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Abstract. Gene expression microarrays are commonly used to detect
the biological signature of a disease or to gain a better understanding
of the underlying mechanism of how a group of drugs treat a specific
disease. The outcome of such experiments, e.g., the signature, is a list of
differentially expressed genes. Reproducibility across independent exper-
iments remains a challenge. We are interested in creating a method that
can detect the shared signature of a group of expression profiles, e.g.,
a group of samples from individuals with the same disease or a group
of drugs that treat the same therapeutic indication. We have developed
a novel Weighted Influence - Rank of Ranks (WIMRR) method, and
we demonstrate its ability to produce both meaningful and reproducible
group signatures.
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1 Background

Microarray technology is often credited with leading the advancement in the field
of modern biological research and was coined as an Array of Hope shortly after its
introduction [1]. As microarrays have become commonplace in the laboratory,
the amount of gene expression data available in the public domain continues
to grow at a rapid pace. Microarray experiments, whether they set out to dis-
cover biomarkers for a particular disease or to characterize a group of similar
tissue samples, tend to have the same outcome: a list of differentially expressed
genes (DEGs). In recent years, a growing debate has developed surrounding the
scientific validity of microarrays in respect to their reliability [2-3]. Low repro-
ducibility of DEGs across independent experiments testing the same hypothesis
has become the norm [4]. Novel methods to detect robust group signatures from
gene expression experiments are needed.

Gene expression profiling has traditionally been used to detect genetic differ-
ences between various types of groups including detecting gender differences [5],
predicting cancer prognoses [6], segmenting and explaining diseases and their
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subtypes [7], and understanding the underlying mechanism of biological pro-
cesses and pathways [8]. Gene expression data are good sources for investigating
and predicting the potential therapeutic effects of a drug because they char-
acterize the response of the cell to external stimuli. A method that generates
more reliable and reproducible results (e.g., lists of DEGs) from gene expression
data is well positioned to become the core predictive model of a drug discovery
system.

It is important to note, however, that many factors complicate analysis of gene
expression experiments, including assumptions about the biological processing
of mRNA and confounding factors inherent in mRNA expression data. Further-
more, reproducibility has remained low among these types of experiments, calling
into doubt the validity of the detected signatures. For example, using an iden-
tical set of RNA samples across several different commercial platforms, Tan et
al. [9] found only four common DEGs. Both Ramalho-Santos [10] and Ivanova
[11] independently found only six DEGs in common among roughly 200 that
had been identified in each study (even though they had a similar study design
using the same platform). In another study by Miller et al. [12], who compared
the effect of varying platforms on the same samples, there were only 11 DEGs
in common of 425 DEGs that were found by CodeLink and 138 DEGs found by
the Affymetrix platform. These are all examples of studies that exhibit how cur-
rent methods are producing irreproducible signatures. This lack of reproducible
findings indicates that false positives are being detected, and that these methods
may be overfitting the data. Furthermore, many methods are complex and only
explain a group in a piecewise fashion (e.g., a decision tree-type model). We
believe that the ideal method does not require such strict filtering and instead
dynamically weights the influence of each probe based on the relative rank of
that probe within each member of the group.

We propose the creation of a group profile that will serve as the representative
profile for a given group of interest. A gene expression profile is the representa-
tion of the activity of thousands of genes at once for a given sample. A group
profile represents the shared activity of these thousands of genes across all of the
member samples belonging to the group. For example, we can create a group
profile consisting of all available antipsychotic drugs; we refer to this as an an-
tipsychotic profile. Traditionally, researchers attempt to find probes or genes
that form the signature for a group by evaluating probes above a certain fold-
change threshold. These methods will detect the signature common to the group
in the rare case that the shared effect is incredibly strong (and there are no
large experimental biases between the expression profiles). However, the major-
ity of the time, the true signal is missed because it is not significantly up- or
down-expressed in every one of the instances that make up a group (we refer
to this as the full group). These methods preferentially detect very big changes
within a subgroup of samples and then merge all of these differentially expressed
genes with a combination function. Unfortunately, this approach does not find
true signatures common to the full group and allows the method to overfit the
data. Our method differs from most previous methods by focusing on detecting
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signatures common to the full group, signatures that are normally overlooked
by other methods, e.g., decision trees and support vector machines, which can
explain a group as a combination of rules defining unknown subgroups.

The representation of a group profile is a ranked list of all probesets on the
microarray. A benefit of our approach is that this is the same representation
as a single profile. This representation allows any current and future methods
for non-parametric gene expression data to be used with our group profiles. We
can focus on the most up- and down-expressed probesets from the profile, which
we refer to as the signature of the group (separately they are the up and down
signatures respectively). For example, we can make use of methods developed
by others (e.g., Connectivity Map (CMAP) [13]) to use this antipsychotic group
profile to search a database for drugs sharing the same signature. Alternatively,
we can use still other methods (e.g., the L2L Microarray Analysis Tool [14])
to evaluate if any particular biological process is overrepresented within this
signature, an approach that would provide additional insight into the common
mechanism of antipsychotic therapies.

In this paper, we introduce and describe our rank of ranks method for group
profile creation. We evaluate the utility of this group analysis method using
a pilot study in which we focus on the antipsychotic group from the original
CMAP build 01 dataset. Our evaluation consists of both understanding the
group profiles biologically and demonstrating the ability to use a signature from
these profiles as a predictive model of therapeutic use. We conclude with a full
analysis of the newer, and larger CMAP build 02 dataset, including a sensitivity
evaluation of each group as well as the validation of the most robust profiles
within an independent dataset. All the results are available at GEPedia.org.

2 Problem Definition

Given a database D of treatments (i.e., drugs or other compounds), D = t1,...,
tn, we are interested in creating a set of group profiles. A group can be defined as
a set of instances (e.g., cells treated with a particular drug) that share something
of interest in common (e.g., the same therapeutic use, mechanism of action, side
effect, chemical structure). We are interested in understanding what is biologi-
cally common for a given group profile as well as evaluating the ability to query
the database with the group profile to predict new members of the group. Our
goal is to discover other drugs or treatments, perhaps originally developed for
a different therapeutic purpose, which are likely to also share the same thera-
peutic properties as the query group. These therapeutic agents are thus good
candidates for which new uses can then be evaluated.

For each treatment instance t in the database, there is both general infor-
mation about the experimental conditions of the sample as well as the actual
experiment data from the microarray itself. The gene expression profile is repre-
sented as a ranked list (amplitude of the treatment as compared to the control).
Information specific to the treatment (i.e., the name of the drug, the therapeu-
tic class [class] and subclass [subclass] as defined by the chemicals Anatomical
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Therapeutic Chemical [ATC] code) is represented. There is also information
that describes the experimental conditions of the sample, specifically the molar
amount of substance (mol), the vehicle used for delivery of the drug (e.g., wa-
ter, EtOH, MeOH, DMSO), and the batch or round in which the sample was
run. A group, and therefore a group profile, can be created from any of these
meta-labels associated with the samples.

3 Group Profile Creation (Weighted Influence Model -
Rank of Ranks Method)

Previous methods have demonstrated that weighted distribution-based statistics
can be more robust in detecting similarity in the pairwise comparison of gene
expression data [13]; therefore, we propose a method for determining what is
common among a group by also using a weighted method. This dynamic weight-
ing of probes allows us to avoid strictly filtering any probes as is done with a
fold-change threshold approach. We calculate the average rank of each probe
across the members of the group and then re-rank the probes based on this av-
erage rank. We refer to this as the Weighted Influence Model, Rank of Ranks
(WIMRR) method. The rank of each probe within each treatment t is known:
rank(p, probes(t)). Let us assume we have a binary membership function, mem-
ber(t, g), that returns 1 if treatment instance t is a member of group g and
returns 0 otherwise. The size of the group is equal to the number of treatment
instances that are members of the group. The average rank for each probe is
then calculated. Given this set of average ranks across the members of a partic-
ular group, the probes are now re-ranked according to how consistently they are
up- or down-expressed across the group. We define Profile(g) as the probes in
probes(g) sorted by their average rank across all members of the group.

4 Group Profile Evaluation - A Pilot Study

We make use of the original CMAP dataset (build 01) from the Broad Institute
to evaluate our group profile method as part of a pilot study. We refer to this
as the CMAP 1.0 dataset. We use this smaller, simpler dataset to characterize
our method. Later, we analyze the newer CMAP build 02 dataset (CMAP 2.0),
which contains many more treatments. For each treatment instance in the CMAP
dataset, probe sets are first ranked based on their level of expression relative to
the vehicle control in a fashion similar to the method described by Lamb et al.
[13]. A group profile is then created for each therapeutic use according to the
ChemBank annotation for the instances using our novel WIMRR method. The
signature of each group profile is created by selecting the top and bottom k
probes. For this evaluation, we set k = 50.

4.1 Antipsychotics from Pilot Study

We focus on the antipsychotic profile from the CMAP 1.0 dataset as an ex-
ample by which to analyze the WIMMR group profile creation method. The
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Fig. 1. The amplitude values for a) the top probe found by the group profile method
is from the BHLHB2 gene and b) the top probe by the fold-change method that is
greater than 2. The lines correspond to a fold-change of 2 and 3, respectively.

antipsychotic group is selected as the example because it includes a large num-
ber of unique drugs. The instances from the CMAP 1.0 dataset that are labeled
as antipsychotic agents according to ChemBank are used to create this group.
The antipsychotics profiled in this dataset include chlorpromazine, clozapine,
haloperidol, thioridazine, and trifluoperazine. There are 19 profiles total for this
group, consisting of replicates across different concentrations. The group profile
is created and the top and bottom 50 probes are selected to serve as the signature
for this group.

The top and bottom probes can both provide valuable insight. We focus on
the top 50 probes, but the same analysis can be performed with the bottom 50
probes in an analogous way. The amplitude value for the top probe (Affymetrix
probe id 201170 s at) is shown in Fig. 1A. This probe, which corresponds to the
basic helix-loop-helix domain containing, class B, 2 (BHLHB2) gene, is almost
exclusively up-expressed in all of the antipsychotic instances. We evaluate the
specificity of this probe by determining how this probe behaves across the whole
database (Fig. 2A). All but one of the antipsychotic instances (pink dots in
first column) show a clear increase in expression levels. The next set of groups
all contain drugs that are known to also act as antipsychotics; this is expected
if this probe is predictive of antipsychotic activity. The second group is the
tranquilizers (includes prochlorperazine, fluphenazine, and trifluoperazine), the
third group is antiemetics (includes prochlorpromazine and trifluoperazine), and
the fourth group is the antineoplastics (includes prochlorpromazine). There is a
clear pattern of antipsychotic activity related to the up-expression of this probe
across the database.

We now compare what we have seen with the top probe from our method
with a probe selected using more conventional methods. A potential alternative
method for selecting probes (and genes) of interest that has been used extensively
in the field has been to select probes that are commonly up-, or down-, expressed
above a particular threshold. The most common thresholds used in the literature
are fold-changes greater than or equal to either 2 or 3, which correspond to
amplitude values of 0.67 and 1.0, respectively. We select the best probe from this
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(a) (b)

Fig. 2. (a) Specificity of top probe, BHLHB2, from the group profile method. From left
to right, the first group is the antipsychotics, the second is the tranquilizers (includes
prochlorperazine, fluphenazine, and trifluoperazine), the third group is antiemetics (in-
cludes prochlorpromazine and trifluoperazine), and the fourth group is the antineoplas-
tics (includes prochlorpromazine). (b) The top probe from the fold-change greater than
2 method is not specific to antipsychotics. The first group is the antipsychotics, the
second is anti-inflammatory, the third is antineoplastics and the fourth is analgesics.

alternative method, determining the probe that exhibits a fold-change greater
than 2 in the most antipsychotic instances. The best probe found by this method
was for the SEMA3B gene. The amplitude values across all of the antipsychotics
for this probe are shown in Fig. 1B. Note that even though some of the individual
instances have a very high amplitude value, roughly one-third of the instances
have the opposite effect. Again, we determine the specificity of this probe to
the antipsychotics by evaluating how it behaves across the rest of the database
(Fig. 2B). Visually, we can see that this probe is not specific to the antipsychotics
at all.

As validation of our group profile method, we examine BDNF. BDNF (Brain-
Derived Neurotrophic Factor) has long been a candidate gene for both schizophre-
nia and bipolar disorder [15-17]. This additional information demonstrates how
this method can give insight into the etiology of the disease that these drugs
treat. It also demonstrates how the method extends beyond solely learning about
the mechanism of action of drugs. Turning back to the best result from the alter-
native (fold-change threshold) method, there is no known link between SEMA3B
and antipsychotics, schizophrenia, bipolar disorder or other topics expected to
be related to antipsychotic agents.

5 Understanding Group Signatures

As mentioned earlier, one of the major benefits of our group profile method is
that we can easily plug our group profile results into many algorithms and tools
developed to analyze (individual) gene expression data. The probe sets in the
group profile signatures can be evaluated for significant overrepresentation of
gene ontology (GO) terms, e.g., GO Biological Processes, using the L2L analysis
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Fig. 3. The amplitude values for the probes in the most significantly up-expressed GO
term for the antipsychotic group: sterol biosynthetic process. The probes correspond
to the a) HMGCR, b) HMGCS1, c) FDFT1, d) SC4MOL, and e) SQLE genes.

tool [14]. Given a list of probe sets, e.g., DEGS, and a list to match them to, e.g.
GO:BiolProc, L2L calculates the expected number of matches given the probes
found on the microarray. From the actual and expected matches, an enrich-
ment score and the corresponding P value for each GO term is then calculated
[18]. Additional lists of published probe sets are also evaluated, including GO
Cellular Component, GO Molecular Function, reactome protein-protein interac-
tions [19], predicted human MicroRNA targets [20], and cancer gene expression
modules [21].

We use the L2L method to evaluate the example group profile of the antipsy-
chotics. The top 50 probes are evaluated for significant overrepresentation of
GO Biological Process terms. The most significant terms are all related to lipid
homeostasis (Table 1). There are five genes involved in the sterol biosynthetic
process (GO:0016126) within the top 50 probes. Out of over 22,000 probes, only
41 are annotated as belonging to this GO term, so 0.11 probes for this term are
expected by chance. This GO term, along with the next three in Table 1, pass
Bonferroni correction for multiple testing (p ≤ 1.11E-05 after correction for all
four GO terms). The amplitude values for the five genes that are involved in this
pathway are shown in Fig. 3. There is an obvious trend that the expression of
these probes is increased in almost every antipsychotic instance in our database.
However, even though they are always up-expressed, the amplitude value is nor-
mally below the common threshold used by other researchers (fold-change of 2
or 3). This is a good example of how the group profile method is able to detect
consistent, and therefore more robust, signals in gene expression data; signals
that are normally overlooked by current methods.

Table 1. The most significantly overrepresented GO Biological Process terms from the
up-expressed antipsychotic signature

GO Term GO ID Probes Expected Actual Enrichment P Value
sterol biosynthetic process GO:0016126 41 0.11 5 44.73 1.04E-07*
steroid biosynthetic process GO:0006694 88 0.24 5 20.84 4.89E-06*
alcohol metabolic process GO:0006066 371 1.01 8 7.91 1.05E-05*
sterol metabolic process GO:0016125 104 0.28 5 17.63 1.11E-05*
steroid metabolic process GO:0008202 211 0.58 6 10.43 2.91E-05

cholesterol biosynthetic process GO:0006695 31 0.08 3 35.50 8.60E-05
lipid biosynthetic process GO:0008610 281 0.77 6 7.83 1.40E-04
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Support for these GO Biological Process findings comes from the work of
other researchers aimed at understanding the molecular origin of the known
metabolic side effects of antipsychotics that include increased weight gain and
propensity to adiposity and insulin resistance [22]. Our observation is consistent
with literature reports of an antipsychotic drug effect on the same or overlap-
ping sets of genes involved in lipid homeostasis. Interestingly, a genome-wide
screen of Saccharomyces cerevisiae heterozygotes had previously revealed that
the antipsychotics haloperidol, chlorpromazine, and trifluoperazine had a strong
effect on genes involved in yeast fatty acid biosynthesis (OLE1, the ortholog of
the human SCD), sterol biosynthesis or phospholipid transport [23].

6 Querying with Group Signatures

The WIMRR method is able to create a specific representative profile for a group
of gene expression profiles. We have demonstrated the ability to gain insight into
the mechanism of action of a drug class (as well as the disease that it is used
to treat) using WIMRR group profiles. Now we utilize the strength of a group
profile to detect and predict the therapeutic use of a drug based on an individual
gene expression profile.

We use the truncated KS statistics described previously for pairwise (instance-
to-instance) similarity calculations [13] to detect instances that are similar to a
group profile of interest (instance-to-group). Using the same antipsychotic group
profile, we query the database of instances using k = 50 (i.e., the signature dis-
cussed previously). The instances most similar to this group profile are shown
in Table 2, along with their KS score. The last column in Table 2 represents
membership in the group of interest, i.e., if a given treatment is a member of
the antipsychotic group used in creating the profile. Scanning the list, we see
that prochlorperazine (Instance ID = 995) is the most similar non-antipsychotic
drug. It turns out that prochlorperazine is in fact a phenothiazine antipsychotic;
however, it is more commonly used for the treatment of nausea and vertigo.
Prochlorperazine is a highly potent neuroleptic, which is considered a typical
antipsychotic. The next non-antipsychotic is fluphenazine, for which two repli-
cates show up as extremely similar to the antipsychotic profile. Fluphenazine is a
typical antipsychotic drug used for the treatment of psychosis, e.g., schizophrenia
and bipolar disorder. Fluphenazine is also an extremely potent phenothiazine.
The next novel compound is calmidazolium, which is a calmodulin inhibitor.
Though it is not used as an antipsychotic, it is validated because many of the
antipsychotic drugs are potent inhibitors of calmodulin [24].

In fact, it turns out that many of the most significant results are already
used as an antipsychotic agent even though they are not labeled in ChemBank
as such. These examples are a validation of our method and increase the confi-
dence in the other results that are not already supported by the literature, as
these are potentially the important and still unknown alternative uses for these
therapeutic agents.
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Table 2. The database was queried with the antipsychotic signature (up and down
together) and the most similar

Rank Instance ID Name KS Score Antipsychotic Member
1 1010 thioridazine[INN] 1.58 X
2 1068 thioridazine[INN] 1.483 X
3 1004 trifluoperazine[INN] 1.469 X
4 995 prochlorperazine[INN] 1.435
5 910 trifluoperazine[INN] 1.408 X
6 417 thioridazine[INN] 1.387 X
7 983 haloperidol[INN] 1.352 X
8 1024 haloperidol[INN] 1.346 X
9 1017 fluphenazine[INN] 1.317
10 1075 fluphenazine[INN] 1.293
11 421 trifluoperazine[INN] 1.256 X
12 906 calmidazolium 1.223
13 870 pyrvinium 1.209
14 1053 prochlorperazine[INN] 1.201
15 418 haloperidol[INN] 1.167 X
16 1009 clozapine[INN] 1.162 X
17 419 chlorpromazine[INN] 1.138 X
18 1003 nordihydroguaiareticacid 1.1
19 416 clozapine[INN] 1.09 X
20 1105 monensin[INN] 1.077
21 978 pyrvinium 1.065
22 893 pararosaniline 1.051
23 882 ionomycin 1.027
24 941 rottlerin 1.023
25 1012 troglitazone[INN] 1.018
26 1082 haloperidol[INN] 1.009 X
27 1055 chlorpromazine[INN] 0.997 X
28 1041 haloperidol[INN] 0.992 X
29 997 chlorpromazine[INN] 0.99 X

7 Analysis of CMAP V2.0

We have introduced our method for creating group profiles from gene expression
data. For this, we have used the original version of the CMAP dataset as our
motivating example. We have seen how we can gain biological insight from these
profiles as well as how to predict new members by querying the group signature.
Here we present our analysis of the newly released CMAP 2.0 dataset with our
method and describe the results. Groups are defined according to the compounds
ATC code. We have analyzed all the groups at ATC level 3 and level 4. ATC
level 3 defines the therapeutic/pharmacological subgroup, e.g., N05A = Antipsy-
chotics. ATC level 4 further defines a subgroup based on chemical properties,
e.g., N05AE = Indole Derivative Antipsychotics. We focus on groups with three
or more compounds, resulting in 117 ATC level 3 groups and 148 level 4 groups.

7.1 GEPedia.org

We have compiled all of the results from our analysis of CMAP 2.0 and have made
them available online at GEPedia.org. In this manuscript, we focus on evaluating
our group profile method and only highlight a few interesting results from this
analysis. We assume that there are many undiscovered biological insights within
this dataset. We are releasing all of the data allowing researchers to examine the
results for further discoveries and to compare with their own datasets.
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Currently, the organization of GEPedia.org is based around the analysis pre-
sented in this paper. We include the output of the complete analysis of all groups.
For every group, i.e., for all ATC groups, we have made available a) the profile
itself, including the up- and down-expressed signatures, b) the analysis of the
profile according to the L2L tool, c) the sensitivity analysis of the profile, and
d) the results of searching across the database with the signature. In the future,
we plan to modify the website to allow more interactive analysis of the data
in addition to allowing scientists to upload, analyze, and share their own gene
expression data.

7.2 Sensitivity Analysis and Independent Validation

A sensitivity analysis is performed in order to prioritize the evaluation of the
most promising group profiles. To do this, we randomly divide the group into
two equal-sized subgroups: a training group that contains half of the treatment
instances from the group and a test group composed of the remainder of the
group. A group profile is created for both subgroups, and the top (up-tags) and
bottom (down-tags) 100 probes are selected. The number of probes in common
between the two subgroups is calculated for both the up- and down-tags respec-
tively. The treatment instances are re-randomized and this process is repeated
for a total of 10 iterations. The average number of probes in common across
the 10 iterations is calculated for the up- and down-tags. The higher the aver-
age number of probes in common (for the up-tags, down-tags, or both up- and
down-tags), the more robust we consider the group profile. From this value, i.e.,
the average number of probes in common, we estimate the probability assuming
a binomial distribution.

The most robust ATC level 3 (therapeutic/pharmacological) group profiles
are shown in Table 3 for both the up and down signatures together (full
results in Supplemental Table 1 and Supplemental Table 2 for the up and
down signatures, respectively). The full results for the level 4 ATC (chemi-
cal/therapeutic/pharmacological) group profiles for the up and down signatures
are shown in Supplemental Table 3 and Supplemental Table 4, respectively. The
associated probability for each of these profiles is also listed. The observed prob-
abilities indicate that some of these profiles are not random. Corrections for
multiple testing are performed, and the Bonferroni-corrected P values are also
included in each of the tables.

At the onset of this paper, we mention that we are interested in creating a
gene expression profile for groups sharing a therapeutic use, and so we focus
our analysis on the ATC level 3 groups. There are 36 groups with significant
(Bonferroni-corrected P* < 0.05) up-expressed signatures and 28 for the down-
expressed signatures. Out of these groups, 25 groups are robust for both up- and
down-expressed signatures. While a robust up- or down-expressed signature can
independently give novel insight into the underlying shared biological function
of a group, we focus on groups that are significant for both because we also want
to use these profiles to help predict novel uses of the drugs in our database. The
similarity metric that we have adopted requires both the up and down signatures
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Table 3. The most robust group profiles across the whole database are presented here

Group Drugs Up P Up* Down P Down* Label
N05A 28 70.6 3.09E-139 49.4 9.59E-86 Antipsychotics
R06A 27 23.7 1.07E-31 12 5.70E-12 Antihistamines for Systemic Use
N06A 25 29.6 5.70E-43 12.1 4.04E-12 Antidepressants
D07A 19 49.8 1.11E-86 19.7 1.64E-24 Corticosteroids, Plain
G01A 18 12.1 4.04E-12 6.5 1.98E-04 Antiinfectives and Antiseptics
D01A 16 10.2 2.42E-09 11.7 1.59E-11 Antifungals for Topical Use
S01B 16 7.9 3.36E-06 8.9 1.56E-07 Antiinflammatory Agents
N03A 11 13.1 1.22E-13 17.8 3.01E-21 Antiepileptics
H02A 11 18.5 1.94E-22 5.2 6.72E-03 Corticosteroids for Systemic Use
R03B 10 15.6 1.35E-17 4.6 3.09E-02 Drugs for Obstructive Airway Diseases, Inhalents
D10A 9 18.7 8.80E-23 6.5 1.98E-04 Anti-Acne Preparations (Topical)
L04A 8 39.9 2.46E-64 31.4 1.47E-46 Immunosuppressants
D07X 8 25.3 1.12E-34 6.7 1.13E-04 Corticosteroids, (Dermatologicals)
G03D 8 11.1 1.22E-10 4.7 2.41E-02 Progestogens
L01X 7 19.9 7.31E-25 11.5 3.16E-11 Other Antineoplastic Agents
L02B 6 19.3 8.12E-24 13.5 2.93E-14 Hormone Antagonists (and related)
R03A 6 9.8 8.89E-09 5.3 5.17E-03 Adrenergics, Inhalents
C08C 6 5.6 2.34E-03 4.5 3.95E-02 Selective Calcium Channel Blockers
G03C 5 30.5 9.35E-45 10.1 3.36E-09 Estrogens
S01C 5 10.3 1.74E-09 5.3 5.17E-03 Anti-inflammatory -infective (Combo)
C08E 4 11.7 1.59E-11 7.3 1.99E-05 Non-selective Calcium Channel Blockers
C01A 3 61.1 2.94E-114 62.2 4.60E-117 Cardiac Glycosides
L01D 3 6.4 2.62E-04 22.9 3.16E-30 Cytotoxic Antibiotics (and related
L01B 3 7.9 3.36E-06 19.8 1.09E-24 Antimetabolites

to be used together. We now present a deeper analysis of the most robust profiles.
The larger the set of unique drugs that compose a group, the more evidence we
have that the therapeutic mechanism is what is being detected in the profile. For
this reason, we focus on the significant groups with the largest number of unique
drugs. We compare our results to those from an independent dataset using the
same method (Table 4).

7.3 Antipsychotic Group (N05A)

We start our analysis with the largest group that meets our significance thresh-
old: the antipsychotic group with 28 unique drugs. The ATC level 3 code for this
group is N05A. The antipsychotic profile is the most robust result from the ATC
level 3 groups when evaluating the up-expressed signature (Bonferroni-corrected
P value: P*=3.10E-139). This corresponds to an average of 70.6 probes that are
shared between the top 100 probes of two random subgroups. Interestingly, this
same group is the second most significant when evaluating the robustness of the
down-expressed signature (P*=9.59E-86; Average probes in common = 49.4). In
an attempt to discover what the underlying shared biological process is within
these antipsychotic agents, we turn to the L2L analysis. The most overrepre-
sented GO Biological Process term is Sterol Biosynthetic Process (GO:0016126;
P*=6.45E-20). This is the same term that was found over-expressed within the
smaller pilot study and demonstrates that our group profile method can detect
the true signature with a small set of samples.

We have the ability to compare this profile with the antipsychotic profile
recently published by Polymeropoulos et al. [25]. It is important to note that
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these two profiles were created by two independent laboratories, with different
cell lines and with a different, but overlapping, set of antipsychotics. These two
profiles are very similar, and they share 34 probes in common among their top
100 probes (P=6.42E-54). The most significant GO Biological Process term from
the Polymeropoulos et al. antipsychotic group profile is Lipid Biosynthesis. Given
the significant overlap of the profiles, it is not surprising that this term is actually
a grandparent of Sterol Biosynthetic Process (connected through the GO term
Steroid Biosynthetic Process). The GO term Lipid Biosynthesis is also highly
significant within the CMAP v2.0 antipsychotic group (P*=2.70E-13).

The down-expressed signatures also share several probes in common
(Probes=6; P=6.79E-06). The GO Biological Process analysis points to a signif-
icant down-regulation of the DNA regulation process (GO:0006260; P*=3.61E-
07). Barochovsky et al. have demonstrated in vivo that compounds acting on the
central nervous system, specifically those that affect noradrenergic, dopaminer-
gic, and serotoninergic neurotransmitters, reduce brain cell replication [26]. This
observation of compounds acting on the CNS was a dose-dependent effect and
was seen for both agonists and antagonists. This down-expressed signature, like
the up-expressed signature, is well supported by the literature. The antipsy-
chotic profile that we have discovered is robust, both in and across datasets.
Furthermore, we have demonstrated the ability of our group profile method to
give biological insights into the potentially unknown shared biological process
exhibited by a group of drugs.

Table 4. The most robust profiles were evaluated against an independent dataset
(Polymeropoulos et al)

Group Vanda PDR Group Probes In Common P
N05A CNS:Antipsychotics 34 6.42E-54
R06A Resipiratory Agent:Histamine Antagonist 4 1.13E-03
N06A CNS:Antidepressants 15 1.07E-18
D07A Dermatological:Corticosteroids 30 7.88E-46

7.4 Antihistamine Group (R06A)

The second-largest group that meets our significance criteria is the antihis-
tamines (full annotation: Antihistamines for Systemic Use; ATC Code: R06A).
This group contains 27 unique drugs. The sensitivity analysis reveals 23.7 probes
on average shared within the up-expressed signature and 12 for the down-
expressed (P*=1.07E-31 and P*=5.70E-12, respectively). The up-expressed sig-
nature exhibits a common underlying theme related to negative regulation of
I-kappaB kinase / NF-kappaB cascade (GO:0043124; P=6.08E-05). This GO
signature is not as strong as some of the other profiles and is not significant
when corrected for multiple testing. However, it is interesting to note that this
signature is consistent with the known effect of antihistamines on NF-kappaB.
Roumestan et al. have shown that antihistamines inhibit NF-kappaB through
both H1 receptor-dependent and independent mechanisms [27]. This profile does
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not replicate when compared to the equivalent group (Respiratory Agent: His-
tamine Antagonist) from the dataset presented by Polymeropoulos et al., though
a similar trend is seen. The average number of probes in common is four and
one respectively, for the up- and down-expressed signatures (P = 1.13E-03 and
P = 3.60E-01).

7.5 Antidepressant Group (N06A)

Next, we discuss the third-largest group: the antidepressants (ATC Code: N06A).
There are 25 unique drugs within this group. The sensitivity analysis results in
an average of 29.6 and 12.1 probes in common for the up- and down-expressed
signatures (P*=5.70E-43 and P*=4.04E-12, respectively). Evaluating the up-
expressed signature, the most overrepresented GO Biological Process term is
Sterol Biosynthetic Process (GO:0016126; P*=1.19E-09). This is the same core
mechanism seen within the antipsychotic group, but this signature is seen on a
smaller scale. Polymeropoulos et al. demonstrated the same relationship between
the expression profile of antipsychotic and antidepressant drugs [25]. When we
compare our antidepressant profile to the antidepressant profile from the dataset
from Polymeropoulos et al., we find 15 probes in common (P=1.07E-18). The
down-expressed signature does not reproduce within the Polymeropoulos et. al.
dataset, sharing only one probe in common.

7.6 Corticosteroid Group (D07A)

The last group that we evaluate in depth is the corticosteroids (N=19; ATC Code:
D07A). This profile is also robust according to the sensitivity analysis. The average
number of probes in common for the up-expressed signature is 49.8 (P*=1.11E-
86). The down-expressed signature has an average of 19.7 probes in common
(P*=1.64E-24). Individually, the up- and down-expressed signatures do not ex-
hibit a significant result for any GO Biological Process, but evaluated together
they demonstrate an effect on the regulation of the interleukin-6 biosynthetic pro-
cess (P*=1.38E-02). Corticosteroids are involved in a wide range of physiologi-
cal systems such as stress response, immune response and regulation of inflam-
mation. Interleukin-6 acts as both a pro-inflammatory and anti-inflammatory cy-
tokine that can be secreted to stimulate response to trauma [28]. There is a signif-
icant overlap between this profile and the corresponding profile (Dermatological:
Corticosteroids) from Polymeropoulos et al. The up-expressed signatures share 30
probes in common while the down-expressed share nine probes, corresponding to
probabilities of P=7.88E-46 and 9.72E-10, respectively.

8 Conclusions

We have introduced and evaluated our method for creating group profiles from
gene expression data. The ability to have reproducible sets of differentially ex-
pressed genes from microarray experiments has been a big challenge, and we have
demonstrated how our method is able to overcome this obstacle. Furthermore, we
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have illustrated how to gain biological insight from such group profiles as well as
the ability to use them as a signature to query a database. In our example domain
of a drug discovery system, this biological insight allows researchers to potentially
learn about the etiology of the disease that these compounds are being used to
treat and gives them a predictive tool to find novel uses for other drugs.

Though a major focus of this work has been to introduce our method and
validate it across independent datasets, we are also releasing all group profiles
from the full CMAP 2.0. This includes all corresponding meta-analysis that has
been performed: L2L analysis, similarity searching results, etc. We this resource
contains of hidden biological insight into many groups of drugs and their target
diseases, and for further in-depth research.

There are many possible avenues of further improvements and research. Thus
far, we have assumed that explicit groups are given a priori. Our sensitivity
analysis validates how coherent a group is; however, it does not dictate what
to do if the outcome is not positive. For example, a leave-one-out analysis can
be done to exclude members that do not fit well within a group. Lastly, it is
important to note that our method is focused on determining a reproducible
genetic profile for a group of samples; in this case, drugs of a particular class.
We provide no guarantee as to the uniqueness of such profiles and instead claim
that these profiles can be used to compare groups. We have kept the full ranked
list as the profile, and so it is straightforward for extensions to this method to
be developed to further refine and learn what genetic components make up a
more unique signature if that was the end goal. In keeping the full profile, i.e.,
the re-ranked list of probesets, we allow further research methods, which are
developed for individual expression profiles, e.g., the L2L method, to also be
applicable to our group profiles.
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