
J. Suzuki and T. Nakano (Eds.): BIONETICS 2010, LNICST 87, pp. 334–342, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Proposing a Novel Artificial Neural Network Prediction
Model to Improve the Precision
of Software Effort Estimation

Iman Attarzadeh and Siew Hock Ow

Department of Software Engineering
Faculty of Computer Science & Information Technology
University of Malaya, 50603 Kuala Lumpur, Malaysia

attarzadeh@siswa.um.edu.my, show@um.edu.my

Abstract. Nowadays, software companies have to mange different software
development processes based on different time, cost, and number of staff
sequentially, which is a very complex task and supports project planning and
tracking. Software time, cost and manpower estimation for separate projects is
one of the critical and crucial tasks for project managers. Accurate software
estimation at an early stage of project planning is counted as a great challenge
in software project management, in the last decade, as it allows considering
project financial, controlling, and strategic planning. Software effort estimation
refers to the estimations of the likely amount of cost, schedule, and manpower
required to develop software. This paper proposes a novel artificial neural
network prediction model incorporating Constructive Cost Model (COCOMO).
The new model uses the desirable features of artificial neural networks such as
learning ability, while maintaining the merits of the COCOMO model. This
model deals efficiently with uncertainty of software metrics to improve the
accuracy of estimates. The experimental results show that using the proposed
model improves the accuracy of the estimates, 8.36% improvement, when the
obtained result compared to the COCOMO model.

Keywords: Software engineering, software project management, software cost
estimation models, COCOMO model, soft computing techniques, and artificial
neural networks.

1 Introduction

Accurate and reliable software cost and time estimation is counted as one of the great
problems and ongoing challenges in software engineering, in the last decades.
Enhancing the precision of estimates would facilitate more effective time and budgets
controlling for project managers during the development process. In order to make
precise software estimates, several algorithmic and non-algorithmic cost estimation
models have been proposed and developed. The Constructive Cost Model
(COCOMO) is the most popular model in software companies due to its capabilities
and characteristics to estimate software effort in person-month (PM) during

 Proposing a Novel Artificial Neural Network Prediction Model 335

development process. This paper proposes a precise artificial neural network
estimation model incorporating COCOMO model to overcome the vagueness and
uncertainty of software estimates.

1.1 Software Effort Estimation Models

Software project managers and developers, always, interested to estimate the total
software budget and schedule at the early stages of development process. These
estimates can help them to make good decisions on project management and strategic
planning. Software effort prediction approaches can be categorised into algorithmic
and non-algorithmic methods. Algorithmic methods use regression techniques with
statistical analysis of historical data. Software Life Cycle Management (SLIM) [1] and
Constructive Cost Model (COCOMO) [2] are two common algorithmic estimation
methods. Non-algorithmic methods are based on heuristic approaches such as Expert
Judgment, Price-to-Win, and machine learning approaches [3]. The COCOMO model
was proposed by Barry Boehm in 1981[2] and it is one of the most cited, best known,
widely used and the most plausible of all proposed effort estimation methods. The
COCOMO model uses for project effort, time, cost, and manpower estimations. The
COCOMO II model includes three sub-models for software estimations as follows:
Application Composition Level, Early Design Level, and Post-Architecture Level. The
Post-Architecture Level of COCOMO II includes 17 project cost factors, 5 scale
factors, and software size, which presents project attributes and characteristics [2]. The
COCOMO II formula shown in equation “1” as follows:

Effort ൌ A ൈ ሾSizeሿB ൈ ෑ Effort Multiplier୧ ଵ଻
୧ୀଵ ሺ1ሻ

where B ൌ 1.01 ൅ 0.01 ൈ ෍ Scale Factor୨ହ
୨ୀଵ

In the equation“1”:
A: Multiplicative Constant
Size: Size of the software measures in terms of KSLOC (thousands of Source

Lines of Code, Function Points or Object Points)

1.2 Artificial Neural Networks

Artificial Neural Networks (ANN) are simplified mathematical techniques of human
brain. They are collection of neurons, Process Elements (PEs), with internal
connection and their function is based on distributed computing networks. They can
learn from previous project information and experiences to provide new data, rules,
and experiences based on inference of learnt data. The main idea in ANN is to
produce intelligent systems capable of sophisticated computations. It is similar to the
biological neurons in human brain structures. In fact, each neuron is like a

336 I. Attarzadeh and S.H. Ow

mathematical function with some inputs, a mathematical formula, and outputs. Each
ANN includes a specific architecture, layers, and nodes. Each node has a
mathematical function, inputs, and outputs, which generates a non-linear function of
its input [3, 4]. Using ANN starts by generating network architecture then selecting a
proper leaning technique for train, test, and validate the network based on a data set.
The most widely used ANN training techniques are feed-forward and recurrent
techniques. Figure 1 shows the functionality of a node in ANN.

Fig. 1. The functionality of a node in ANN

Each node produce the weighted sum of its M inputs, x୨, where j = 1,2,……m, and
generate an output of 1 if this result is above the defined threshold u. Otherwise, an
output of 0 generates. The obtained formula is shown in equation “2”.

y ൌ θ ቌ෍ W୨X୨ െ u୫
୨ୀଵ ቍ ሺ2ሻ

In the equation “2”, the θ is a unit step function at 0 and w୨ is the synapse weight
associated with the j-th input. U is considered as another weight i.e. w0 = -u attached
to the neuron with a constant input of x0 = 1. Positive weights model excitatory
synapses, while negative weights model inhibitory ones. The activation function in
Figure 1 is known as a step function however, there are a number of functions that can
be utilised such as Sigmoid, Gaussian, and Linear [5, 6].

2 Related Works

Software researchers attempt to improve software effort estimation models to
overcome the uncertainty of results. Many software effort estimation models have
been proposed and developed over the last decades. Using capabilities of artificial
neural networks in software effort estimation, especially learning from historical
project, can be as an alternative to achieve acceptable results. Using back propagation
learning algorithm on a multilayer perceptron is one good application of soft
computing techniques, which proposed by Witting and Finnie [7] to estimate software
development effort. In another research, Karunanithi [8] suggested using artificial
neural network techniques such as the feed-forward and Jordon-network with expert
experiments to estimate software flexibility and reliability.

Samson [9] utilised another soft computing technique, Albus multiplayer
perceptron, to estimate software development time and cost. He used the COCOMO
data set, which includes 63 projects information. A different artificial neural network

 Proposing a Novel Artificial Neural Network Prediction Model 337

with back propagation learning algorithm proposed by Tadayon [10], however, it is
not clear how the applied dataset was divided to train and validate of his proposed
system. Khoshgoftaar and Jingzhou [11, 12] considered a real time approach to
estimate the usability of each software metrics such as source lines of code.
Researchers still attempt to apply and use the advantages of artificial neural networks
to propose an accurate, reliable and flexible software estimation model. The ANN has
been successfully used for solving several problems in software engineering [13, 14].

3 The Proposed COCOMO Model Incorporating Artificial
Neural Networks

In this research a new architecture of ANN proposes to accommodate the COCOMO
II Post-architecture model. The COCOMO II includes five scale factors (SF),
seventeen effort multipliers (EM), and software size. The proposed model has 23
inputs, which include software size, scale factors, effort multipliers and the system
output is effort estimation in PM (person-months). Therefore, the proposed artificial
neural network architecture includes 23 input nodes in the input layer, which
corresponds to all SFs, EMs, and software size parameters. Applying the proposed
ANN architecture on the COCOMO II post-architecture model needs to data pre-
processing in the input layer using the Sigmoid Activation function. The proposed
ANN architecture for the COCOMO model shown in Figure 2 and 3 and follows:

Fig. 2. Architecture of proposed artificial neural network

Fig. 3. The proposed artificial neural network based on COCOMO II

338 I. Attarzadeh and S.H. Ow

In the proposed ANN model, all effort multipliers values, ܯܧ௜, used in COCOMO
model are pre-processed to ݈݃݋ ሺܯܧ௜ሻ and the size of the product, in KSLOC, is not
considered as one of the input parameters to the network but as a co-factor for the
initial weights, initialisation parameter, for scale factors (SF). The sigmoid activation

function in the hidden layer is defined by ݂ሺݔሻ ൌ ଵଵା௘షೣ. The related weights of input

nodes connected to the hidden layer are defined by ௜ܲ for Bias1 and each input ݈݃݋ ሺܯܧ௜ሻ for 1 ൑ ݅ ൑ 17. Besides, the related weights with each scale factor, ܵܨ௝,
from input nodes to the hidden layer are ݍ௝ + log(size) for 1 ൑ ݆ ൑ 5 and the bias
defined by Bias2. The parameters ‘W’ and ‘b’ in Figure 2, show the related weights to
the arcs from the hidden layer nodes to the output layer nodes. The weight parameters
‘W ‘and ‘b’, are relevant to the values of the hidden layer nodes. The output nodes
have the specific identity function.

One of the contributions of this research compared to other related works is the
addition of Log(Input Size) to the weight ܳ௝ of scale factors in system input, which
adjusts the weights ܳ௝ . Another important difference in this model compared to other
works is the training and biasing approach of artificial neural network. Customisation
of the COCOMO formula is done by adjusting the initial values of weights ‘W’ and
‘b’ to the offset of the values of the nodes in the ANN hidden layers. The back-
propagation algorithm is used as the training method in the proposed model. The data
sets that used for system training will discuss at the following section. However, if
there is no appropriate data set for system training, the weights and biases parameters
in the model results the estimation using random generated input/output. The
proposed model output, the effort, would be derived from COCOMO equation, ‘1’, by
considering the initial values of Bias1 as Log(A) and Bias2 as 1.01. The ANN
weights are initialised as ݌௜ ൌ 1 for 1 ൑ ݅ ൑ 17 and ݍ௝ ൌ 1 for 1 ൑ ݆ ൑ 5 . For
propagating the input parameters the values of nodes in the hidden layer are
considered as follow: ݂ሺ ݌଴ 1ݏܽ݅ܤ ൅ ∑ ௜ଵ଻ଵ݌ כ ௜ሻሻܯܧሺ݃݋݈ ൌ 1ݏܽ݅ܤሺ ݀݅݋݉݃݅ݏ ൅ ∑ ௜ଵ଻ଵ݌ כ ௜ሻሻܯܧሺ݃݋݈ ൌ஺כ ∏ ாெ೔భళ೔సభଵା ஺כ ∏ ாெ೔భళ೔సభ ൌ ଴ݍሺ3ሻ ݂ሺሺ ߙ ൅ ሻሻ݁ݖ݅ݏሺ݃݋݈ כ 2ݏܽ݅ܤ ൅ ∑ ൫ݍ௝ ൅ ௝൯ܨሻ൯൫ܵ݁ݖ݅ݏሺ݃݋݈ ൌ ሻ݁ݖ݅ݏሺ݃݋ሺ݈ ݀݅݋݉݃݅ݏ ହ௝ୀଵሺBias2כ ൅ ∑ SF୨ሻହ୨ୀଵ ൌ S୧୸ୣభ.బభశ ∑ SFౠఱౠసభଵା S୧୸ୣభ.బభశ ∑ SFౠఱౠసభ ൌ β ሺ4ሻ

Then initialisation of weights ‘W’ and ‘b’ as follow: W ൌ β2 ሺ1 െ αሻሺ1 െ βሻ and b ൌ α2 ሺ1 െ αሻሺ1 െ βሻ ሺ5ሻ

The ANN output is calculated as:

PM ൌ W כ α ൅ b כ β ൌ αβሺ1 െ αሻሺ1 െ βሻ ൌ A. Sizeଵ.଴ଵା ∑ SFౠఱౠసభ כ ෑ EM୧ଵ଻
୧ୀଵ ሺ6ሻ

 Proposing a Novel Artificial Neural Network Prediction Model 339

4 Training Algorithm

The training algorithm is done by iteration of forward and backward techniques until
the terminating conditions are satisfied, for instance the changes in weights are less
than or equal to a basic threshold or a basic number of iterations have been done.
The training algorithm includes follow steps:

• Selecting a training sample and propagate the input parameters across the
ANN to compute the system output.

• Error detection in system output, and determining the amount of error
gradient in all the other layers.

• Determining the amount of changes for the ANN weights and updating the
ANN weights.

• Repeating the steps until the ANN error is sufficiently small, less than or
equals a specific threshold, after an epoch is complete.

5 Results and Discussion

Experiments were done by using two different data sets: the original COCOMO data
set, which includes 63 projects information and an artificial data set, which includes
100 projects data. The artificial data set inferred from the existing COCOMO dataset
based on another ANN model using previous training algorithm.

5.1 Data Sets Description

The COCOMO data set, Data set #1, was the first attempt to evaluate the proposed
ANN-COCOMO model, which is includes 63 historical projects and it is a public data
set [1]. This data set retrieved form 63 historical projects from software companies
and industries. The second data set created based on the COCOMO data set by
proposing a new ANN architecture, Data set #2, which is trained by the COOCMO
data set and characteristics of training algorithm explained in the previous section.
Table 1 shows the structure of second data set.

Table 1. The artificial data set includes 100 projects information

No. Mode Size Effort
1 1.1200 51.2500 246.5900
2 1.2000 12.5500 58.2800
3 1.0500 81.5200 550.4000
… ... … …
97 1.2000 56.5300 354.7300
98 1.0500 16.0400 67.1400
100 1.1200 54.1700 262.3800

5.2 Evaluation Method

The proposed ANN-COCOMO model evaluation and validation is done by using
the most widely accepted evaluation methods: Mean Magnitude of Relative Error

340 I. Attarzadeh and S.H. Ow

(MMRE) and Pred (L). The Pred(L) method means probability of a project having a
relative error of less than or equal to L (for instance, Pred(25%)). The Magnitude of
Relative Error (MRE) is defined as follows: MRE୧ ൌ |Aୡ୲୳ୟ୪ E୤୤୭୰୲ ౟ି P୰ୣୢ୧ୡ୲ୣୢ E୤୤୭୰୲౟|Aୡ୲୳ୟ୪ E୤୤୭୰୲ ౟ ሺ7ሻ

The value of MRE is calculated for each observation i whose effort is estimated. The
aggregation of MRE over multiple observations (for i=1 to N) can be achieved
through the Mean MRE (MMRE) as follows: MMRE ൌ ଵN ∑ MRE୧N୧ ሺ8ሻ

The Magnitude of Error Relative to the estimation (MER) is another measure similar
to MRE. Intuitively, MRE seems preferable to MER since it measures the relative
error to the estimate. MRE uses predicted effort as shows in equation “7”. The
MMRE is used to the mean MER in equation “8”. However, the MMRE and MMER
are sensitive to individual estimations with excessively large MREs or MERs.
Therefore, the aggregate measure less sensitive to extreme values is also considered,
namely the median of MRE and MER values for the N observations (MdMRE and
MdMER respectively). A complementary condition is the prediction at level l,
Pred(l) = k/N, where k is the number of observations where MRE (or MER) is less
than or equal to l, and N is the total number of observations. Thus, Pred(25%) gives
the percentage of projects which were predicted with a MRE (or MER) less or equal
than 0.25.

The proposed ANN-COCOMO model and the original COCOMO model are used
for model evaluation. The two data sets, Data set #1 and Data set #2, separately
applied to the new artificial neural network effort estimation model and original
COCOMO model. For each project in the data set the estimated effort, MRE, and
Pred (25%) calculated by applying on the proposed ANN model and the original
COCOMO model. Finally, the MMRE for each data set is calculated to avoid any
sensitivity to the calculated results. The results comparison of COCOMO data set,
Date Set #1, and artificial dataset, Data Set #2, shown in Tables 2 and 3.

Table 2. Results comparison of the ANN proposed model and COCOMO model

Data set Model Evaluation
 MRE Pred (25%)
Data set #1 COCOMO II 0.542561832 45%
 Proposed Model 0.487257017 52%
Data set #2 COCOMO II 0.462579313 30%
 Proposed Model 0.428617366 39%

MMRE COCOMO II 0.502570573 37.5%
 Proposed Model 0.457937192 45.5%

The results in the Table 2 shows: the values of MMRE in the proposed ANN

model for Data set #1 and #2 are 0.487257017 and 0.428617366 and for the
Pred(25%) are 52% and 39%. The aggregation of Data sets, #1 and #2 shows that the

 Proposing a Novel Artificial Neural Network Prediction Model 341

MMRE is 0.457937192 and Pred(25%) equals 45.5%. The analysis of the results in
Table 2 indicates:

• The proposed ANN effort estimation model has the MMRE, MMRE_ANN =
0.457937192, less than COCOMO model, MMRE_COCOMO = 0.502570573.
Obviously, it means the accuracy of proposed ANN model is better than
COCOMO model. Because, if the value of MMRE is closed to zero, it means
the amount of error, difference of actual and estimated effort, is very low. In
other words, the accuracy of estimation is high.

• In case of Pred(25%), the value of Pred(25%) for proposed ANN estimation
model is 45.5% and for COCOMO model is 37.5%. Pred method presents
the number of projects with the MRE lass than 25%. Therefore, if the value
of Pred(25%) is closed to 100%, it means the estimated value for the project
is closed to the actual amount. So, the accuracy of estimation is high.

According to the analysis of the final results, the proposed ANN effort estimation
model shows better accuracy than the COCOMO model. Table 3, compares the
percentage of the accuracy improvement of ANN estimation model in compare to the
COCOMO model.

Table 3. The accuracy of the estimation models

Model Evaluation

Proposed Model
vs. COCOMO II

 MMRE
COCOMO II 0.50257057

3
Proposed Model 0.457937192
Improvement % 8.36%

The analysis of the final result indicates that the percentage of the accuracy

improvement in the proposed artificial neural network model is 8.36%. In summary,
the analysis of the experimental results shows that the proposed artificial neural
network effort estimation model generates more accurate estimates than the
COCOMO model and the system output provides a better performance due to the high
granularity demanded from the results.

6 Conclusion

One on the crucial and challenging issues in software project management is accurate
and reliable estimation of the required effort at the early stages of software
development process. Software attributes essentially have properties of vagueness and
uncertainty when they are measured by human judgment and they differ from software
development environments. A software effort estimation incorporating artificial neural
networks can overcome the vagueness and uncertainty of software attributes, which
used in effort estimation. This approach can be a worthy attempt in the software project

342 I. Attarzadeh and S.H. Ow

management. This research work presented a new artificial neural network architecture
to handle uncertainty and imprecision in software effort estimation.

This approach shows that by applying artificial neural network on the algorithmic
effort estimation models, accurate estimates are achievable. The analysis of the results
demonstrated that using artificial neural network approach for the software cost
estimation is an applicable approach to address and overcome the vagueness and
uncertainty of software attributes. Furthermore, the proposed artificial neural network
estimation model presented better estimation accuracy when compared to the
COCOMO model. The utilisation of soft computing approaches such as artificial
neural networks, fuzzy logic, and neuro-fuzzy systems for other software engineering
approaches can be considerable in the future.

References

[1] Boehm, B.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)
[2] Boehm, B., Abts, C., Chulani, S.: Software Development Cost Estimation Approaches –

A Survey. University of Southern California Center for Software Engineering, Technical
Reports, USC-CSE-2000-505 (2000)

[3] Putnam, L.H.: A General Empirical Solution to the Macro Software Sizing and Estimating
Problem. IEEE Transactions on Software Engineering 4(4), 345–361 (1978)

[4] Srinivasan, K., Fisher, D.: Machine Learning Approaches to Estimating Software
Development Effort. IEEE Transactions on Software Engineering 21(2) (1995)

[5] Molokken, K., Jorgensen, M.: A review of software surveys on software effort estimation.
In: IEEE International Symposium on Empirical Software Engineering, ISESE, pp.
223–230 (October 2003)

[6] Huang, S., Chiu, N.: Applying fuzzy neural network to estimate software development
effort. Applied Intelligence Journal 30(2), 73–83 (2009)

[7] Witting, G., Finnie, G.: Using Artificial Neural Networks and Function Points to Estimate
4GL Software Development Effort. Journal of Information Systems 1(2), 87–94 (1994)

[8] Karunanitthi, N., Whitely, D., Malaiya, Y.K.: Using Neural Networks in Reliability
Prediction. IEEE Software Engineering 9(4), 53–59 (1992)

[9] Samson, B.: Software cost estimation using an Albus perceptron. Journal of Information
and Software, 55–60 (1997)

[10] Tadion, N.: Neural Network Approach for Software Cost Estimation. In: International
Conference on Information Technology: Coding and Computing, ITCC, pp. 116–123
(2005)

[11] Khoshgoftar, T.M., Allen, E.B., Xu, Z.: Predicting testability of program modules using a
neural network. In: 3rd IEEE Symposium on Application-Specific Systems and Software
Engineering Technology, pp. 57–62 (2000)

[12] Jingzhou, L., Guenther, R.: Analysis of attribute weighting heuristics for analogy-based
software effort estimation method AQUA+. Empirical Software Engineering
Journal 13(1), 63–96 (2008)

[13] Liu, H., Yu, L.: Toward Integrating Feature Selection Algorithms for Classification and
Clustering. IEEE Transactions on Knowledge and Data Engineering 17(4), 491–502
(2005)

[14] Chiu, N.H., Huang, S.J.: The adjusted analogy-based software effort estimation based on
similarity distances. Journal of Systems and Software 25, 628–640 (2007)

	Proposing a Novel Artificial Neural Network Prediction Model to Improve the Precision of Software Effort Estimation
	Introduction
	Software Effort Estimation Models
	Artificial Neural Networks

	Related Works
	The Proposed COCOMO Model Incorporating Artificial Neural Networks
	Training Algorithm
	Results and Discussion
	Data Sets Description
	Evaluation Method

	Conclusion
	References

