may be present, treating each compartment as if it were a tiny reaction vessel.

There are two types of biological molecules that the simulation supports: inert,
structural proteins, that are analogues to plain data in traditional programming,
such as the integer 5; and enzymes, that can bind to other species, and interact
with them, that are analogues to subroutines in traditional functional program-
ming languages, such as “IF(condition, true-result, false-result)”.

Each new architecture entails new assumptions. Approaching programs as if
they were proteins means assuming that many of the standard tools of digital
computing are no longer available. There is, for instance, no longer a CPU. Ev-
ery enzyme (active protein) is its own processor, working at the same time as
all others, but without any knowledge of them except through their influence on
the local, shared environment. There is also no main memory. The variable “X”
no longer is a unique location in memory, but may exist in thousands of copies
— each with its own value — across multiple locations. This means that though
performing individual calculations may be very fast, determining an consensus
output value may be very time-consuming, requiring an assay to establish the
distribution of values. In traditional programming, the code directly manipulates
a variable’s value; in simulated protein computing, the code shapes a variable’s
probability density function. Arguments are no longer passed into functions, but
functions have binding sites into which available proteins of the right shape and
pattern may bind when needed. Subroutines are written as substrates for com-
puting. This means that there are times when an enzyme gets a chance to become
active, but cannot do so, because no suitable inputs are available to satisfy the
binding sites. Lastly, intermediate computations inside of any subroutine (en-
zyme) no longer matter. The only state changes the system recognizes involve:
denaturing a protein, thereby removing it from the local environment; assem-
bling a new particle (or new conformation) from one or more existing particles,
and introducing it into the local environment; and moving chemical species from
one location to another (diffusion). See Table 1 for a comparison of these two
architectures.

The main event loop in this type of system changes from the von Neumann
architecture’s “fetch-execute” to one in which every cellular compartment does
the following every time step: the compartment accepts species that infuse from
neighbouring locations; generates a sample of proteins present at the physical
location being simulated (from the probabilistic profile of the proteins that may
be present); allows each protein the opportunity, if it has a functional form, to
bind and react with the other proteins present in the sample window; takes the
resulting list of proteins created, destroyed, and modified in the previous step,
and updates the reaction vessel’s profile of proteins likely present; computes
gradients against its neighbours, and prepares a list of diffused proteins to export
to each neighbour at the beginning of the next time step.

Proteins are large molecules, but small processors, so protein programs look
very much like low-level routines in which every smallest step must be rep-
resented explicitly. Our simulated enzymatic programs assume that there are
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functional motifs — blocks of amino acid residues — that serve as the equiv-
alent to machine instructions. These motifs, treated as if they were indivisible
units, are assembled into simple tree-shaped programs that resemble to abstract
syntax trees for a functional language. (See Figure 1 and Figure 3 for example
programs used in the experiments described later in this work.) Every motif,
when it is evaluated, returns a single value; these values are passed up the tree,
reaching the head where the final value is discarded, because — as pointed out
earlier — all intermediate results are meaningless once they have been used. The
only motifs that change the environment are EMIT, responsible for introducing
a new protein into the local environment, and DENATURE, which is responsible
for removing an existing protein from the local environment. Table 2 shows the
same function implemented twice, once in traditional pseudo-code and once in
the form that might be used in this biologically inspired architecture.

Table 2. Contrasting two implementations of the same function

traditional pseudo-code simulated protein computing

function get_minimum(A, B)

{

if (A < B) return A;

return B;

}

(if

(and

(exists (match value (.*)))

(exists (match value (.*)))

)

(if

lt($1, $2)

(complex (emit $1) (denature $2))

(complex (emit $2) (denature $1))

)

)

One important difference between these two code samples is that the tradi-
tional version creates a new value that is a copy of whichever input parameter
represents a lesser value; the protein version binds two values from the local
environment, and replaces the greater value into a copy of the lesser. Whereas
the former method creates a single, definitive answer, the latter method merely
alters the distribution of values in the local environment. Another important
difference is that the traditional version will always return a value when it is
invoked; the protein version can only run when its local environment includes
two VALUE proteins that can bind into its activation regions. This means that
protein programs have reaction rates that are influenced by the concentration of
other proteins nearby. This is a concern (and an opportunity) that programmers
working in real biological systems will have, but that traditional programmers
will not have.

To implement the method fully requires substantially more information about
how the system is defined, constrained, and run, including: the language model,
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with both syntax and operators; the modular abstraction of chemistry, including
which reactions are allowed and how to compute chemical gradients; the (lossy)
data compression used to handle the large volume of data about what protein
species may occupy a given reaction vessel; the encoding that allows the sec-
ondary conformation of the protein programs, their tree shape, to be inferred
from their primary conformation; the macro facility that allows certain proteins
to be stored without loss of fidelity; the geometry of simulated cells and their
constituent compartments; the extensible monitoring that allows us to probe
any compartment; the graphical display of results as the simulation progresses;
the XML pre-processor that simplifies writing source code for this platform; etc.
These details exceed the scope of the current argument, and so are omitted.

3 Experiments and Results

Foregoing the programmers’ canonical, “Hello, world!”, this paper focuses on
three separate experiments: two NAND experiments and a decomposition
experiment.

The logical NOT AND (NAND) function compares two boolean values: If both
inputs are TRUE, the result of the function is FALSE; otherwise, the function re-
turns TRUE. To explore correctness, we present two versions of NAND. The first
operates directly on raw numbers, and demonstrates the accuracy of the compu-
tation. The second version operates on labeled complexes, and demonstrates how
networks of cascading NANDs can be executed reliably by a simulated protein
computer. Jointly, the NAND experiments are important, because any universal
binary computer can be simulated using nothing more than NAND functions.

The last experiment is a simple decomposition reaction that we use to explore
the performance implications of protein programming.

3.1 Unlabelled NAND and Correctness

Assume that the simulation is roughly analogous to a flask containing various
reagents. In the unlabelled NAND case, the flask contains only these reagents
in equal proportions: integer value 0, an inert data species; integer value 1,
an inert data species; and NAND, an enzyme that can bind to two inert data
species. Once it binds to two data elements successfully, it then (and only then)
applies the NAND function to its two bound inputs, and transforms one of them
(selected randomly) from its bound input value to the result of the function.
Once the evaluation is complete, the two bound species — one as given, and one
transformed to the function result — are released back into the environment.
Figure 1 illustrates this program.

The total number of particles in the system is fixed. (While the system does
not enforce conservation of mass, it is recommended.) The only change in the
system over time is the relative proportion of zeros and ones as the data proteins
are transformed by the enzyme. Figure 2 is a scatter plot that displays the
sampled concentrations of ones and zeros in the simulation over time.
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IF

AND

t e s t

COMPLEX

t h e n

EXISTS EXISTS EMIT DENATURE

NOT

add to
env i ronment

AND

MATCH MATCH

NOT-YET

bind

VALUE

defer
wildcard

evaluat ion

NOT-YET

bind

VALUE

defer
wildcard

evaluat ion

$ 1 $ 2

IF

remove from
env i ronment

RANDOM

t e s t

$ 1

t h e n

$ 2

else

Fig. 1. Unlabeled NAND

Fig. 2. Unlabeled NAND output. The black points represent the sampled concentration
of ones; the red points represent the sampled fraction of zeros.

Within approximately 100 simulated time steps, the system reaches a rough
equilibrium, in which the increase in the concentration of ones is offset by the
increasing likelihood of the NAND function to return 0 in an environment dom-
inated by ones. Assuming that we adopt the convention that the concentration
of integer ones is [#1], and the concentration of integer zeros is [#0], we can
express this equilibrium in its algebraic form as:

d[#1]

dt
= −d[#0]

dt
= −[#1]2 + [#1][#0] + [#0]2 (1)



Breaking the Box: Simulated Protein Computing 461

Given the additional constraint that, because we are preserving mass, the total
number of integers (data proteins) remains fixed, the system becomes solvable:

[#0] =
3−√

5

2
≈ 0.38, [#1] =

√
5− 1

2
≈ 0.62 (2)

The algebraic solution to the system matches the equilibrium on which the sim-
ulation fairly quickly settles, suggesting that the sampling and computation are
being performed correctly.

3.2 Labelled NAND and Completeness

The initial test was artificially simple: There are very few useful applications
that consist of a single, isolated calculation. It is more important to investi-
gate whether serial computations can be performed reliably. To explore whether
biologically-inspired computing can satisfy this requirement, we introduced la-
beled complexes (akin to tagging biological chemicals) into the system.

This second test uses labels to identify each piece of data as specific to one
stage in a multi-stage computation. Each stage is tagged with a different label,
and the stages together constitute a network of cascading NANDs. Being able
to construct and coherently run such networks is relevant to the reach of the
computing system, because NAND networks are sufficient to emulate any other
function on a universal computer.

The reaction vessel is initialized with these species: complex (A,0), an inert
data species, in which “A” is the label, and “0” is the value; complex (A,1), an
inert data species, in which “A” is the label, and “1” is the value; NAND(A,A)
→ B, a function that binds to two integer values that share the “A” label,
computes the NOT AND result on these two operands, and then converts one
of these bound inputs to the output value, changing its label from “A” to “B”
(see Figure 3); NAND(B,B) → C, similar to the function described previously,
but using different labels.

IF

AND

t e s t

COMPLEX

t h e n

EXISTS EXISTS EMIT DENATURE

COMPLEX

add to
env i ronment

NOOP:B

t a g

NOT

AND

MATCH MATCH

COMPLEX

bind

NOOP:A

t a g

NOT-YET

COMPLEX

NOOP:A

t a g

NOT-YET

VALUE

defer
wildcard

evaluat ion

VALUE

defer
wildcard

evaluat ion

bind

GET-CHILD GET-CHILD

$ 1 1 $ 2 1

IF

remove from
env i ronment

RANDOM

t e s t

$ 1

t h e n

$ 2

else

Fig. 3. Labeled NAND
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Because we have already established that a single NAND performs as ex-
pected, we monitored only the total number of data elements that were labeled
for each stage in the computing chain: A, B, and C. The results appear in the
scatter plot in Figure 4.

Fig. 4. Labeled NAND output. These are the particle counts, determined by assay,
from the labeled NAND at each time step. The light gray points are the concentration
of data element A; the black points are the concentration of data element B; and the
red points are the concentration of data element C.

Note that the unreplenished inputs, labeled A, diminish over time as expected.
Species B begins at a concentration of zero — because none were introduced into
the reaction vessel, but must arise as a result of NAND(A,A) producing them —
and increases. Species B, however, grows more slowly than species A decreases,
because NAND(B,B) is consuming B to produce species C. These progressions
validate an important property: the nominally serial computation is honouring
the serial dependencies as expected, even while the reactions themselves are
occurring in parallel. Additionally, Figure 5 shows that the simulated interactions
of proteins are behaving as would be predicted by the differential equations that
we would expect using Runge Kutta 4:

dA

dt
= −kA ·A, dB

dt
= −dA

dt
− kB ·B,

dC

dt
= kB ·B (3)

As in the unlabelled case, the labeled NAND has produced behaviours that are
consistent with what would have been predicted of a real, wet-lab system.

3.3 Decomposition and Performance

If protein computing is ever to be useful, it ought to provide performance advan-
tages over traditional computing. To evaluate the expected performance increase
of wet-lab computing over simulated protein computing, we focused on a simple
decomposition reaction: E + S → ES → E + P. “E” is the enzyme catalyst;
“S” is the substrate; and “P” is the product. As a simulated protein program,
E binds to S, emits P back into the environment, and denatures S. The activity
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Fig. 5. Predicted output from the labeled NAND. Given the equations as written in
(3), these are the curves that Runge Kutta 4 would predict. The light gray points are
the concentration of data element A; the black points are the concentration of data
element B; and the red points are the concentration of data element C.

of a real, yet fairly simple, enzyme can be characterized as a function of the
amount of substrate present. We did this for the artificial case, fixing the en-
zyme at 1000 particles, and allowing the amount of substrate to range from 0 to
twice the amount of enzyme present; each test case was replicated 20 times. The
resulting average activity is plotted in Figure 6; the double-reciprocal of these
data appear in Figure 7.
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Fig. 6. The Michaelis-Menten plot of enzyme velocity (activity), V, versus substrate
concentration, [S]

This double-reciprocal plot is only interesting, because the best-fit line has
an R2 value of 0.998, and a good linear fit of data on this plot happens to be
typical of simple real-world enzymes. It is also simple, if nave, to estimate the
Michalis-Menten constants from this plot using Equation (4), concluding that
Km ≈ 4111 particles, and vmax ≈ 318 activations per second.

1

v
=

Km

vmax
· 1
x
+

1

vmax
(4)

Inspecting Figure 6 suggests that the analysis is off, because the curve appears
to be nearing a plateau much faster than the expected vmax of 318 would imply;
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furthermore, since the Km maps to the concentration of substrate at which the
enzyme performs at half its maximum velocity, it seems unlikely that a Km of
greater than 4000 is warranted.
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Fig. 7. The Lineweaver-Burk double-reciprocal plot of enzyme velocity (activity), 1/V,
versus substrate concentration, 1/[S]

To estimate the performance of this simple decomposition if it were conducted
entirely through real proteins rather than through simulation, temporarily as-
sume that the complexity of the simulated deconstruction enzyme, E, is roughly
comparable to the complexity of acetylcholinesterase (AChE). This likeness is
motivated by the fact that AChE also decomposes its substrate (acetylcholine);
in the experiments conducted here, E also performs only a single decomposition.
Because the simulation used 1000 enzyme particles, the theoretical maximum
number of times that any single E enzyme could activate per second is 0.318;
AChE can react approximately 12,500 per second [20]. The implication is that
real AChE outperforms the simulated E by a factor of roughly 39,000. Given
the overhead of the simulation, that performance increase does not appear to be
substantial, but the cursory analysis is misleading.

There are many difficulties in comparing the simulated decomposition enzyme
to real AChE: there is no evidence to support the supposition that AChE’s en-
zymatic efficiency is anywhere near that of E; there is, in fact, no basis for
establishing an enzymatic efficiency for E at all; the mechanics of the artificial
protein chemistry are so simple that there is almost no way to draw realistic com-
parisons to real proteins. Despite these difficulties, it is possible to appreciate
better the increase in performance that protein computing represents by con-
ducting a simple thought-experiment: One drop of a 0.1 mM solution of AChE,
provided with a surfeit of substrate, would produce approximately 3.75 × 1019
reactions in a single second. The Jaguar cluster at Oak Ridge National Labora-
tories is a a super-computer that, as of December 31, 2009, was at the top of the
list of high-performance computers in the world [38]. Jaguar contains just over
2.7 million computing cores [32], each no more than 100 times more powerful
than the desktop machine on which these tests were run. If this simulation were
written so that it could occupy 100% of the Jaguar’s resources, and there were
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(magically) no inefficiencies introduced from the parallelization, it would still
take more than 13 years to complete the equivalent computation performed by
that one drop of AChE in one second.

Clearly, this is the kind of spurious extrapolation that invites ridicule, because
it is clear that a considerable portion of the chemical reactions taking place
represent redundant work. The obvious question to ask is: How much of the work
being done is useful? Think of the computations in terms of breadth and depth,
where breadth represents similar reactions occuring at an early stage in a much
longer chain of computations, and depth represents progress down any single
(potentially very deep) computational chain. If, out of one million enzymes, 90%
are executing the equivalent of instruction #1, then they represent the breadth
of computing; the 10% that are executing the equivalent of some later calculation
in the larger effort represent the depth of the computing that is taking place.
If one assumes that each unit time results in some (average) fraction, p, of
all enzymes reacting, then the expected distribution of protein reactions will
peak at �p · t�, where t is the number of time units that have transpired. This
means that the depth of computation increases linearly with the time elapsed,
allowing one to conclude that — even when much of the computation in a protein
system is duplicative, and seemingly wasteful — any single computational path
is proceeding forward very rapidly.

This exaggerated extrapolation of expected throughput also serves another
real purpose: It highlights two important properties of protein computing, both
of which motivate continuing this research to find better ways to learn how to
program within this paradigm:

1. Compactness: Real proteins, whether they are enzymes or inert data, can
fill a small volume with large numbers, providing both for fast execution as
well as significant exploration. Silicon computing, in contrast, occurs in only
two dimensions.

2. Frictionless scaling: Given adequate substrate, two drops of enzyme solution
will yield twice the product that one yields, because the activation of each
molecule is entirely independent. Traditional computing, in contrast, imposes
an increasing communication inefficiency as the number of computing units
increases.

The core opportunity that real protein computing represents is to take advan-
tage of the three-dimensional density of real containers in a way that is subject
to fewer diminishing returns. The core opportunity that simulated protein com-
puting represents is a way to explore the vagaries of programming in an entirely
new way.

3.4 Conclusions

The two successful NAND experiments provide evidence that the simulated pro-
tein computing method described here is functionally complete, meaning that
it can compute any binary-valued function [33]. This property makes it possi-
ble for protein computing to reproduce any function that is expressed within
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a modern silicon processor. Because we assume that our traditional computing
devices are universal, this same assumption now extends to include the model of
protein computing presented here [39], [37], [16], even though traditional notions
of recursive enumeration do not appear to apply to protein programs.

Of greater impact than its universality is the system’s ability to scale up.
Breaking calculations into pieces that can be sent to multiple computers in par-
allel is difficult, time-consuming, and prone to introduce error. Programming
in the simulated protein environment presents a learning curve, because it is
very different than traditional programming, yet all of the programs that get
written can immediately be run across an arbitrarily large number of proces-
sors. Simulating a non-von Neumann architecture on a traditional computer is
not particularly efficient, but it allows us to become familiar with the capabil-
ities and pitfalls – including emergent properties arising from this bottom-up
approach – of such a programming method until such time as a true in vivo
implementation is available when it is conceivable that a solution of proteins
— planned and refined in a software simulation — is introduced to a colony
of generic cells; as the solution washes across the millions of living organisms,
the foreign proteins invoke a chain of responses that culminate in an assay that
provides the distribution of problem results. In such a system, it is not merely
each of the millions of cells that is a processor, but each of the cells is a col-
lection of millions of processing units, freeing us at last from the fetch-execute
bottle-neck [36].

Notes and Comments. The germ from which this project grew — “What would
it look like if we could use proteins to write programs?” — began as a project
jointly conceived with Dr. Kayvan Najarian, now at Virginia Commonwealth
University.

Dr. Seok-Won Lee of UNC Charlotte was instrumental in reviewing early
drafts of this text. Dr. William Tolone and Dr. Zbigniew Ras also served as
reviewers.

Full source code for this project (licensed under the GPLv3) is available via
http://www.simulatedproteincomputing.org.
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