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Abstract. Reconstruction of gene networks has become an important activity in 
Systems Biology. The potential for better methods of drug discovery and of 
disease diagnosis hinge upon our understanding of the interaction networks 
between the genes. Evolutionary methods are proving to be successful in such 
problems and a number of such methods have been proposed. However, all 
these methods are based on processing of genotypic information. We have 
presented an evolutionary algorithm for reconstructing gene networks from 
expression data using phenotypic interactions, thereby avoiding the need for an 
explicit objective function. Specifically, we have also extended the basic 
phenomic algorithm to perform multiobjective optimization for gene network 
reconstruction. We have applied this novel algorithm to the yeast sporulation 
dataset and validated it by comparing the results to the links found between 
genes of the yeast genome at the SGD database.  

Keywords: Gene networks, Phenomic algorithm, Multiobjective optimization, 
Evolutionary algorithms, Yeast Sporulation, Microarray data analysis. 

1 Introduction 

Advances in methods of gene expression measurement have heralded the advent of 
high throughput methods such as microarray technology. Biologists now can study 
hundreds of genes at a time, and such studies lead to the elucidation of relationships 
between genes which ultimately lead to a better understanding of the cellular 
processes that form the basis of life. However the datasets that result from such 
studies have high dimensionality. The challenge is to analyze such datasets without 
compromising their information content. Several researchers have developed methods 
of analysis which can determine useful patterns from the datasets without 
compromising the dimensionality [1].  

Gene networks represent relationships between genes, based on observations of 
how the expression level of each gene affects the expression levels of the others [2]. 
The determination of these relationships from gene expression measurements is a 
reverse engineering or reconstruction activity [3]. Evolutionary methods have been 
found to be useful [4] to analyze and capture the relationships between hundreds of 
genes. The application of new ideas of evolutionary optimization to the inference of 
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gene networks is an ongoing process and many non-conventional methods have 
shown remarkable success [5]. The Phenomic Algorithm, introduced in [6], and 
further studied in [7], is one such method. It presents an evolutionary approach based 
on phenotypic interactions rather than genotypic mechanisms which are used in 
traditional evolutionary algorithms.  

In this paper, we have modified the basic phenomic algorithm to handle multiple 
objectives. It is possible to employ multiobjective optimization to elucidate gene 
networks which are more biologically plausible [8]. We have used non-dominated 
sorting in order to determine the pareto-optimal solutions that best represent the 
balance between the objectives that we have chosen to optimize. We have applied the 
multiobjective phenomic algorithm to the yeast sporulation dataset [9] and results 
show a marked improvement in the quality of networks discovered. 

The rest of this paper is organized as follows: In Section 2, we review the related 
work done by others. We devote Section 3 to a discussion about the methodology 
adopted by the basic phenomic algorithm and its implementation. We discuss the 
rationale for modification of the basic phenomic algorithm in Section 4 and its actual 
implementation in Section 5. Finally, Section 6 presents the results and validation, 
followed by Section 7 which concludes the paper. 

2 Related Work 

While early methods for reconstruction of gene networks focused on inferring 
Boolean networks [10] others have used differential equations [11], [12], [13] and 
Bayesian networks [14], [15] to infer qualitative, as well as quantitative models of 
gene networks. Given that gene networks are intrinsically nonlinear and dynamic 
systems, some researchers [8], [16] have used the S-system proposed by Savageau 
[17] in order to formulate an objective function for the evolutionary algorithm that 
they use to reverse engineer gene networks.  

State space models [18] and information theoretic approaches [19], [20] have also 
been successfully applied to the problem of inferring gene networks from microarray 
data. In recent years machine intelligence based approaches [21], [22], [23] are 
becoming popular in this area due to their relative ease of application. A number of 
multiobjective evolutionary algorithms (MOEAs) have been applied to the problem of 
reconstructing gene networks from expression data [24], [25]. Notable among these 
algorithms is the non-dominated sorting genetic algorithm (NSGA) and its variations 
which have been applied to the problem of classification of cancer based on gene 
expression data [26], [27], [28].  

The application of MOEAs to the elucidation of gene networks is an area which is 
receiving a large amount of focus from researchers due to the perceived benefits in 
applications such as drug discovery and the diagnosis of chronic diseases. This has 
been the motivation for the development of the phenomic algorithm [6], [7] which 
attempts to solve the problem of requiring an explicit fitness function for the 
optimization process. In this paper, we extend this algorithm to perform multiobjective 
optimization.    
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3 Basic Phenomic Algorithm 

The basic phenomic algorithm is initialized with a population of individuals. Each 
individual has genetic information embedded within it. In the phenomic algorithm, we 
embed the expression of a gene within the individual. When constructing gene 
networks, we study the relationship between genes. If gi and gj are objects 
representing two such genes, their expression patterns across m samples may be 

written as { }mkwg iki ≤≤= 1  and { }mkwg jkj ≤≤= 1 .  

When the microarray dataset contains records which represent the expression of 
each gene at m time-steps (instead of m samples) of an experiment, it is possible to 
verify whether the expression pattern of a gene gi at a time-step (t-1) has any 
correlation with the expression pattern of a gene gj at time t. For this, we define the 
Pearson correlation coefficient across time-steps (from gene gi at time-step t = (k-1), 
to gene gj at time-step t = k), as given in Eqn. (1). 
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In the basic phenomic algorithm random pairs of genes are considered at a time and 
the proximity measure between them is calculated. Once the proximity measure is 
calculated, typical gene interactions such as “meet”, “know”, “like”, “dislike”, etc. are 
defined as operations on genes gi and gj, as shown in Eqns. (2) to (4). 

onceleastatpartnerswerejgandigiffTRUEreturnsjgigmeet ,),(  . (2)

subnetworksametheofpartaregandgiffTRUEreturnsggknow jiji ),( . (3)

DggPeariffTRUEreturnsgglike jiji ≤),(),(  . (4)

These operations determine the character of the phenotypic interactions that take 
place between gene objects. By storing links between genes that “like” each other it is 
possible to elucidate the relationships that are required for reconstructing the gene 
network. A brief description of the main features of the basic phenomic algorithm is 
given below: 

1. Modeling Genes as Individuals: While modeling the genes as individuals, 
the expression profile of the gene is embedded within the object itself. Also the 
relationships with other genes which are discovered during the interaction phase are 
stored within the individual itself.  

2. Simulating Gene Interaction: The stage is set for the survival-of-the-fittest 
by letting individuals to meet randomly. Eqns. (2) to (4) define the typical nature of 
these interactions between partners that meet. 
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Procedures for implementing the typical interaction criteria given in Eqns. (2) to (4). 

meet(gi, gj) 
( 
if(gi.MET[gj]) 
         return TRUE; 
else 
         { 
         if(!know(gi, gj) and like(gi, gj))  
             link(gi, gj); 
         set gi.MET[gj] = TRUE; 
           } 
} 
 
know(gi, gj) 
( 
if(gi.LINK[gj]) 
          return TRUE; 
} 
 
like(gi, gj) 
( 
if(Pear(gi, gj) ≤ D) 
         return TRUE; 
} 
 
 
3. Enforcing Natural Processes: From time to time the population is 

consolidated by eliminating individuals which are replicates and have not acquired 
any links with other individuals. At the end of the process, the links between the 
genes, which are stored in the individuals, are used to construct the gene networks. 

The structure of the basic phenomic algorithm is very similar to a genetic 
algorithm since phenotypic processing is encountered in every generation. Interested 
readers may refer to D’Souza et al. [6], [7] for further details of this algorithm. In the 
following sections, we have modified the basic phenomic algorithm to handle 
multiple objectives for optimizing the inference of gene networks. 

4 Multiobjective Optimization 

The inference of gene networks from microarray data is a problem where multiple, 
and often conflicting, objectives come into play. In this section, the fundamental 
concepts of MOEAs are presented and thereafter, multiple objectives are chosen for 
optimizing the inference of gene networks.  
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4.1 Multiobjective Evolutionary Algorithms 

Early evolutionary algorithms were focused on optimizing single objectives. 
However, most optimization problems have multiple objectives. Optimization of 
multiple objectives requires that the relative importance of each objective be specified 
in advance which requires a prior knowledge of the possible solutions. But, by using 
the concept of Pareto-dominance, it is possible to avoid the need to know the possible 
solutions in advance. This is one of the reasons for the popularity of such Pareto-
based approaches.  

Before applying Pareto-based multiobjective optimization, some of the relevant 
concepts are defined and discussed. Consider the following m-objective minimization 
problem [29]: 

)}(,),(),({

),(min

21 XfXfXfF

XF

m=
. (5)

Where f1, f2,…, fm are the m objectives. F(X) could as well have been a maximization 
problem, but it is arbitrarily chosen to discuss from a minimization perspective. 

1. Dominance: A solution X is said to dominate a solution Y if ∀j = 1, 2, . . ., m,  
fj(X) ≤ fj(Y), and there exists k ∈ {1, 2, . . ., m} such that fk(X) < fk(Y).  

2. Pareto-Optimal Solutions: Solution X is called Pareto-optimal if it is not 
dominated by any other feasible solutions. Pareto-optimal, or non-dominated, 
solutions are those solutions which do not dominate each other, i.e., neither of them is 
better than the other in all the objective function evaluations.  

3. Pareto-Front: The locus that is formed by a set of solutions that are equally 
good when compared to other solutions of that set is called as a Pareto-front. The 
solutions on each pareto-front are pareto-optimal with respect to each other.  

In the next section, suitable objectives are selected based on the current knowledge 
of the biological properties of gene networks. 

4.2 Multiple Objectives for Optimization 

It is well known that most biological networks display the small-world network 
property that predicates sparseness between key nodes and dense local connections 
around each key node. This definition of small-world networks was offered by Spieth 
et al. [8]. In a conventional multiobjective evolutionary algorithm, the similarity of 
the target network to small-world networks could be used as an objective in order to 
determine the network that has the optimal number of links. Also, since the intention 
is to find as many links as possible, the number of links discovered could be used as 
the other objective. The two objectives are formally defined as Number of Links 
(NOL) in Eqn. (6) and Small-World Similarity Factor (SWSF) in Eqn. (7): 
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where lij = 1 if gene gi is linked to gene gj, else lij = 0 (taken from the adjacency 
matrix of the network), N is the total number of genes in the target network, nk is the 
number of nodes with out-degree of k, and C is the maximum cardinality of the set of 
genes that can influence any given gene. While optimizing, the objective NOL is 
maximized, whereas the objective SWSF is minimized. It should be noted here that 
the algorithms based on the phenomic approach do not directly evaluate solutions 
using Eqns. (6) and (7). These equations are given so that they can be used in other 
MOEAs whose results will be compared with the results of the phenomic algorithms. 
In the multiobjective phenomic approach the two objectives are realized indirectly as 
follows: 
 
1. Multiobjective Screening: The objective NOL is implemented here by screening 
out duplicates without losing captured links. In multiobjective screening, the two 
individuals that meet check if their gene ID is the same. If so, the links captured by 
both the individuals up to that point are all copied into one of the individuals and the 
other is deleted. Thus the average number of links-per-gene will go on improving 
from one generation to the next.    

The multiobjective screening procedure. 

multiobjective_screening(gi, gj) 
( 
if(gi.ID = gj.ID) 
         appendLinks(gi, gj); 
         delete(gj); 
} 
 

2. Multiobjective Phasing: The SWSF objective is implemented here by introducing 
a two-phased process. Initially, when two genes with dissimilar gene IDs meet, they 
are allowed to link without restriction, based on typical interaction criteria given in 
Eqns. (2) to (4). However, after a certain number of interactions (which is a parameter 
set at the beginning of the run) a pair of genes is allowed to link only if the first one 
has more links. Since, at any given time, all genes will not have undergone the same 
number of interactions; there will be many genes which have more links than the 
others. The net effect is that some key nodes will capture many more links than the 
others and most nodes will have very few links. 



446 R.G.L. D’Souza, K.C. Sekaran, and A. Kandasamy 

The multiobjective phasing procedure. 

multiobjective_phasing(gi, gj) 
( 
if(PHASE = 1) 
         meet(gi, gj); 
else 
         if(PHASE = 2) 
             if(gi.LINKS > gj.LINKS) 
               meet(gi, gj); 
} 

There is no need of fitness functions since there is no explicit fitness evaluation 
and only individuals that are fitter than others survive into the next generation. 

5 The Multiobjective Phenomic Algorithm 

The multiobjective phenomic algorithm is initialized in the same manner as the basic 
phenomic algorithm.  
 
 

 

Fig. 1. Sequence of processing in the Multiobjective Phenomic Algorithm 
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As shown in Fig. 1, most of the sequence of processing and functions are the same 
as in the basic version, except for the changes that introduce multiobjective 
considerations. As explained in the previous section, the objective SWSF is achieved 
by applying multiobjective phasing criteria at the interaction phase of the algorithm. 
Also, the objective NOL is achieved by introducing multiobjective screening 
(described in the previous section) in the consolidation phase of the algorithm. The 
features of the basic algorithm, such as segmentation, interaction and consolidation, 
which contribute to the scalability and robustness of the algorithm, are retained in this 
multiobjective version. 

The consensus network that is formed in the consolidation phase is just the simple 
union of all the links in the two individuals being consolidated at that point. It should 
be pointed out here that in the basic version of the algorithm, the links in one of the 
individuals were lost when one of them was randomly deleted. Retaining all the links 
in that algorithm would have led to a proliferation of spurious links since there was no 
mechanism to restrict the growth of links. In the current version, the interaction phase 
employs multiobjective phasing which, as explained in the previous section, limits the 
growth of links after a certain stage.  

The multiobjective phenomic algorithm and its main functions. 

multiobjective_phenomic_algorithm( ) 
( 
divide gene expression data into segments; 
initialize population with first segment replicated; 
set segment count to 0; 
 
while population has not reduced to size of single 
segment and there are more segments to process 
   { 
   interact_population; 
   consolidate_population; 
   replicate and add next segment; 
   increment segment count; 
   } 
 
read gene-links stored in the final population; 
display gene networks constructed from links; 
} 
 
interact_population( )  
{ 
for a preset number of iterations 
   { 

   randomly select two individuals from population; 
   apply multiobjective phasing interaction criteria; 
   } 
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} 
 
consolidate_population( ) 
{ 
for a preset number of iterations 
   { 

     randomly select two individuals from population; 
   apply multiobjective screening criteria; 
   } 
} 
 

The results obtained from this algorithm and its performance are discussed in the  
next section. 

6 Results and Discussion 

The Multiobjective Phenomic Algorithm (MPA) was run on the Yeast sporulation 
dataset [9]. The expression profiles of 6118 genes are included in this dataset. From 
these profiles, only those that show a 2.2-fold increase in mRNA levels were 
extracted by Chu et al. [9]. Among them, finally, only the 45 genes were found to be 
significant by Kupiec et al. [30].  

In Fig. 2, a typical gene network inferred by the MPA is shown. It is only one of 
the networks that were inferred in that run. Each run of the MPA infers anywhere 
between 10 to 15 networks. In the network of Fig. 2, for example, node 17 is shown to 
have a large number of links. This node represents the gene RFA1, which indeed is a 
crucial yeast gene. As per the SGD database [31], RFA1 is a “subunit of hetero-
trimeric Replication Protein A (RPA), which is a highly conserved single-stranded 
DNA binding protein involved in DNA replication, repair, and recombination.” Upon 
verification with the 220 interactions given in the SGD database, it was found that all 
the links shown in the network are true links.  

In Fig. 3, the value of D was set at 0.02. The number of links can be seen to be 
much higher. The links were verified by looking up the SGD database and most links 
were found to be valid. However, it was noticed that a few false positives had crept it 
at this stage. The comparison of inference methods developed by others was restricted 
to the following multiobjective evolutionary algorithms: 

 

Fig. 2. A gene network inferred by MPA when D = 0.015 
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Fig. 3. A Gene Network Inferred by MPA when D = 0.02 

1. Non-Dominated Sorting Genetic Algorithm Based Method (NSGA-Based): 
The NSGA due to Deb [25] was further improved by Deb et al. [26], [27]. In this 
algorithm, non-dominated sorting is performed on combined parent and offspring 
population to assign ranks to all the solutions. Based on these ranks solutions are 
copied over to the next generation. The NSGA is one of the standard MOEAs and 
therefore it was incorporated into a gene network inference algorithm developed by 
Spieth et al. [32]. This gene inference algorithm is based on the S-system model and 
uses Relative Squared Error (RSE) to evaluate the goodness-of-fit between model and 
the underlying data. 

2. Memetic Algorithm (MA-Based): The memetic algorithm developed by Spieth 
et al. [33] uses the S-systems model and a memetic search procedure for inference of 
gene networks. A genetic algorithm evolves the topology of the gene networks, while 
the S-system parameters are evolved through the memetic search procedure.  

 

 

Fig. 4. Boxplots comparing NOL and SWSF of networks inferred by three algorithms being 
compared  
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Number Of Links (NOL) and Small-World Similarity Factor (SWSF), which were 
defined in Eqn. (6) and Eqn. (7) are used as objectives, in addition to RSE, to perform 
multiobjective optimization. As seen from the boxplots in Fig. 4, MPA infers better 
networks than both the NSGA-based and MA-based methods. 
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7 Conclusion 

We have presented the reconstruction of gene networks using the multiobjective 
phenomic algorithm and also presented results obtained when running the algorithm 
on the yeast sporulation dataset. The phenomic nature of the algorithm is manifested 
in its focus on the phenotypic, rather than genetic, information of an individual. Due 
to the implicit survival-of-the-fittest mechanisms the need for an explicit objective 
function was avoided. 

Currently we are working on applying this algorithm to other datasets in order to 
study its effectiveness as optimization tool for inference of gene networks. 
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