
J. Suzuki and T. Nakano (Eds.): BIONETICS 2010, LNICST 87, pp. 363–374, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Protein Structure Alignment in Subquadratic Time

Aleksandar Poleksic

Department of Computer Science, University of Northern Iowa
Cedar Falls, Iowa, USA

poleksic@cs.uni.edu

Abstract. The problem of finding an optimal structural alignment for a pair of
superimposed proteins is often amenable to the Smith-Waterman dynamic
programming algorithm, which runs in time proportional to the product of the
lengths of sequences being aligned. While the quadratic running time is
acceptable for computing a single alignment of two, spatially “fixed”, structures,
the time complexity becomes a bottleneck when running the Smith-Waterman
routine multiple times in order to find an optimal pairwise superposition. We
present a subquadratic running time algorithm capable of computing an
alignment that optimizes one of the most widely used measures of protein
structure similarity, defined as the number of pairs of residues in two proteins
that can be superimposed under a predefined distance cutoff. The algorithm
presented in this article can be used to significantly improve the speed-accuracy
tradeoff in a number of popular protein structure alignment methods.

Keywords: protein structure, structure comparison, alignment, dynamic
programming.

1 Introduction

Automated methods for protein structure comparison are of critical importance in
several fields, including protein three-dimensional structure prediction [1-5],
functional site comparison [6,7,8], and protein structural and functional annotation
[9,10,11]. Protein structure comparison problem is much more difficult than its
closely related sequence alignment problem [12-15]. For methods that minimize the
inter-atomic distances, such as STRUCTAL [16,17], TM-align [18], Fr-TM-align
[19], CAALIGN [20], LOCK [21], or LGA [22], the sequence alignment problem can
be viewed as a subproblem of the structure comparison problem, since the goal of the
latter is to simultaneously find both, a superposition and an alignment that maximizes
a given structure similarity measure. In fact, a common approach to finding an
optimal structural superposition of two proteins is to solve multiple pairwise
alignment problems, one for each inspected spatial superposition of the input protein
structures.

One of the most intuitive and most widely used measures of pairwise structure
similarity is the number of atoms in two proteins that can be superimposed under a
specified distance cutoff. For now, we will denote this metric by dCA ≤ , where d

364 A. Poleksic

denotes the distance threshold in Ångströms (and CA indicates that the structure of
each protein is represented by its sequence of α-carbon atoms).

Many widely used protein structure similarity metrics build upon dCA ≤ ,
including GDT_TS [22], MaxSub [23], AL0 [24], "CA-atoms < 3Å" [25,26] and Q-
score [25]. GDT_TS is the main measure used in the CASP benchmark of methods
for protein structure modeling [1]. This measure is defined as the average value of

iGDT_P , }8 ,4 ,2 ,1{∈i , where iGDT_P represents the percentage of αC atoms that

can be superimposed under i Ångströms of the aligned atoms in the experimental
structure. In the CAFASP experiment [27], the quality of a protein model is given by
the model's MaxSub score, which represents the weighted fraction of the number of
atoms in the model structure that can be fit under 3.5Å. The LiveBench experiment
[28] uses "CA-atoms < 3Å" (in our notation 3<CA) and Q-score, among other
metrics, to evaluate the sensitivity and the specificity of protein structure prediction
servers. The Q-score measure is defined as "CA-atoms < 3Å" divided by the length of
the model.

The widespread use of dCA ≤ establishes the need for an efficient algorithm for
its optimization. For a pair of superimposed proteins, p and q, dCA ≤ can be
maximized using a simplified version of the standard Smith-Waterman dynamic
programming algorithm [29] with zero gap penalties. This algorithm first computes
the score matrix



 ≤−

=
 otherwise 0

 ||p|| if 1
),(

dq
jiS ji

(where |||| ji qp − denotes the Euclidean distance between the ip and jq) and then

fills out the dynamic programming matrix in order to find an optimal alignment of p
and q. The cost of both procedures, i.e., the procedure for computing the score matrix
and the procedure for filling out the dynamic programming matrix is)(mnO , where

m and n denote the lengths of proteins p and q, respectively.
While the Smith-Waterman method is fast enough for computing a single

alignment of two, fixed in space, proteins, the time complexity becomes a bottleneck
when finding an optimal pairwise structural superposition by repeatedly running the
Smith-Waterman procedure, once for each inspected spatial orientation of the input
structures. To circumvent high computational cost, current methods for protein
structure matching trade sensitivity for speed by utilizing heuristic techniques in
search for a reasonable, suboptimal solution.

Here we present an)(4/3mnO worst-case running time algorithm, guaranteed to

maximize dCA ≤ for any pair of protein structures. Our benchmarking results show
that, in typical protein structure matching applications, the speedup factor of our
algorithm over the Smith-Waterman algorithm exceeds an order of magnitude. Hence,
our algorithm can be readily applied to improve the tradeoff between the speed and
the accuracy in a number of existing protein structure comparison methods, including
some of the methods discussed above.

 Protein Structure Alignment in Subquadratic Time 365

We emphasize that subquadratic alignment algorithms are only known for some
special sequence alignment problems, such as the Longest Common Subsequence
problem (LCS). Using the so-called "Four Russians Speedup" technique [30,31], LCS

problem can be solved in)log/(2 nnO time.

2 Methods and Results

A protein p of length m can be viewed as a sequence of points in the three-
dimensional space:

3
1),, ... ,(Rpppp im ∈= , for }., ... ,1{ mi ∈

In many applications, the ip 's represent the protein's αC atoms.

An alignment of proteins), ... ,(1 mppp = and), ... ,(1 nqqq = is a sequence of

pairs of points from p and q:

)),(, ...),,((),(
11 kk iiii qpqpqpA = ,

where mii k ≤≤≤≤ ...1 1 and njj k ≤≤≤≤ ...1 1 . We will use),(qpAd to denote an

alignment of p and q that maximizes dCA ≤ , i.e. the number of aligned pairs),(ji qp

at distance d≤ .
The subquadratic running time algorithm, presented below, consists of two

procedures: a procedure for computing the score matrix and a procedure for
computing an optimal alignment. The total cost of our method is dominated by the
cost of computing the score matrix, since our alignment routine runs on the order of

)log(nmO .

2.1 Computing the Score Matrix

Our algorithm first computes a "trim-down" version of the standard score matrix
),(jiSS = . More precisely, the algorithm, presented here, generates, for every point

ip from the protein p, a list ll jjjjiL <<= ...),, ... ,()(11 , of positions of all points

from the protein q that are at distance d≤ from ip . It should be noted that the length

of)(iL cannot exceed dK , where dK represents an upper bound on the number of

αC atoms that can be packed inside a sphere of radius d in 3R . This implies that the

space requirement for storing the collection of all lists))(, ...),1((mLLL = (one for

each point ip from p) does not exceed)(mOmKd =⋅ .

The most straightforward way of computing)(iL is to calculate the distances

|||| ji qp − between ip and each jq and then append j to the end of the list)(iL if

dqp ji ≤− |||| . The problem with this approach is that it requires)(nO operations for

366 A. Poleksic

each ip , resulting in)(mnO total cost of the score matrix computation. To speed up

the computation of)(iL , we first note that many distance calculations can be skipped

due to the spacing of the protein's consecutive αC atoms. Let 0>w be the smallest

integer such that cwd > , where c is an upper bound on the distance between two
consecutive αC atoms (c ~ 3.8Å) and let  wdk = . If kqp ji 2 |||| >− then 1+j

does not belong to)(iL , since

dwdcwdqqqpqp jjjiji ≥>−>−−−>− ++ 2 |||||||| |||| 11 .

In general, if ktqp ji)1(|||| +>− , where 0>t is an integer, then none of

tjj ++ , ... ,1 belongs to)(iL , rendering the calculations of distances between ip

and each tjj qq ++ , ... ,1 unnecessary.

 Assuming the cubic lattice model of protein structures, we now prove that each

list)(iL can be computed in)(4/3nO time.

 Let tB denotes the closed ball of radius kt)1(+ centered at ip , where 0≥t is an

integer (Fig. 1).

Fig. 1. A toy example of two protein structures, p and q, represented by dotted gray and black
lines, respectively. If ttj BBq −∈ +1 then 0),(=+ ljiS for every },...,1{ tl ∈ .

For every inspected point jq from the spherical shell tt BB −+1 , at least t points

from the protein q can be skipped, because ktqp ji)1(|||| +>− . Because we are

interested in an upper bound on the algorithm's cost, we can assume that the visited
points from the protein q are packed as tightly as possible around the point ip (this

scenario results in the least number of skipped points s from q). The key observation
here is that the total number of inspected points from q can be represented as

 Protein Structure Alignment in Subquadratic Time 367

abbbbv h +++++= ...210 , where tb denotes the number of points from q that are

packed inside 1−− tt BB (by definition 1−B is empty) and 10 +<≤ hba . The total

number of skipped points from q is hbhbbs)1(...21 32 −+++≥ . According to the

result of Chamizo and Iwaniec,)(3hOv = and)Ω(4hs = (see Theorem 1.1, [3]) and,

therefore,)(4/3sOv = . Since ns < , it follows that)(4/3nOv = .

The algorithm for computing the list L can be written as follows:

Algorithm SCORE_MATRIX
// Given the proteins p and q and the distance cutoff

 // d, compute the score matrix L.

  1jd)/c-(distancej 11.

 else 10.

1pospos 9.

1jj 8.

jpos]L[i, 7.

d distance if 6.

qpdistance 5.

do nj while 4.

1pos 3.

1j 2.

dom to 1i for 1.

ji

++←

+←
+←

←
≤

−←

≤
←

←
←

It should be emphasized that the algorithm SCORE_MATRIX, is even more

efficient than the general procedure we have just described, since it uses
tcdqp ji +>− |||| as the criteria for skipping t points from q. While both

tcdqp ji +>− |||| and ktqp ji)1(|||| +>− are sufficient conditions for skipping

tjj qq ++ , ... ,1 , the former results in a more efficient algorithm while the latter makes

our proof easier to follow.

2.2 Computing Optimal Alignment

In this section we present)log(nmO algorithm for computing an optimal alignment

),(qpAd of p and q. In contrast to the method described below, a standard)(mnO

dynamic programming algorithm for),(qpAd implements the following recurrence

relation to compute the score),(jiC of an optimal alignment of the sub-structures

), ... ,(1 i
i ppp = and), ... ,(1 j

j qqq = :

368 A. Poleksic









−−
≤−+−−
==

=
 otherwise)}1,(),,1(max{

 |||| if 1)1,1(

 0or 0 if 0

),(

jiCjiC

dqpjiC

ji

jiC ji

As we will demonstrate shortly, the special binary form of the score matrix (Fig. 2)
makes the protein structure alignment problem amenable to a much more efficient
technique, a technique similar to one used for computing the longest common
substring (LCS) of two strings over a finite alphabet [33,34]. It is interesting to note
that our method has better (worst-case) running time than the corresponding

)log(nmnO algorithm for LCS [33], due to a "sparse" score matrix for any given pair

of protein structures. In order to describe the algorithm in more details, we first need
some terminology.

We call a pair of indices),(ji a match if 1),(=jiS (i.e. if dqp ji ≤− ||||). It is

not difficult to see that the collection M of all matches can be partitioned as

Fig. 2. (a) A toy example of a structure superposition of two proteins p and q . A line

connecting ip and jq indicates that dqp ji ≤− |||| (b) The score matrix),(jiSS = (c)

Dynamic programming matrix, with k-matches in bold and dominant k-matches underlined (d)
Updating the array Dpos of positions of dominant matches, row by row.

 Protein Structure Alignment in Subquadratic Time 369

kkM Q0>=  , where kQ is the set of k-matches, defined as

}],[and),(|),{(kjiCMjijik =∈=Q .

To find an optimal alignment),(qpAd , it is sufficient to focus on dominant

k-matches [35], i.e. k-matches),(ji such that })',(| '{min Mjijj ∈= . A single row

of the dynamic programming matrix contains at most one dominant k-match, for
every 0>k . An optimal alignment),(qpAd corresponds to a sequence of dominant

matches, one for each pair of aligned residues (Fig. 2c). To quickly find this
sequence, we scan the rows of the score matrix and update the array Dpos of positions
of dominant matches in q (Fig. 2d). Initially,]0[Dpos is set to zero and all other

values are set to n+1. The rows of the score matrix are then processed, one by one,
from right to left. Whenever a dominant k-match),(ji is found,][kDpos is set to j.

The array of positions of dominant matches can be efficiently updated using an
)(log nO binary search algorithm. More specifically, for each match),(ji , the binary

search algorithm can be applied to determine whether there exists an open interval
])1[],[(+kDposkDpos containing j. If such an interval exists,]1[+kDpos is set to

j. Since the score matrix contains no more than)(mOmKd =⋅ matches, all of its

rows can be processed in)log(nmO time. The pseudocode for processing the rows of

the score matrix (FORWARD), performing the binary search (SEARCH), and tracing
back an optimal alignment (TRACEBACK) are given below.

Algorithm FORWARD(L)
// Computes the optimal alignment score bestScore, the array of dominant
// positions Dpos and the array Back for tracing back an optimal alignment
// q)(p,Ad .

1kbestScore 13.

bestScore1k if 12.

i1]Back[k 11.

j1]Dpos[k 10.

1 ! k if 9.

SEARCH(j)k 8.

pos]L[i,j 7.

do 1 downto lenpos for 6.

L[i] of lengthlen 5.

dom to 1i for 4.

1nDpos[l] 3.

 do n to 1l for 2.

0Dpos[0] 0;bestScore 1.

+←
>+

←+
←+

−=
←
←

←
←

←
+←

←
←←

370 A. Poleksic

Algorithm SEARCH(j)
// On input j, returns the integer k, such that 1]Dpos[kjDpos[k] +<< , or -1
// if such an integer does not exist.

 

mid return else 12.

1mid return 11.

Dpos[mid]j if 10.

1 return else 9.

1midright 8.

Dpos[mid]j if else 7.

1midleft 6.

Dpos[mid]j if 5.

right)/2(leftmid 4.

 do right left while 3.

1bestScoreright 2.

0left 1.

−
<

−
−←

<
+←

>
+←

≤
+←

←

Algorithm TRACEBACK
// Computes an optimal alignment q)(p,AA d= .

Dpos[k]A[Back[k]] 2.

do 1 downto bestScorek for 1.

←
←

It is not difficult to see that the hidden constant factor in the running time of the above
alignment routine is ~ dK , where dK is the number of αC atoms that can be packed
inside a sphere of radius d in 3R . In practical applications, the hidden constant is
small since the distance cutoff is usually set below 8Å.

2.3 Benchmark

To test the efficiency of our algorithm in real applications, we compiled a test set
consisting of 246 pairs of structurally related chains (at various structural levels) from
the FSSP database [36]. Our test set is chosen so that the protein pairs can be grouped
into three bins of equal size (82 pairs in each), according to the chain lengths:

250, ≤nm , 500,250 ≤< nm and 500, >nm . The set of pairs of proteins used in our
analysis can be downloaded from http://bioinformatics.cs.uni.edu/fast_align.html.

Since the efficiency of our method depends on the proteins' geometry and the
spatial positions of the proteins relative to each other, we performed a head-to-head
comparison of our algorithm and the standard Smith-Waterman algorithm in four
different settings. In the first setting (Table 1), we compared the speed of the two
methods on a set of pairs of structurally superimposed chains. The chains were
optimally superimposed using the MAMMOTH program [37]. The remaining speed

 Protein Structure Alignment in Subquadratic Time 371

tests, summarized in Tables 2-4, were performed using the same set of protein pairs,
but with the chains from each pair positioned randomly in space, instead of being
structurally aligned.

We estimated the factor of speedup of our method over the Smith-Waterman
algorithm as a function of the distance between the centers of the proteins, 1c and

2c using the distance cutoff 3=d : 21 cc = (Table 2), 2/)(|||| 2121 rrcc +=− (Table 3)

and 2121 |||| rrcc +=− (Table 4), where 1r and 2r denote the radiuses of the proteins’

bounding spheres. We note that, for all practical purposes, the results presented in
Tables 2-4 are most relevant, since the majority of superpositions inspected by a
typical iterative methods for protein structure matching are far away from an optimal
superposition [15,26].

Table 1. Observed factor of speedup of our method over the Smith-Waterman method on the
set of structurally superimposed pairs

Chain length: m, n ≤ 250 250 < m, n ≤ 500 m, n > 500

Score matrix 2 5 7

Alignment 25 105 176

Total 4 10 13

Table 2. Speedup factor when the structures are randomly oriented but have the same center of
mass

Chain length: m, n ≤ 250 250 < m, n ≤ 500 m, n > 500

Score matrix 5 12 16

Alignment 88 756 1654

Total 8 22 30

Table 3. Speedup factor on the set of randomly oriented pairs of structures satisfying
2/)(|||| 2121 rrcc +=−

Chain length: m, n ≤ 250 250 < m, n ≤ 500 m, n > 500

Score matrix 6 14 18

Alignment 156 860 1709

Total 10 24 34

Table 4. Speedup factor on the set of randomly oriented pairs of structures such that

2121 |||| rrcc +=−

Chain length: m, n ≤ 250 250 < m, n ≤ 500 m, n > 500

Score matrix 8 17 24

Alignment 260 1070 2134

Total 13 33 46

372 A. Poleksic

As seen in Table 1, when applied to optimally superimposed chains of lengths
500,250 ≤< nm , our alignment method is about 105 times faster than the

corresponding Smith-Waterman dynamic programming algorithm. If the cost of
computing the score matrix is taken into account, our method is about an order of
magnitude faster that the Smith-Waterman algorithm.

We observed a significant increase in the efficiency of our method on structurally
unaligned chains, in particular when the structures are far away from each other. For
instance, on the set of pairs of proteins of moderate lengths (500,250 ≤< nm), with
the same center of mass, the speedup factor is 22 (12 for the score matrix computation
and 756 for the alignment). On the other hand, if the bounding spheres of the two
structures are only touching each other (2121 |||| rrcc +=−), the speedup factor is 33

(17 for the score matrix computation and 1070 for the alignment).

3 Conclusion

Many pairwise structure comparison algorithms minimize the proteins' inter-atomic
distances by inspecting many different superpositions of the input structures, keeping
track of the best superposition and the alignment found so far. In order to find a
solution reasonably close to optimum, these methods must search the space of all
superpositions with a fine-tooth comb, performing an alignment procedure each time
a new superposition is generated. For this task, even an)(2nO Smith-Waterman
alignment algorithm is computationally too expensive.

We present a much faster algorithm for computing an alignment that maximizes
one of the most widely used measures of protein structure similarity, defined as the
number of pairs of atoms in two structures that can be fit under a specified distance
cutoff. Our algorithm can be readily applied to improve the speed-accuracy tradeoff
of many popular protein structure similarity methods, including the methods
commonly used in protein structure prediction benchmarks.

References

1. Moult, J., Fidelis, K., Kryshtafovych, A., Rost, B., Hubbard, T., Tramontano, A.: Critical
assessment of methods of protein structure prediction Round VII. Proteins 69(S8), 3–9
(2007)

2. Debe, D.A., Danzer, J.F., Goddard, W.A., Poleksic, A.: STRUCTFAST: protein sequence
remote homology detection and alignment using novel dynamic programming and profile-
profile scoring. Proteins 64, 960–967 (2006)

3. Kim, D.E., Chivian, D., Baker, D.: Protein structure prediction and analysis using the
Robetta server. Nucleic Acids Res. 32(suppl. 2), W526–W5331 (2004)

4. Teodorescu, O., Galor, T., Pillardy, J., Elber, R.: Enriching the sequence substitution
matrix by structural information. Proteins 54, 41–48 (2004)

5. Zhou, H., Zhou, Y.: Fold recognition by combining sequence profiles derived from
evolution and from depth-dependent structural alignment of fragments. Proteins 58,
321–328 (2005)

 Protein Structure Alignment in Subquadratic Time 373

6. Xie, L., Bourne, P.E.: Detecting evolutionary relationships across existing fold space,
using sequence order-independent profile-profile alignments. Proc. Natl. Acad. Sci.
USA. 105, 5441–5446 (2008)

7. Gold, N.D., Jackson, R.M.: SitesBase: a database for structure-based protein–ligand
binding site comparisons. Nucleic Acids Res. 34, D231-D234 (2006)

8. Poleksic, A., Fienup, M., Danzer, J.F., Debe, D.A.: A different look at the quality of
modeled three-dimensional protein structures. J. Bioinform. Comput. Biol. 6, 335–345
(2008)

9. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: a structural classification of
proteins database for the investigation of sequences and structures. J. Mol. Biol. 247,
536–540 (1995)

10. Orengo, C.A., Michie, A.D., Jones, D.T., Swindells, M.B., Thornton, J.M.: CATH-a
hierarchic classification of protein domain structures. Structure 5, 1093–1108 (1997)

11. Wu, C.H., Huang, H., Yeh, L.S., Barker, W.C.: Protein family classification and functional
annotation. Comput. Biol. Chem. 27, 37–47 (2003)

12. Goldman, D., Papadimitriou, C.H., Istrail, S.: Algorithmic Aspects of Protein Structure
Similarity. In: Proceedings of the 40th Annual Symposium on Foundations of Computer
Science, pp. 512–522. IEEE Computer Science, Washington, DC (1999)

13. Caprara, A., Carr, R., Istrail, S., Lancia, G., Walenz, B.: 1001 optimal PDB structure
alignments: integer programming methods for finding the maximum contact map overlap.
J. Comput. Biol. 11, 27–52 (2004)

14. Xu, J., Jiao, F., Berger, B.: A Parameterized Algorithm for Protein Structure Alignment.
In: RECOMB, pp. 488–499 (2006)

15. Kolodny, R., Linial, N.: Approximate protein structural alignment in polynomial time.
Proc. Natl. Acad. Sci. USA. 101, 12201–12206 (2003)

16. Gerstein, M., Levitt, M.: Using iterative dynamic programming to obtain accurate pairwise
and multiple alignments of protein structures. In: Proceedings of the Fourth International
Conference on Intelligent Systems for Molecular Biology, pp. 59–67. AAAI Press, Menlo
Park (1996)

17. Levitt, M., Gerstein, M.: A unified statistical framework for sequence comparison and
structure comparison. Proc. Natl. Acad. Sci. 95, 5913–5920 (1998)

18. Zhang, Y., Skolnick, J.: TM-align: a protein structure alignment algorithm based on the
TM-score. Nucleic Acids Res. 33, 2302–2309 (2005)

19. Pandit, S.B., Skolnick, J.: Fr-TM-align: A new protein structural alignment method based
on fragment alignments and the TM-score. BMC Bioinformatics 9, 531 (2008)

20. Oldfield, T.J.: CAALIGN: a program for pairwise and multiple protein structure
alignment. Acta Crystallogr. D Biol. Crystallogr. 63, 514–525 (2007)

21. Singh, A.P., Brutlag, D.L.: Hierarchical protein structure superposition using both
secondary structure and atomic representations. In: Proceedings of the International
Conference of Intelligent Systems in Molecular Biology, vol. 5, pp. 284–293 (1997)

22. Zemla, A.: LGA - a Method for Finding 3D Similarities in Protein Structures. Nucleic
Acids Res. 31, 3370–3374 (2003)

23. Siew, N., Elofsson, A., Rychlewski, L., Fischer, D.: MaxSub: an automated measure for
the assessment of protein structure prediction quality. Bioinformatics 16, 776–785 (2000)

24. Sali, A., Blundell, T.L.: Comparative protein modeling by satisfaction of spatial restraints.
J. Mol. Biol. 234, 779–815 (1993)

25. Ginalski, K., Grishin, N.V., Godzik, A., Rychlewski, L.: Practical lessons from protein
structure prediction. Nucleic Acids Res. 33, 1874–1891 (2005)

374 A. Poleksic

26. Poleksic, A.: Algorithms for optimal protein structure alignment. Bioinformatics 25,
2751–2756 (2009)

27. Fischer, D., Rychlewski, L., Dunbrack Jr., R.L., Ortiz, A.R., Elofsson, A.: CAFASP3: the
third critical assessment of fully automated structure prediction methods. Proteins 53(S6),
503–516 (2003)

28. Rychlewski, L., Fischer, D.: LiveBench-8: the large-scale, continuous assessment of
automated protein structure prediction. Protein Sci. 14, 240–245 (2005)

29. Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences. J. Mol.
Biol. 147, 195–197 (1981)

30. Arlazarov, V.L., Dinic, E.A., Kronrod, M.A., Faradzev, I.A.: On economic construction of
the transitive closure of a directed graph. Soviet Math. Dokl. 11, 1209–1210 (1970)

31. Masek, W.J., Paterson, M.S.: A faster algorithm for computing string-edit distances. J.
Computer and System Science 20, 18–31 (1980)

32. Chamizo, F., Iwaniec, H.: On the sphere problem. Revista Matemática Iberoamericana 11,
417–429 (1995)

33. Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest common
subsequences. Communications of the ACM 20, 350–353 (1997)

34. Mukhopadhyay, A.: A fast algorithm for the longest-common-subsequence problem.
Information Sciences 20, 69–82 (1980)

35. Hirshberg, D.S.: Algorithms for the longest common subsequence problem. JACM 24,
664–675 (1977)

36. Holm, L., Ouzounis, C., Sander, C., Tuparev, G., Vriend, G.: A database of protein
structure families with common folding motifs. Protein Sci. 1, 1691–1698 (1992)

37. Ortiz, A.R., Strauss, C.E., Olmea, O.: MAMMOTH (matching molecular models obtained
from theory): an automated method for model comparison. Protein Sci. 11, 2606–2621
(2002)

	Protein Structure Alignment in Subquadratic Time
	Introduction
	Methods and Results
	Computing the Score Matrix
	Computing Optimal Alignment
	Benchmark

	Conclusion
	References

