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Abstract. The problem of finding an optimal structural alignment for a pair of 
superimposed proteins is often amenable to the Smith-Waterman dynamic 
programming algorithm, which runs in time proportional to the product of the 
lengths of sequences being aligned. While the quadratic running time is 
acceptable for computing a single alignment of two, spatially “fixed”, structures, 
the time complexity becomes a bottleneck when running the Smith-Waterman 
routine multiple times in order to find an optimal pairwise superposition. We 
present a subquadratic running time algorithm capable of computing an 
alignment that optimizes one of the most widely used measures of protein 
structure similarity, defined as the number of pairs of residues in two proteins 
that can be superimposed under a predefined distance cutoff. The algorithm 
presented in this article can be used to significantly improve the speed-accuracy 
tradeoff in a number of popular protein structure alignment methods.  

Keywords: protein structure, structure comparison, alignment, dynamic 
programming. 

1 Introduction 

Automated methods for protein structure comparison are of critical importance in 
several fields, including protein three-dimensional structure prediction [1-5], 
functional site comparison [6,7,8], and protein structural and functional annotation 
[9,10,11]. Protein structure comparison problem is much more difficult than its 
closely related sequence alignment problem [12-15]. For methods that minimize the 
inter-atomic distances, such as STRUCTAL [16,17], TM-align [18], Fr-TM-align 
[19], CAALIGN [20], LOCK [21], or LGA [22], the sequence alignment problem can 
be viewed as a subproblem of the structure comparison problem, since the goal of the 
latter is to simultaneously find both, a superposition and an alignment that maximizes 
a given structure similarity measure. In fact, a common approach to finding an 
optimal structural superposition of two proteins is to solve multiple pairwise 
alignment problems, one for each inspected spatial superposition of the input protein 
structures. 

One of the most intuitive and most widely used measures of pairwise structure 
similarity is the number of atoms in two proteins that can be superimposed under a 
specified distance cutoff. For now, we will denote this metric by dCA ≤ , where d 
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denotes the distance threshold in Ångströms (and CA indicates that the structure of 
each protein is represented by its sequence of α-carbon atoms).  

Many widely used protein structure similarity metrics build upon dCA ≤ , 
including GDT_TS [22], MaxSub [23], AL0 [24], "CA-atoms < 3Å" [25,26]  and Q-
score [25]. GDT_TS is the main measure used in the CASP benchmark of methods 
for protein structure modeling [1]. This measure is defined as the average value of 

iGDT_P , }8 ,4 ,2 ,1{∈i , where iGDT_P  represents the percentage of αC  atoms that 

can be superimposed under i Ångströms of the aligned atoms in the experimental 
structure. In the CAFASP experiment [27], the quality of a protein model is given by 
the model's MaxSub score, which represents the weighted fraction of the number of 
atoms in the model structure that can be fit under 3.5Å. The LiveBench experiment 
[28] uses "CA-atoms < 3Å" (in our notation 3<CA ) and Q-score, among other 
metrics, to evaluate the sensitivity and the specificity of protein structure prediction 
servers. The Q-score measure is defined as "CA-atoms < 3Å" divided by the length of 
the model. 

The widespread use of dCA ≤  establishes the need for an efficient algorithm for 
its optimization. For a pair of superimposed proteins, p and q, dCA ≤  can be 
maximized using a simplified version of the standard Smith-Waterman dynamic 
programming algorithm [29] with zero gap penalties. This algorithm first computes 
the score matrix  



 ≤−

=
           otherwise       0

  ||p||  if       1
),(

dq
jiS ji  

(where |||| ji qp −  denotes the Euclidean distance between the ip  and jq ) and then 

fills out the dynamic programming matrix in order to find an optimal alignment of p 
and q. The cost of both procedures, i.e., the procedure for computing the score matrix 
and the procedure for filling out the dynamic programming matrix is )(mnO , where 

m and n denote the lengths of proteins p and q, respectively.  
While the Smith-Waterman method is fast enough for computing a single 

alignment of two, fixed in space, proteins, the time complexity becomes a bottleneck 
when finding an optimal pairwise structural superposition by repeatedly running the 
Smith-Waterman procedure, once for each inspected spatial orientation of the input 
structures. To circumvent high computational cost, current methods for protein 
structure matching trade sensitivity for speed by utilizing heuristic techniques in 
search for a reasonable, suboptimal solution.  

Here we present an )( 4/3mnO  worst-case running time algorithm, guaranteed to 

maximize dCA ≤  for any pair of protein structures. Our benchmarking results show 
that, in typical protein structure matching applications, the speedup factor of our 
algorithm over the Smith-Waterman algorithm exceeds an order of magnitude. Hence, 
our algorithm can be readily applied to improve the tradeoff between the speed and 
the accuracy in a number of existing protein structure comparison methods, including 
some of the methods discussed above. 
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We emphasize that subquadratic alignment algorithms are only known for some 
special sequence alignment problems, such as the Longest Common Subsequence 
problem (LCS). Using the so-called "Four Russians Speedup" technique [30,31], LCS 

problem can be solved in )log/( 2 nnO  time.  

2 Methods and Results 

A protein p of length m can be viewed as a sequence of points in the three-
dimensional space: 

3
1    ),, ... ,( Rpppp im ∈= , for }., ... ,1{ mi ∈  

In many applications, the ip 's represent the protein's αC  atoms. 

An alignment of proteins ), ... ,( 1 mppp =  and ), ... ,( 1 nqqq =  is a sequence of 

pairs of points from p and q: 

)),(, ... ),,((),(
11 kk iiii qpqpqpA = , 

where mii k ≤≤≤≤ ...1 1  and njj k ≤≤≤≤ ...1 1 . We will use ),( qpAd  to denote an 

alignment of p and q that maximizes dCA ≤ , i.e. the number of aligned pairs ),( ji qp  

at distance d≤ .  
The subquadratic running time algorithm, presented below, consists of two 

procedures: a procedure for computing the score matrix and a procedure for 
computing an optimal alignment. The total cost of our method is dominated by the 
cost of computing the score matrix, since our alignment routine runs on the order of 

)log( nmO . 

2.1 Computing the Score Matrix 

Our algorithm first computes a "trim-down" version of the standard score matrix 
),( jiSS = . More precisely, the algorithm, presented here, generates, for every point 

ip  from the protein p, a list ll jjjjiL <<= ...  ),, ... ,()( 11 , of positions of all points 

from the protein q that are at distance d≤  from ip . It should be noted that the length 

of )(iL  cannot exceed dK , where dK  represents an upper bound on the number of 

αC  atoms that can be packed inside a sphere of radius d in 3R . This implies that the 

space requirement for storing the collection of all lists ))(, ... ),1(( mLLL =  (one for 

each point ip  from p) does not exceed )(mOmKd =⋅ .  

The most straightforward way of computing )(iL  is to calculate the distances 

|||| ji qp −  between ip  and each jq  and then append j to the end of the list )(iL  if 

dqp ji ≤−  |||| . The problem with this approach is that it requires )(nO  operations for 
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each ip , resulting in )(mnO  total cost of the score matrix computation. To speed up 

the computation of )(iL , we first note that many distance calculations can be skipped 

due to the spacing of the protein's consecutive αC  atoms. Let 0>w  be the smallest 

integer such that cwd > , where c is an upper bound on the distance between two 
consecutive αC  atoms (c ~ 3.8Å) and let  wdk = . If kqp ji 2 |||| >−  then 1+j  

does not belong to )(iL , since 

dwdcwdqqqpqp jjjiji ≥>−>−−−>− ++ 2 ||||||||  |||| 11 . 

In general, if ktqp ji )1( |||| +>− , where 0>t  is an integer, then none of 

tjj ++ , ... ,1  belongs to )(iL , rendering the calculations of distances between ip  

and each  tjj qq ++ , ... ,1  unnecessary.  

 Assuming the cubic lattice model of protein structures, we now prove that each 

list )(iL  can be computed in )( 4/3nO  time.  

 Let tB denotes the closed ball of radius kt )1( +  centered at ip , where 0≥t  is an 

integer (Fig. 1).  
 

 

Fig. 1. A toy example of two protein structures, p and q, represented by dotted gray and black 
lines, respectively. If ttj BBq −∈ +1  then 0),( =+ ljiS  for every },...,1{ tl ∈ . 

For every inspected point jq  from the spherical shell tt BB −+1 , at least t points 

from the protein q can be skipped, because ktqp ji )1( |||| +>− . Because we are 

interested in an upper bound on the algorithm's cost, we can assume that the visited 
points from the protein q are packed as tightly as possible around the point ip  (this 

scenario results in the least number of skipped points s from q). The key observation 
here is that the total number of inspected points from q can be represented as 
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abbbbv h +++++= ...210 , where tb  denotes the number of points from q that are  

packed inside 1−− tt BB  (by definition 1−B  is empty) and  10 +<≤ hba . The total 

number of skipped points from q is hbhbbs )1(...21  32 −+++≥ . According to the 

result of Chamizo and Iwaniec, )( 3hOv =  and )Ω( 4hs =  (see Theorem 1.1, [3]) and, 

therefore, )( 4/3sOv = . Since ns < , it follows that )( 4/3nOv = .  

 
The algorithm for computing the list L can be written as follows: 

 
Algorithm SCORE_MATRIX 
// Given the proteins p and q and the distance cutoff 

 // d, compute the score matrix L. 

  1jd)/c-(distancej                   11.

 else              10.

1pospos                    9.

1jj                    8.

jpos]L[i,                    7.

d     distance  if               6.

qpdistance               5.

do nj while          4.

1pos          3.

1j          2.

dom  to 1i for     1.

ji

++←

+←
+←

←
≤

−←

≤
←

←
←

 

 
 
It should be emphasized that the algorithm SCORE_MATRIX, is even more 

efficient than the general procedure we have just described, since it uses 
tcdqp ji +>−  ||||  as the criteria for skipping t points from q.  While both 

tcdqp ji +>−  ||||  and ktqp ji )1( |||| +>−  are sufficient conditions for skipping 

tjj qq ++ , ... ,1 , the former results in a more efficient algorithm while the latter makes 

our proof easier to follow. 

2.2 Computing Optimal Alignment 

In this section we present )log( nmO  algorithm for computing an optimal alignment 

),( qpAd  of p and q. In contrast to the method described below, a standard )(mnO  

dynamic programming algorithm for ),( qpAd  implements the following recurrence 

relation to compute the score ),( jiC of an optimal alignment of the sub-structures 

), ... ,( 1 i
i ppp =  and ), ... ,( 1 j

j qqq = : 
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  ||||  if                            1)1,1( 

 0or   0  if                                                    0
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ji

jiC ji  

As we will demonstrate shortly, the special binary form of the score matrix (Fig. 2) 
makes the protein structure alignment problem amenable to a much more efficient 
technique, a technique similar to one used for computing the longest common 
substring (LCS) of two strings over a finite alphabet [33,34]. It is interesting to note 
that our method has better (worst-case) running time than the corresponding 

)log( nmnO  algorithm for LCS [33], due to a "sparse" score matrix for any given pair 

of protein structures. In order to describe the algorithm in more details, we first need 
some terminology.   

We call a pair of indices ),( ji  a match if 1),( =jiS  (i.e. if dqp ji ≤−  |||| ). It is 

not difficult to see that the collection M of all matches can be partitioned as  
 

 

 

Fig. 2. (a) A toy example of a structure superposition of two proteins p  and q . A line 

connecting ip  and jq  indicates that dqp ji ≤−  ||||  (b) The score matrix ),( jiSS =  (c) 

Dynamic programming matrix, with k-matches in bold and dominant k-matches underlined (d) 
Updating the array Dpos of positions of dominant matches, row by row. 
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kkM Q0>=  , where kQ  is the set of k-matches, defined as 

}],[ and ),(|),{( kjiCMjijik =∈=Q . 

To find an optimal alignment ),( qpAd , it is sufficient to focus on dominant  

k-matches [35], i.e. k-matches ),( ji  such that })',( | '{min Mjijj ∈= . A single row 

of the dynamic programming matrix contains at most one dominant k-match, for 
every 0>k . An optimal alignment ),( qpAd  corresponds to a sequence of dominant 

matches, one for each pair of aligned residues (Fig. 2c). To quickly find this 
sequence, we scan the rows of the score matrix and update the array Dpos of positions 
of dominant matches in q (Fig. 2d). Initially, ]0[ Dpos  is set to zero and all other 

values are set to n+1. The rows of the score matrix are then processed, one by one, 
from right to left. Whenever a dominant k-match ),( ji  is found, ][ kDpos  is set to j. 

The array of positions of dominant matches can be efficiently updated using an 
)(log nO  binary search algorithm. More specifically, for each match ),( ji , the binary 

search algorithm can be applied to determine whether there exists an open interval 
])1[  ],[ ( +kDposkDpos containing  j. If such an interval exists, ]1[ +kDpos is set to 

j. Since the score matrix contains no more than )(mOmKd =⋅  matches, all of its 

rows can be processed in )log( nmO  time. The pseudocode for processing the rows of 

the score matrix (FORWARD), performing the binary search (SEARCH), and tracing 
back an optimal alignment (TRACEBACK) are given below. 

 
 
Algorithm FORWARD(L) 
// Computes the optimal alignment score bestScore, the array of dominant  
// positions Dpos and the array Back for tracing back an optimal alignment  
// q)(p,Ad . 

1kbestScore                        13.

bestScore1k if                   12.

i1]Back[k                   11.

j1]Dpos[k                   10.

1 ! k if               9.

SEARCH(j)k               8.

pos]L[i,j               7.

do 1 downto lenpos for          6.

L[i] of lengthlen          5.

dom  to 1i for     4.

1nDpos[l]          3.

 do n to 1l for     2.

0Dpos[0] 0;bestScore     1.

+←
>+

←+
←+

−=
←
←

←
←

←
+←

←
←←
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Algorithm SEARCH(j) 
// On input j, returns the integer k, such that 1]Dpos[kjDpos[k] +<< , or  -1 
// if such an integer does not exist. 

 

mid return else    12.

1mid return         11.

Dpos[mid]j if    10.

1 return else          9.

1midright               8.

Dpos[mid]j if else          7.

1midleft               6.

Dpos[mid]j if          5.

right)/2(leftmid          4.

 do right  left while     3.

1bestScoreright     2.

0left     1.

−
<

−
−←

<
+←

>
+←

≤
+←

←

 

 
 
Algorithm TRACEBACK 
// Computes an optimal alignment q)(p,AA d= . 

Dpos[k]A[Back[k]]          2.

do 1 downto bestScorek for     1.

←
←

 

It is not difficult to see that the hidden constant factor in the running time of the above 
alignment routine is ~ dK , where dK  is the number of αC  atoms that can be packed 
inside a sphere of radius d in 3R . In practical applications, the hidden constant is 
small since the distance cutoff is usually set below 8Å.  

2.3 Benchmark 

To test the efficiency of our algorithm in real applications, we compiled a test set 
consisting of 246 pairs of structurally related chains (at various structural levels) from 
the FSSP database [36]. Our test set is chosen so that the protein pairs can be grouped 
into three bins of equal size (82 pairs in each), according to the chain lengths: 

250, ≤nm , 500,250 ≤< nm  and 500, >nm . The set of pairs of proteins used in our 
analysis can be downloaded from http://bioinformatics.cs.uni.edu/fast_align.html. 

Since the efficiency of our method depends on the proteins' geometry and the 
spatial positions of the proteins relative to each other, we performed a head-to-head 
comparison of our algorithm and the standard Smith-Waterman algorithm in four 
different settings. In the first setting (Table 1), we compared the speed of the two 
methods on a set of pairs of structurally superimposed chains. The chains were 
optimally superimposed using the MAMMOTH program [37]. The remaining speed 
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tests, summarized in Tables 2-4, were performed using the same set of protein pairs, 
but with the chains from each pair positioned randomly in space, instead of being 
structurally aligned.  

We estimated the factor of speedup of our method over the Smith-Waterman 
algorithm as a function of the distance between the centers of the proteins, 1c  and 

2c using the distance cutoff 3=d : 21 cc =  (Table 2), 2/)( |||| 2121 rrcc +=−  (Table 3) 

and 2121  |||| rrcc +=−  (Table 4), where 1r  and 2r  denote the radiuses of the proteins’ 

bounding spheres. We note that, for all practical purposes, the results presented in 
Tables 2-4 are most relevant, since the majority of superpositions inspected by a 
typical iterative methods for protein structure matching are far away from an optimal 
superposition [15,26]. 

Table 1. Observed factor of speedup of our method over the Smith-Waterman method on the 
set of structurally superimposed pairs 

Chain length: m, n ≤ 250 250 < m, n ≤ 500 m, n > 500 

Score matrix 2 5 7 

Alignment 25 105 176 

Total 4 10 13 

Table 2. Speedup factor when the structures are randomly oriented but have the same center of 
mass 

Chain length: m, n ≤ 250 250 < m, n ≤ 500 m, n > 500 

Score matrix 5 12 16 

Alignment 88 756 1654 

Total 8 22 30 

Table 3. Speedup factor on the set of randomly oriented pairs of structures satisfying  
2/)( |||| 2121 rrcc +=−  

Chain length: m, n ≤ 250 250 < m, n ≤ 500 m, n > 500 

Score matrix 6 14 18 

Alignment 156 860 1709 

Total 10 24 34 

Table 4. Speedup factor on the set of randomly oriented pairs of structures such that 

2121  |||| rrcc +=−  

Chain length: m, n ≤ 250 250 < m, n ≤ 500 m, n > 500 

Score matrix 8 17 24 

Alignment 260 1070 2134 

Total 13 33 46 
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As seen in Table 1, when applied to optimally superimposed chains of lengths 
500,250 ≤< nm , our alignment method is about 105 times faster than the 

corresponding Smith-Waterman dynamic programming algorithm. If the cost of 
computing the score matrix is taken into account, our method is about an order of 
magnitude faster that the Smith-Waterman algorithm.  

We observed a significant increase in the efficiency of our method on structurally 
unaligned chains, in particular when the structures are far away from each other. For 
instance, on the set of pairs of proteins of moderate lengths ( 500,250 ≤< nm ), with 
the same center of mass, the speedup factor is 22 (12 for the score matrix computation 
and 756 for the alignment). On the other hand, if the bounding spheres of the two 
structures are only touching each other ( 2121  |||| rrcc +=− ), the speedup factor is 33 

(17 for the score matrix computation and 1070 for the alignment). 

3 Conclusion 

Many pairwise structure comparison algorithms minimize the proteins' inter-atomic 
distances by inspecting many different superpositions of the input structures, keeping 
track of the best superposition and the alignment found so far. In order to find a 
solution reasonably close to optimum, these methods must search the space of all 
superpositions with a fine-tooth comb, performing an alignment procedure each time 
a new superposition is generated. For this task, even an )( 2nO  Smith-Waterman 
alignment algorithm is computationally too expensive. 

We present a much faster algorithm for computing an alignment that maximizes 
one of the most widely used measures of protein structure similarity, defined as the 
number of pairs of atoms in two structures that can be fit under a specified distance 
cutoff.  Our algorithm can be readily applied to improve the speed-accuracy tradeoff 
of many popular protein structure similarity methods, including the methods 
commonly used in protein structure prediction benchmarks. 
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