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Abstract. Many large protein complexes undergo extensive conformational
changes as part of their functionality. Tracing these changes is important for un-
derstanding the way these proteins function. It is not always possible to obtain
a high resolution structure for very large complexes. Electron cryo-microscopy
(Cryo-EM) enables the representation of large macromolecular structures at a
medium resolution level (4–8Å). Traditional conformational search methods can-
not be applied to medium resolution data where structural information may be
partial or missing. Additionally, simulating large scale conformational changes
in proteins require a massive amount of computational efforts. We apply a search
method from robotics to structural information obtained from medium resolution
Cryo-EM maps, modeled to approximate backbone trace level. The pathways ob-
tained by this method can be useful in understanding protein motions, providing
reliable results for the medium resolution data. To provide a baseline validation
for our method, we tested it on Adenylate Kinase and Cyanovirin. To test the
data on actual cryo-EM determined structures, we simulated the conformational
opening of the GroEL single ring complex. We show that we can produce low
energy conformational pathways which correspond to known structural data. The
method presented here is a promising step towards exploring the conformational
motion of even larger complexes.

1 Introduction

Proteins are flexible molecules that undergo conformational changes as part of their in-
teractions with other proteins or drug molecules [1]. Changes in torsional angles may
induce localized changes or large scale domain motions. Tracing these changes is cru-
cial for understanding the way these proteins perform their function. Only a relatively
small number of proteins have their structure determined experimentally at atomic reso-
lution. In cases where the high resolution structure cannot be determined, as in the case
of very large complexes, electron cryo-microscopy (Cryo-EM) enables the structural
determination of large macromolecular complexes at sub-nanometer resolution (4–8Å)
[2, 3]. At this resolution the backbone or sidechain positions cannot always be deter-
mined, and typically only partial information exists about the location and connectivity
of the secondary structure elements. More recently, with the advance of Cryo-EM deter-
mination methods and data processing tools, an increasing number of medium resolu-
tion data can be traced to a backbone level with high accuracy. An example of a medium
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resolution structure can be seen in Figure 1(a), where a backbone trace of the GroEL
chaperonin monomer is modeled, based on Cryo-EM image. Several recent studies per-
form local refinement and fitting of high resolution structures to Cryo-EM models [4, 5],
but to the best of our knowledge, no algorithm exists for tracing and analyzing the large
scale conformational changes undergone by complexes represented at medium resolu-
tion. Hence, a gap of knowledge exists. Existing physics-based computational methods
that trace and simulate conformational changes in proteins where full atomic resolu-
tion is available include Molecular Dynamics (MD) [6], Monte Carlo (MC) [7] and
their variants. They normally require full atomic representation of the molecule, and
most available force fields are not suitable to deal with coarse grained representation,
especially when modeled from sub-nanometer resolution images. In the past, several
efficient conformational search algorithms have been developed. Some use a coarse
representation of the protein molecule [8, 9] and employ various efficient search meth-
ods such as Normal Mode Analysis (NMA) [4, 10], elastic network modeling (ENM)
[11, 12, 13], or morphing [14]. ENM- and NMA-based methods are especially useful
in sampling local motions, and it is not always clear whether large scale conforma-
tional sampling methods can be sampled correctly using normal mode analysis, and
the normal modes have to be re-calculated for the sampling to be correct. Sampling
based motion planning methods have been successfully applied towards an efficient ex-
ploration of the conformational space of macromolecules. Motion planning is an area
in robotics concerned with finding a pathway for robot-like objects in constrained en-
vironments [15, 16]. When applied to biological problems, the protein is represented
as an articulated body with the degrees of freedom in all or selected torsional angles.
The physical constraints are implicitly encoded in a penalty function which approxi-
mates the potential energy of the molecule. The conformational space of the protein
is explored so that high energy regions are avoided and feasible conformational path-
ways are obtained more efficiently than with traditional simulation methods. Among the
many applications of motion planning to biology are the characterization of near-native
protein conformational ensembles [17, 18, 19], the study of conformational flexibility
in proteins [20, 21], protein folding and binding simulation [22, 23], modeling protein
loops [24, 20], simulation of RNA folding kinetics [25, 26] and recently the elucidation
of conformational pathways in proteins, subject to pre-specified constraints [27, 28].

Many of those methods are successful in sampling the conformational landscape
of proteins but are often biased by the protein native conformation and some of them
require additional, problem specific information.

In this work we present an efficient motion-planning based methodology to perform
conformational search on complex macromolecular structures represented at medium
resolution extracted from Cryo-EM imaging. The molecule is mapped into a reduced
representation using a small number of parameters that represents its degrees of free-
dom. This allows for larger complexes to be explored efficiently. A similar method has
been applied recently to higher resolution structures [28]. The results of the previous
research encouraged us to take the methodology one step further and explore lower res-
olution structures with high degree of uncertainty. To the best of our knowledge, there
are no large scale conformational sampling methods that accept lower than backbone
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resolution and this is the main strength of this method and the main difference from our
previous work at [28].

Problem Statement. Given two conformational states of a molecule, denoted by start
and goal, and represented as two medium resolution Cryo-EM maps, our goal is to
find a set of affine transformations that, when applied successively to the degrees of
freedom of the start conformation, the start conformation will be brought within a tol-
erance range of the goal conformation under a defined distance metric. Furthermore,
each intermediate conformation along the pathway must be feasible under a given scor-
ing function, which approximates its potential energy. The degrees of freedom of the
structures lie in the flexible parts connecting rigid structural elements. In this work we
assume that secondary structure elements do not change significantly during domain
motions and that the flexible parts are the loops connecting them. While this assump-
tion is true in many cases, there are cases where secondary structure elements melt or
change. In these cases, and if backbone or higher resolution modeling of these parts is
available, it is possible to incorporate a more detailed modeling of the flexible parts into
the general framework of the algorithm without limiting the proposed procedure. The
flexible parts can be modeled using existing methods such as elastic network modeling
[11]. We also assume that approximate backbone trace can be made using structural
modeling tools and Cryo-EM data analysis methods [29, 30]. Extension to cases where
only partial information is given about the location of secondary structures is a sub-
ject of on-going and future work. Figure 1 shows an illustration of the conformational
transition of the GroEL monomer from the closed structure (Figure 1(a) ) to the opened
structure (GroEL-GroES-ADP7) (Figure 1(b) ). Figure 1(c-d) show the single-ring 7
member complex. The closed conformation is a backbone trace model generated from
a mid-resolution cryo-EM image.

It should be emphasized that the algorithm does not always produce the same con-
formational pathway, but rather a possible pathway. By repeating the procedure several
times we produce a set of feasible pathways, thus limiting the huge search space to a
manageable number of possibilities which can later be refined and filtered using infor-
mation about the tested systems.

2 Methods

2.1 Data Representation

This part is the main difference from our previous work [28]. The data representation
here is based upon a medium resolution Cryo-EM map rather than on a detailed atomic
representation. Given a Cryo-EM map which contains electron density data, the data is
encoded into a compact representation using the EMAN software package [31], devel-
oped to process Cryo-EM maps. A multi-level representation of the data allows us to
conveniently manipulate different parts of the structure at will. The different levels of
representation include:

1. Pseudo atoms [29], which are feature points of increased density, where most likely
atoms are found. Notice that due to the resolution pseudo atoms do not correspond
to exact atom locations.
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(a) GroEL monomer (b) GroEL-GroES-ADP7

(c) GroEL complex (d) GroEL-GroES-ADP7
complex

Fig. 1. Cryo-EM maps generated for GroEL monomer using EMAN [31]. (a) The GroEL
monomer (Created from cryo-EM model). (b) The GroEL-GroES-ADP7 monomer taken from
PDB structure 1SX4, chain A. (c) The GroEL complex (built as a symmetric complex of the
monomer modeled in (a).). (d) The GroEL-GroES-ADP7 complex - taken from PDB structure
1SX4.

2. A skeleton [32], which captures the topology of the structure and helps detecting
helix and sheet regions and their connectivity.

3. Secondary structures, which are assigned using either prior knowledge or the SSE-
Hunter and SSEBuilder tools [29]. These tools assign secondary structure ele-
ments to a given Cryo-EM map using local topology information obtained from
the pseudo atoms and connectivity information obtained from the skeleton.

Based on this data, the location of secondary structure elements and often even partial or
full backbone and side chain information can be obtained with high degree of accuracy
[33]. The high-level data structure that represents a conformation is a graph G = (V,E)
such that each secondary structure element is a node v ∈V in the graph. Two secondary
structure elements v1 and v2 are connected by an edge e ∈ E if there is at least one pair
of adjacent amino acids r1,r2, such that r1 ∈ v1 and r2 ∈ v2. The backbone angles in r1,
r2, and a small number of sequentially adjacent residues form the degrees of freedom
of the protein. In other words, the protein motions consist of bond rotations in these
residues while the remaining angles stay fixed.

Based on the graph we construct a spanning tree T = (V,X) where X is a subset
of E using a greedy approach. The root of the tree is specified as the structure that is
expected to move the least during the search as determined by aligning the start and goal
structures and measuring the least RMSD between corresponding secondary structure
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elements. Each one of the root’s neighbors forms a child node in the tree, and at each
stage the selected node and its adjacent edges are removed from the graph. The process
repeats iteratively until all the secondary structure elements are represented in the tree.
There may be more than one correct topology to the structure. We picked the topology
that follows the order of amino acids, which seems to give the best results. It should be
noted that it is not always possible when no information about the exact location of the
amino acids is available when the resolution is too low. In some cases we may know
that the positions of certain secondary structure elements is likely to stay fixed. This
allows us to speed up the search for a feasible pathway by restricting motions to the
remaining secondary structure elements. Let K ⊆ V be the set of secondary structures
that is free to move. This set is used below in the definition of a distance metric for our
representation.

It should be emphasized that this representation can be used even if there is no de-
tailed structural information such as backbone location or even if only partial informa-
tion about secondary structures breaking down, since the conformation representation
assumes only secondary structure knowledge.

2.2 Distance between Structures

The search method requires a distance measure to estimate the progress in the confor-
mational search. In the case of proteins and protein complexes the distance measure
is not trivial to define due to the complexity of protein structures and the high dimen-
sionality of the search space. Finding a good distance measure between two molecules
is an active area of research [34]. This issue becomes especially challenging when the
proteins are represented at a coarse resolution and traditional distance measures such
as RMSD may not be accurate due to the approximate location of the α carbon repre-
sentation that may cause inaccuracies to accumulate. In order to measure the distance
between structures we use a method we developed previously and gave good result in
a previous work [28]. Since it only requires knowledge of the location of secondary
structure elements it is especially suitable for coarse grained molecular representations.

The distance measure is defined in terms of the relative positions between secondary
structure elements. We compute for a conformation C a feature vector:

vC = 〈score(C1),score(C2), . . . ,score(Ck)〉 (1)

where the components of the vector are scores calculated for the K secondary structure
elements of the conformation, based on their positioning with respect to one another.
The distance between two conformations,C1 and C2 is defined as the Euclidean distance
between their feature vectors, i.e., ‖vC1 − vC2‖2. By definition, when C2 is the goal
structure, the score of C1 is the magnitude of its vector representation. Therefore, the
lower the score for a given conformation, the more similar it is to the goal structure.

2.3 Penalty Function

There are several potential functions that are suitable for C-α representation [8]. These
potential functions take into account the hydrophobicity of the amino acids, their
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interactions with the solvent and with one another. While coarse-grained energy mod-
els are an approximation of the protein potential energy and are often biased towards
a folded state, they give good results given their simplicity. They allow for an efficient
exploration of the protein conformational space where more detailed structural repre-
sentations, which require a more accurate potential function, consume a vast amount of
resources. We use the energy function developed by Brown and Head-Gordon [35].This
function has been shown to give good results while using only one bead per amino acid.
The energy function classifies the 20 amino acids into three categories - Hydrophobic
(H), Polar (P) and Neutral (N). The potential energy is given by the following equation:

Etotal = ∑
angles

Kθ (θ −θeq)
2 + ∑

dihedrals

[A(1+ cosφ)+B(1− cosφ)

+C(1+ cos3φ)+D(1+ cos[φ +
π
4
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4εHS1[

σ
r12

i j

− σ
r6

i j

]
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Where ri, j is the distance between amino acids and the constants A, B, C, and D, S1 and
S2 are determined by the secondary structure type and the amino acid type. See [35] for
more details.

When no backbone trace is available, none of the above coarse grained potential
functions can be used. Our structural representation and search algorithm are suitable
for sub-nanometer resolution and do not assume knowledge about the locations of spe-
cific amino acids. However, there are only a few papers regarding coarser than backbone
representation [36]. The use of these very coarse models in the context of our model,
where no normal mode analysis is performed, should be tested carefully, since they
may admit non-biological motions as well. However, it can be used as a filtering tool
that greatly reduces the number of possible pathways. In cases where a more detailed
structural model exists, a more realistic energy function can be used for filtering and
refinement. This area is the subject of on-going and future research.

2.4 Search Methodology

The search is performed using a sampling-based motion planning algorithm. Motion
planning algorithms have been applied extensively in the past to solve biological prob-
lems due to the analogy between protein chains and robotic articulated mechanisms
[22, 23]. The search methodology applied in this paper is based on the Path-Directed
Subdivision Tree (PDST) planner [37]. We chose this algorithm because of its good
performance with articulated systems with complex dynamics moving in physically
constrained environments. It has shown good results in our previous work [28]. We
adapted the algorithm to model protein motions. In our adaptation, the planner itera-
tively constructs a tree of conformational pathways as the search progresses. The input
to the algorithm consists of the start and end conformations of a molecule, represented
as sets of articulated secondary structures as discussed in Data Representation above.
The root of the search tree is a “pathway” of length 0 consisting only of the starting
structure. At every iteration a previously generated pathway is selected for propagation
using a deterministic scoring scheme described below. From a random conformation
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(a) AdK post-processed pathway (b) CVN post-processed pathway

(c) Groel Monomeric post-processed path-
way

(d) GroEL complex post-
processed pathway

Fig. 2. Illustration of the results for AdK, CVN and GroEL: (a) An example of a conformational
pathway obtained for AdK after resolution enhancement and basic energy minimization. (b) An
example of a conformational pathway for CVN. (c-d) An example of a conformational path of
GroEL. The monomeric path is shown in (c) for clarity, and the entire complex is illustrated in
(d). The conformation colors are interpolated on the red (start) to blue (goal) scale.

along that pathway, a new pathway is propagated by applying a small random rotation
to the φ or ψ backbone dihedral angle of a residue that resides on a loop connecting
two randomly chosen secondary structure elements. A molecular motion is sampled by
applying the rotation until a high energy conformation is reached. The coarse grained
energy function described above is used to determine when a high energy conforma-
tion is encountered. A high energy conformation is defined as being more than 100
kcal/mol above the starting energy. The relatively high threshold aims to compensate
for inaccuracies in the structure due to the low resolution. The algorithm maintains a
subdivision of the low-dimensional projection of the conformational space (described
in Distance Between Structures above) into cells, such that no sample spans more than
one cell in the subdivision. The goal of the subdivision is to guarantee coverage of the
search space [37]. After a sample is selected for propagation, the cell containing that
sample is subdivided into two cells. The algorithm keeps track of how many samples
are contained in each cell to estimate how dense the sampling is in different areas of the
space. It maintains a scoring scheme that gives selection preference to samples residing
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in large, empty cells, thus pushing the exploration towards unvisited areas in the confor-
mational space. Probabilistic completeness is obtained via a scoring scheme that favors
the selection of samples contained in larger cells and leads to unexplored areas of the
search space. The sample scores are updated in a way that guarantees that every sam-
ple in the tree will eventually be selected for propagation and avoids over-sampling of
parts of the space. Previous studies in path-directed motion planning algorithms [28, 38]
showed that employing a biasing scheme in a small percentage of the iterations greatly
improves the performance of the planner. We employed biasing at 10% of the iterations.
During these iterations the scoring scheme described above is ignored and a sample is
chosen out of a pool of conformations closest to the goal conformation, which gives the
planner a better chance to successfully terminate the search. We found that the biasing
improves the performance of the algorithm. Our top-level algorithm runs PDST itera-
tively. Each iteration runs until a generated conformation is closer to the goal conforma-
tion than a pre-specified intermediate distance threshold, where the distance threshold
is determined by the distance measure described above. We found that a threshold of
0.8–0.9 of the distance between the start and goal conformations is usually sufficient to
achieve good results and running further does not benefit the results much. The iterative
runs of the PDST planner help reduce memory use and improve performance, as also
shown in [39].

3 Results and Discussion

We ran the algorithm on three test cases, Adenylate Kinase (AdK), cyanovirin (CVN)
and the GroEL single-ring complex. In this study we seek to provide a proof of concept
and some real test-cases. AdK and CVN undergo extensive conformational transitions,
they are well studied and have an abundance of data for testing and comparison. To
provide test for real backbone-resolution data we tested the algorithm on the GroEL 7-
member ring complex. A CryoEM model is available only for the closed form, and the
open form was taken from the PDB, using accession code 1SX4. The PDB structures
were respresented as C-α traces. Figure 2 shows an illustration of the AdK, CVN and
GroEL examples.

We ran the algorithm 100 times per protein on the UMass Boston Supercomputing
Cluster, where each machine runs at 2.2 Ghz and has 4 GB RAM. For comparison pur-
poses, we produced conformational pathways using a random walk Monte Carlo like
algorithm [7] with the same resolution, representation and penalty function described
in this work. The random walk algorithm is similar to the one used for comparison in
our previous work [28]. Using the same representation, similarity score and potential
function described in our algorithm, the random walk algorithm differs from the com-
mon use of Monte Carlo in protein conformational search. Rather than optimizing the
energy, it optimizes the above mentioned similarity score in order to simulate a con-
formational pathway from the start to the goal conformation. The energy, while not
optimized, is used to filter out non-feasible conformations. The random walk imple-
mentation uses the Metropolis criterion for the selection of steps. At each iteration a
random conformational pathway is generated from the current conformation by apply-
ing a small random transformation to one of the randomly chosen degrees of freedom
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connecting secondary structure elements, in a similar way to the one used to generate
new conformations described in the Search Methodology subsection above. If a step
brings the similarity score of the generated conformation closer to the goal it will be
accepted. Otherwise it is accepted with a probability proportional to eΔS where ΔS is
the difference in the similarity score of the current step and the previous step. In prac-
tice, this criterion accepts all “good” steps while allowing a very small fraction of “bad”
steps.

No comparison was made to any other conformational search method since random
walk is very easy to implement, but no other method exists that models conformational
changes in low resolution level and therefore such a comparison would be meaningless.
In order to compare the performance of the two methods by an objective standard,
each was run for a fixed amount of time and the least RMSD (lRMSD) of the closest
conformation to the goal at that given time step was measured. Generally, lRMSD is
not available for medium resolution structures. However, it was used for the sake of this
initial baseline validation due to the fact that the full resolution structures are available.
lRMSD was measured after 10 and 20 minutes for AdK. In the case of GroEL, which is
a longer running example, measurements were taken after 15 and 30 minutes. For CVN,
which was a shorter example, measurements were taken after 5 and 10 minutes. Table
3 summarizes the average lRMSD results over 80 test runs, where the top and bottom
10% outliers were removed.

Adenylate Kinase (AdK). AdK is a monomeric phosphotransferase enzyme that cat-
alyzes reversible transfer of a phosphoryl group from ATP to AMP. AdK contains
214 amino acids and assumes an “open” conformation in the unligated structure and a
bound, “closed” conformation. The lRMSD between the two structures is 6.95Å. Sup-
posedly, during the transition from the “open” to “closed” form, the largest conforma-
tional change occurs in the LID (residues 118–167) and NMP (residues 30–67) domains
with the rest of the protein – the CORE domain being relatively rigid. We modeled the
closed state to open state motion using the C-α traces of PDB codes 1AKE and 4AKE
for the closed and open states respectively. Our model contains 7 secondary structure
elements where most of the CORE domain was modeled as one large segment and was
considered fixed, since it does not undergo a large-scale motion. Figure 2(a) shows the
overlapped resulting structure with the goal structure. The final set of transformations
was applied to the backbone traces (which are known in this case) to generate the fig-
ure. The C-α RMSD from the goal structure is 1.622Å. As seen in table 3 the resulting
average lRMSD was 1.93Å in the end of the runs. Random walk performed slightly
worse compared to our planner with an average lRMSD of 2.26Å .

Cyanovirin-N (CVN). CVN is an anti-viral fusion inhibitor protein that binds to viral
sugars, and is trialed for preventing sexual transmission of HIV. It comprises two re-
peat domains of 30% sequence identity which undergo swapping [40]. We simulated
the unpacking of the repeat domains of a single chain from the intertwined monomeric
conformation to an extended domain-swapped conformation. The swapped conforma-
tions deviate by approximately 16Å. CVN contains 101 amino acids and our model
contains 6 rigid elements. The flexible rotation axis resides mainly between residues
48–55. The distance measure threshold for successful termination of the algorithm was
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Performance statistics for the AdK, CVN and GroEL complex examples. The average
±(standard deviation) lRMSD data were taken over 80 runs where the top and bottom 10%

outliers were removed from the original set of 100 runs.
AdK AdK RW† CVN CVN RW† GroEL GroEL RW†

Initial lRMSD (Å) 6.95 6.95 16.01 16.01 14.64 14.64
#Residues 214 214 101 101 525‡ 525‡

lRMSD at first measurement (Å) 2.49±0.41 2.621±0.54 4.85±1.55 4.46±1.84 7.06±0.38 7.07±0.44
lRMSD at second measurement (Å) 2.36±0.38 2.54±0.53 3.57±0.95 4.42±1.67 6.62±0.43 6.95±0.37

Final lRMSD (Å) 1.93±0.16 2.32±0.49 2.29±0.25 3.20±1.2 6.26±0.43 6.83±0.34
† Random walk. See Results section for details.

a normalized distance of 0.91 from the goal conformation. Figure 2(b) shows an ex-
ample of a pathway from the start to the end conformation. The Cα RMSD from the
goal structure is 1.67Å. As seen in Table 3, our algorithm significantly outperformed
random walk with an average lRMSD of about 2.29Å comparing to 3.2Å for random
walk. Many of our runs got as low as 1.5Å from the final conformation. The average
run time was approximately 29 minutes.

GroEL Complex. The GroEL protein belongs to the chaperonin family and is found in
a large number of bacteria [41]. It is required for the correct folding of many proteins.
GroEL requires the lid-like cochaperonin protein complex GroES. Binding of substrate
protein, in addition to binding of ATP, induces an extensive conformational change that
allows association of the binary complex with GroES. We modeled the epical domain
movement from the GroEL-GroES-ADP7 complex (modeled from chain A of PDB
code 1SX4) to the GroEL monomer (modeled using a Cα trace extracted from Cryo-
EM data, analogous to the closed GroEL monomer) The monomer contains 525 amino
acids, and our model contains 8 secondary structure elements where most of the equa-
torial domain, whose structure does not change significantly, was modeled as one large
segment and was considered fixed. The initial lRMSD between the Cα atoms of the
two complexes is 14Å. The lRMSD from the goal structure was measured with respect
to the Cα trace of the Cryo-EM model. Figure 2(c-d) shows an example of a pathway
from the start to the end conformation. Table 3 shows that our method significantly out-
performs random walk. The average lRMSD between the resulting structures and the
goal structure was 6.2Å after 30 minutes compared to approximately 6.8Å for MC. The
pathways obviously indicate a closing motion of the complex, but lRMSD was used
here mainly for compatibility with the other examples. It is not a very good indicator of
the quality of the pathway in this case, since the Cryo-EM model contains inaccuracies
that makes it somewhat different than the atomic structure of GroEL which was used
to model the open structure. In a previous work [28] we used PDB code 1SS8, which
is close in structure to the Cryo-EM model used in this work. We then observed an
lRMSD of less than 5Å, with some runs reaching as close as 2.5Å from the goal struc-
ture. When comparison between the two structures is made less accurate, other distance
measurements should probably be considered [34].

Analysis of the Results. In order to provide initial validation for our results, we tested
whether our algorithm produces biologically reasonable, low energy pathways when
using an all-atom force field. Such an analysis was done in earlier works [27, 28],
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Fig. 3. Energetic profiles of the resulting pathways (a) A potential energy plot for ADK, CVN and
GroEL slightly minimized conformational pathways. Notice the different potential energy scale.

where the authors used a similar method to show that their conformational search was
reasonable. For this purpose we chose targets for which high resolution structures are
available. Side chain information was completed for the resulting pathways using the
algorithm described in [42]. The resulting full-atomic structures were minimized for
500 Steepest Descent steps using the AMBER energy minimization package [6]. The
minimization was done for a relatively small number of steps and was restrained in order
to resolve initial clashes but not cause large conformational changes to the structures.
The purpose of this test is not to provide a fully minimized pathway, but to show that
the algorithm produces pathways with reasonable conformations whose clashes can be
resolved within a small number of minimization steps. Figure 3 shows the potential
energy plot of a sampled conformational pathway for the three test cases. As seen, even
with a small number of energy minimization steps all the intermediate structures exhibit
low potential energies, below −20000 kcal/mol for AdK, below −7000 kcal/mol for
CVN and around −40000 kcal/mol for GroEL, as measured by AMBER.

4 Conclusions

We present a novel method for exploring large scale conformational changes in pro-
teins represented at medium resolution using Cryo-EM data and image processing tech-
niques. The search methodology is based on robot motion planning, and it strikes a
balance between an efficient coverage of the conformational space and fast exploration
towards the goal structure. The input molecule is modeled using a coarse representa-
tion and a relatively simple potential function to guide the search. This representation
does not require atomic details and thus makes the computation tractable and especially
useful in cases where a detailed structural model is not available and facilitates dealing
with partial or missing data. We tested our algorithm on the following well studied pro-
teins: Adenylate Kinase and Cyanovirin. Additionally, we ran the algorithm on actual
backbone-resolution models obtained from cryo-EM data, the GroEL complex (where
one state was obtained from cryo-EM and the other state from the PDB). We show that
our method performs significantly better than random walk by producing low energy
pathways with resulting structures closer to the goal structure. We believe this is an im-
portant step towards a larger scale modeling of more complex biological systems such
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as virus capsid shells. Additionally, since there is an abundance of cryo-EM models
whose resolution do not allow backbone trace modeling, this method can be the basis
to simulating conformational changes in even lower than backbone resolution models.
The algorithmic framework is similar, and the main difference is selecting a potential
function that handles lower-than-backbone resolution. This is an area of on-going work.
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