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Abstract. Nowadays, software companies have to mange different software 
development processes based on different time, cost, and number of staff 
sequentially, which is a very complex task and supports project planning and 
tracking.  Software time, cost and manpower estimation for separate projects is 
one of the critical and crucial tasks for project managers. Accurate software 
estimation at an early stage of project planning is counted as a great challenge 
in software project management, in the last decade, as it allows considering 
project financial, controlling, and strategic planning. Software effort estimation 
refers to the estimations of the likely amount of cost, schedule, and manpower 
required to develop software. This paper proposes a novel artificial neural 
network prediction model incorporating Constructive Cost Model (COCOMO). 
The new model uses the desirable features of artificial neural networks such as 
learning ability, while maintaining the merits of the COCOMO model. This 
model deals efficiently with uncertainty of software metrics to improve the 
accuracy of estimates. The experimental results show that using the proposed 
model improves the accuracy of the estimates, 8.36% improvement, when the 
obtained result compared to the COCOMO model. 

Keywords: Software engineering, software project management, software cost 
estimation models, COCOMO model, soft computing techniques, and artificial 
neural networks. 

1 Introduction 

Accurate and reliable software cost and time estimation is counted as one of the great 
problems and ongoing challenges in software engineering, in the last decades. 
Enhancing the precision of estimates would facilitate more effective time and budgets 
controlling for project managers during the development process. In order to make 
precise software estimates, several algorithmic and non-algorithmic cost estimation 
models have been proposed and developed. The Constructive Cost Model 
(COCOMO) is the most popular model in software companies due to its capabilities 
and characteristics to estimate software effort in person-month (PM) during 
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development process. This paper proposes a precise artificial neural network 
estimation model incorporating COCOMO model to overcome the vagueness and 
uncertainty of software estimates.  

1.1 Software Effort Estimation Models 

Software project managers and developers, always, interested to estimate the total 
software budget and schedule at the early stages of development process. These 
estimates can help them to make good decisions on project management and strategic 
planning. Software effort prediction approaches can be categorised into algorithmic 
and non-algorithmic methods. Algorithmic methods use regression techniques with 
statistical analysis of historical data. Software Life Cycle Management (SLIM) [1] and 
Constructive Cost Model (COCOMO) [2] are two common algorithmic estimation 
methods. Non-algorithmic methods are based on heuristic approaches such as Expert 
Judgment, Price-to-Win, and machine learning approaches [3]. The COCOMO model 
was proposed by Barry Boehm in 1981[2] and it is one of the most cited, best known, 
widely used and the most plausible of all proposed effort estimation methods. The 
COCOMO model uses for project effort, time, cost, and manpower estimations. The 
COCOMO II model includes three sub-models for software estimations as follows: 
Application Composition Level, Early Design Level, and Post-Architecture Level. The 
Post-Architecture Level of COCOMO II includes 17 project cost factors, 5 scale 
factors, and software size, which presents project attributes and characteristics [2]. The 
COCOMO II formula shown in equation “1” as follows: 

Effort ൌ A ൈ ሾSizeሿB  ൈ  ෑ Effort Multiplier୧ ଵ଻
୧ୀଵ                                  ሺ1ሻ 

where B ൌ 1.01 ൅ 0.01 ൈ  ෍ Scale Factor୨ହ
୨ୀଵ  

In the equation“1”: 
A:      Multiplicative Constant 
Size:  Size of the software measures in terms of KSLOC (thousands of Source 

Lines of Code, Function Points or Object Points) 

1.2 Artificial Neural Networks 

Artificial Neural Networks (ANN) are simplified mathematical techniques of human 
brain. They are collection of neurons, Process Elements (PEs), with internal 
connection and their function is based on distributed computing networks. They can 
learn from previous project information and experiences to provide new data, rules, 
and experiences based on inference of learnt data. The main idea in ANN is to 
produce intelligent systems capable of sophisticated computations. It is similar to the 
biological neurons in human brain structures. In fact, each neuron is like a 
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mathematical function with some inputs, a mathematical formula, and outputs. Each 
ANN includes a specific architecture, layers, and nodes. Each node has a 
mathematical function, inputs, and outputs, which generates a non-linear function of 
its input [3, 4]. Using ANN starts by generating network architecture then selecting a 
proper leaning technique for train, test, and validate the network based on a data set. 
The most widely used ANN training techniques are feed-forward and recurrent 
techniques. Figure 1 shows the functionality of a node in ANN. 

 

Fig. 1. The functionality of a node in ANN 

Each node produce the weighted sum of its M inputs, x୨, where j = 1,2,……m, and 
generate an output of 1 if this result is above the defined threshold u. Otherwise, an 
output of 0 generates. The obtained formula is shown in equation “2”. 

y ൌ   θ ቌ෍ W୨X୨ െ  u୫
୨ୀଵ ቍ                                                    ሺ2ሻ 

In the equation “2”, the θ is a unit step function at 0 and w୨ is the synapse weight 
associated with the j-th input. U is considered as another weight i.e. w0 = -u attached 
to the neuron with a constant input of x0 = 1. Positive weights model excitatory 
synapses, while negative weights model inhibitory ones. The activation function in 
Figure 1 is known as a step function however, there are a number of functions that can 
be utilised such as Sigmoid, Gaussian, and Linear [5, 6].  

2 Related Works 

Software researchers attempt to improve software effort estimation models to 
overcome the uncertainty of results. Many software effort estimation models have 
been proposed and developed over the last decades. Using capabilities of artificial 
neural networks in software effort estimation, especially learning from historical 
project, can be as an alternative to achieve acceptable results. Using back propagation 
learning algorithm on a multilayer perceptron is one good application of soft 
computing techniques, which proposed by Witting and Finnie [7] to estimate software 
development effort. In another research, Karunanithi [8] suggested using artificial 
neural network techniques such as the feed-forward and Jordon-network with expert 
experiments to estimate software flexibility and reliability.  

Samson [9] utilised another soft computing technique, Albus multiplayer 
perceptron, to estimate software development time and cost. He used the COCOMO 
data set, which includes 63 projects information. A different artificial neural network 
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with back propagation learning algorithm proposed by Tadayon [10], however, it is 
not clear how the applied dataset was divided to train and validate of his proposed 
system. Khoshgoftaar and Jingzhou [11, 12] considered a real time approach to 
estimate the usability of each software metrics such as source lines of code. 
Researchers still attempt to apply and use the advantages of artificial neural networks 
to propose an accurate, reliable and flexible software estimation model. The ANN has 
been successfully used for solving several problems in software engineering [13, 14]. 

3 The Proposed COCOMO Model Incorporating Artificial 
Neural Networks 

In this research a new architecture of ANN proposes to accommodate the COCOMO 
II Post-architecture model. The COCOMO II includes five scale factors (SF), 
seventeen effort multipliers (EM), and software size. The proposed model has 23 
inputs, which include software size, scale factors, effort multipliers and the system 
output is effort estimation in PM (person-months). Therefore, the proposed artificial 
neural network architecture includes 23 input nodes in the input layer, which 
corresponds to all SFs, EMs, and software size parameters. Applying the proposed 
ANN architecture on the COCOMO II post-architecture model needs to data pre-
processing in the input layer using the Sigmoid Activation function. The proposed 
ANN architecture for the COCOMO model shown in Figure 2 and 3 and follows: 

 

Fig. 2. Architecture of proposed artificial neural network 

 

Fig. 3. The proposed artificial neural network based on COCOMO II 
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In the proposed ANN model, all effort multipliers values, ܯܧ௜, used in COCOMO 
model are pre-processed to ݈݃݋ ሺܯܧ௜ሻ and the size of the product, in KSLOC, is not 
considered as one of the input parameters to the network but as a co-factor for the 
initial weights, initialisation parameter, for scale factors (SF). The sigmoid activation 

function in the hidden layer is defined by ݂ሺݔሻ ൌ  ଵଵା௘షೣ. The related weights of input 

nodes connected to the hidden layer are defined by ௜ܲ  for Bias1 and each input ݈݃݋ ሺܯܧ௜ሻ  for 1 ൑ ݅ ൑ 17. Besides, the related weights with each scale factor, ܵܨ௝, 
from input nodes to the hidden layer are ݍ௝ + log(size) for 1 ൑ ݆ ൑ 5   and the bias 
defined by Bias2. The parameters ‘W’ and ‘b’ in Figure 2, show the related weights to 
the arcs from the hidden layer nodes to the output layer nodes. The weight parameters 
‘W ‘and ‘b’, are relevant to the values of the hidden layer nodes. The output nodes 
have the specific identity function.  

One of the contributions of this research compared to other related works is the 
addition of Log(Input Size) to the weight ܳ௝  of scale factors in system input, which 
adjusts the weights ܳ௝  . Another important difference in this model compared to other 
works is the training and biasing approach of artificial neural network. Customisation 
of  the COCOMO formula is done by adjusting the initial values of weights ‘W’ and 
‘b’ to the offset of the values of the nodes in the ANN hidden layers. The back-
propagation algorithm is used as the training method in the proposed model. The data 
sets that used for system training will discuss at the following section. However, if 
there is no appropriate data set for system training, the weights and biases parameters 
in the model results the estimation using random generated input/output. The 
proposed model output, the effort, would be derived from COCOMO equation, ‘1’, by 
considering the initial values of Bias1 as Log(A) and Bias2 as 1.01. The ANN 
weights are initialised as ݌௜ ൌ 1 for 1 ൑ ݅ ൑ 17  and  ݍ௝ ൌ 1 for 1 ൑ ݆ ൑ 5   . For 
propagating the input parameters the values of nodes in the hidden layer are 
considered as follow: ݂ሺ ݌଴ 1ݏܽ݅ܤ ൅  ∑ ௜ଵ଻ଵ݌ כ ௜ሻሻܯܧሺ݃݋݈ ൌ 1ݏܽ݅ܤሺ  ݀݅݋݉݃݅ݏ  ൅ ∑ ௜ଵ଻ଵ݌ כ ௜ሻሻܯܧሺ݃݋݈ ൌ஺כ ∏ ாெ೔భళ೔సభଵା ஺כ ∏ ாெ೔భళ೔సభ ൌ ଴ݍሺ3ሻ  ݂ሺሺ                 ߙ  ൅ ሻሻ݁ݖ݅ݏሺ݃݋݈ כ 2ݏܽ݅ܤ ൅ ∑ ൫ݍ௝ ൅ ௝൯ܨሻ൯൫ܵ݁ݖ݅ݏሺ݃݋݈ ൌ ሻ݁ݖ݅ݏሺ݃݋ሺ݈ ݀݅݋݉݃݅ݏ ହ௝ୀଵሺBias2כ ൅ ∑ SF୨ሻହ୨ୀଵ ൌ S୧୸ୣభ.బభశ ∑ SFౠఱౠసభଵା  S୧୸ୣభ.బభశ ∑ SFౠఱౠసభ  ൌ β             ሺ4ሻ  

Then initialisation of weights ‘W’ and ‘b’ as follow: W ൌ  β2 ሺ1 െ αሻሺ1 െ βሻ        and     b ൌ  α2 ሺ1 െ αሻሺ1 െ βሻ           ሺ5ሻ 

The ANN output is calculated as: 

PM ൌ   W כ  α ൅   b כ β ൌ  αβሺ1 െ αሻሺ1 െ βሻ  ൌ A. Sizeଵ.଴ଵା ∑ SFౠఱౠసభ כ   ෑ EM୧ଵ଻
୧ୀଵ        ሺ6ሻ 



 Proposing a Novel Artificial Neural Network Prediction Model 339 

4 Training Algorithm 

The training algorithm is done by iteration of forward and backward techniques until 
the terminating conditions are satisfied, for instance the changes in weights are less 
than or equal to a basic threshold or a basic number of iterations have been done.  
The training algorithm includes follow steps: 

• Selecting a training sample and propagate the input parameters across the 
ANN to compute the system output. 

• Error detection in system output, and determining the amount of error 
gradient in all the other layers. 

• Determining the amount of changes for the ANN weights and updating the 
ANN weights. 

• Repeating the steps until the ANN error is sufficiently small, less than or 
equals a specific threshold, after an epoch is complete. 

5 Results and Discussion  

Experiments were done by using two different data sets: the original COCOMO data 
set, which includes 63 projects information and an artificial data set, which includes 
100 projects data. The artificial data set inferred from the existing COCOMO dataset 
based on another ANN model using previous training algorithm. 

5.1 Data Sets Description 

The COCOMO data set, Data set #1, was the first attempt to evaluate the proposed 
ANN-COCOMO model, which is includes 63 historical projects and it is a public data 
set [1]. This data set retrieved form 63 historical projects from software companies 
and industries. The second data set created based on the COCOMO data set by 
proposing a new ANN architecture, Data set #2, which is trained by the COOCMO 
data set and characteristics of training algorithm explained in the previous section. 
Table 1 shows the structure of second data set. 

Table 1. The artificial data set includes 100 projects information 

No. Mode Size Effort
1 1.1200 51.2500 246.5900 
2 1.2000 12.5500 58.2800 
3 1.0500 81.5200 550.4000 
… ... … … 
97 1.2000 56.5300 354.7300 
98 1.0500 16.0400 67.1400 
100 1.1200 54.1700 262.3800 

5.2 Evaluation Method 

The proposed ANN-COCOMO model evaluation and validation is done by using  
the most widely accepted evaluation methods: Mean Magnitude of Relative Error 
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(MMRE) and  Pred (L). The Pred(L) method means probability of a project having a 
relative error of less than or equal to L ( for instance, Pred(25%)). The Magnitude of 
Relative Error (MRE) is defined as follows: MRE୧ ൌ  |Aୡ୲୳ୟ୪ E୤୤୭୰୲ ౟ି P୰ୣୢ୧ୡ୲ୣୢ E୤୤୭୰୲౟|Aୡ୲୳ୟ୪ E୤୤୭୰୲ ౟                                      ሺ7ሻ  

The value of MRE is calculated for each observation i whose effort is estimated. The 
aggregation of MRE over multiple observations (for i=1 to N) can be achieved 
through the Mean MRE (MMRE) as follows: MMRE ൌ  ଵN  ∑ MRE୧N୧                                                       ሺ8ሻ  

The Magnitude of Error Relative to the estimation (MER) is another measure similar 
to MRE. Intuitively, MRE seems preferable to MER since it measures the relative 
error to the estimate. MRE uses predicted effort as shows in equation “7”. The 
MMRE is used to the mean MER in equation “8”. However, the MMRE and MMER 
are sensitive to individual estimations with excessively large MREs or MERs. 
Therefore, the aggregate measure less sensitive to extreme values is also considered, 
namely the median of MRE and MER values for the N observations (MdMRE and 
MdMER respectively). A complementary condition is the prediction at level l,  
Pred(l) = k/N, where k is the number of observations where MRE (or MER) is less 
than or equal to l, and N is the total number of observations. Thus, Pred(25%) gives 
the percentage of projects which were predicted with a MRE (or MER) less or equal 
than 0.25.  

The proposed ANN-COCOMO model and the original COCOMO model are used 
for model evaluation. The two data sets, Data set #1 and Data set #2, separately 
applied to the new artificial neural network effort estimation model and original 
COCOMO model. For each project in the data set the estimated effort, MRE, and 
Pred (25%) calculated by applying on the proposed ANN model and the original 
COCOMO model. Finally, the MMRE for each data set is calculated to avoid any 
sensitivity to the calculated results. The results comparison of COCOMO data set, 
Date Set #1, and artificial dataset, Data Set #2, shown in Tables 2 and 3. 

Table 2. Results comparison of the ANN proposed model and COCOMO model 

Data set Model Evaluation
  MRE Pred (25%) 
Data set #1 COCOMO II 0.542561832 45% 
 Proposed Model 0.487257017 52% 
Data set #2 COCOMO II 0.462579313 30% 
 Proposed Model 0.428617366 39% 
    
MMRE COCOMO II 0.502570573 37.5% 
 Proposed Model 0.457937192 45.5% 

 
The results in the Table 2 shows: the values of MMRE in the proposed ANN 

model for Data set #1 and #2 are 0.487257017 and 0.428617366 and for the 
Pred(25%) are 52% and 39%. The aggregation of Data sets, #1 and #2 shows that the 



 Proposing a Novel Artificial Neural Network Prediction Model 341 

MMRE is 0.457937192 and Pred(25%)  equals 45.5%. The analysis of the results in 
Table 2 indicates: 

• The proposed ANN effort estimation model has the MMRE, MMRE_ANN = 
0.457937192, less than COCOMO model, MMRE_COCOMO = 0.502570573. 
Obviously, it means the accuracy of proposed ANN model is better than 
COCOMO model. Because, if the value of MMRE is closed to zero, it means 
the amount of error, difference of actual and estimated effort, is very low. In 
other words, the accuracy of estimation is high. 

• In case of Pred(25%), the value of Pred(25%) for proposed ANN estimation 
model is 45.5% and for COCOMO model is 37.5%. Pred method presents 
the number of projects with the MRE lass than 25%. Therefore, if the value 
of Pred(25%) is closed to 100%, it means the estimated value for the project 
is closed to the actual amount. So, the accuracy of estimation is high.  

According to the analysis of the final results, the proposed ANN effort estimation 
model shows better accuracy than the COCOMO model.  Table 3, compares the 
percentage of the accuracy improvement of ANN estimation model in compare to the 
COCOMO model.  

Table 3. The accuracy of the estimation models 

Model              Evaluation
 
Proposed Model 
vs. COCOMO II 

 MMRE 
COCOMO II 0.50257057

3 
Proposed Model 0.457937192 
Improvement % 8.36% 

 
The analysis of the final result indicates that the percentage of the accuracy 

improvement in the proposed artificial neural network model is 8.36%. In summary, 
the analysis of the experimental results shows that the proposed artificial neural 
network effort estimation model generates more accurate estimates than the 
COCOMO model and the system output provides a better performance due to the high 
granularity demanded from the results.  

6 Conclusion 

One on the crucial and challenging issues in software project management is accurate 
and reliable estimation of the required effort at the early stages of software 
development process. Software attributes essentially have properties of vagueness and 
uncertainty when they are measured by human judgment and they differ from software 
development environments. A software effort estimation incorporating artificial neural 
networks can overcome the vagueness and uncertainty of software attributes, which 
used in effort estimation. This approach can be a worthy attempt in the software project 
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management. This research work presented a new artificial neural network architecture 
to handle uncertainty and imprecision in software effort estimation.  

This approach shows that by applying artificial neural network on the algorithmic 
effort estimation models, accurate estimates are achievable. The analysis of the results 
demonstrated that using artificial neural network approach for the software cost 
estimation is an applicable approach to address and overcome the vagueness and 
uncertainty of software attributes. Furthermore, the proposed artificial neural network 
estimation model presented better estimation accuracy when compared to the 
COCOMO model. The utilisation of soft computing approaches such as artificial 
neural networks, fuzzy logic, and neuro-fuzzy systems for other software engineering 
approaches can be considerable in the future. 
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