
Software Service Selection by Multi-level

Matching and Reinforcement Learning

Rajeev R. Raje, Snehasis Mukhopadhyay, Sucheta Phatak,
Rashmi Shastri, and Lahiru S. Gallege

Indiana University Purdue University Indianapolis, Indianapolis IN 46202, USA
{rraje,smukhopa}@cs.iupui.edu
http:www.cs.iupui.edu/~rraje

Abstract. The software realization of distributed systems is typically
achieved as loose coalitions of independently created services. The se-
lection of such services, to act as building blocks of a distributed sys-
tem, is a critical task that requires discovery and matching activities.
This selection task is generally based on simple matching techniques and
without any notion of customization. This paper presents a method to
achieve the service discovery process using the principles of multilevel
matching based on multi-level specifications and customization based on
reinforcement learning techniques. In this method, services are selected
dynamically using an on-line performance-based reinforcement feedback.
In contrast to methods which require the services to actually carry out
a task before being selected, in the method proposed in this paper, ser-
vice selection is carried out using only specification matching, thereby
eliminating a large amount of redundant computation. Experimental re-
sults are presented in the context of a information classification system.
These experiments demonstrate that a high degree of performance can
be achieved at a much reduced computational cost using only multi-level
specification-matching based reinforcement feedback signals.

Keywords: software services, multi-level specifications, discovery, clas-
sification, reinforcement learning, acquaintances.

1 Introduction

The selection of relevant software services is a necessary and critical step in the
creation of distributed systems that are composed of independently developed
and deployed services. The task of discovering and selecting such services for a
specific query is carried out typically by a discovery system (DS). There have
been many attempts of creating discovery systems such as, Jini [1], UPnP [2],
SLP [3,4], UDDI [5], CORBA Trader [6], MDS [7], Ninja [8], and WSPDS [9],
which have been classified as first-generation DS by [10]. A majority of these
services carry the task of discovery by using a centralized publication mech-
anism and matching by using attribute-value pairs. In this paper, we present
an approach to the discovery and selection of relevant services, for a particular

J. Suzuki and T. Nakano (Eds.): BIONETICS 2010, LNICST 87, pp. 310–324, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



Software Service Selection by Multi-level Matching 311

query, using the principles of customization and multi-level matching. These two
features make the discovery process more comprehensive and efficient than the
prevalent options.

The current discovery systems do not contain the notion of customization.
Thus, they typically carry out an exhaustive search to identify appropriate ser-
vices for a given query. As these current alternatives are limited in size and scope
of the service search space, such an exhaustive search is still feasible. However,
if the notion of a large-scale service bazaar is to be realized over a wide area
network, the exhaustive approach will not be feasible due to the performance
issues. Hence, there is a need to carry out selective search using the principles
of customization. Customization, when added to the discovery mechanism will
identify relevant services for a given query without the expense of an exhaustive
search over a network. This could be achieved by storing the history of the previ-
ous service discoveries. Customization can be achieved by incorporating profiling
techniques that use the concepts of machine learning (e.g., reinforcement learn-
ing [11]). The challenges associated with customization are related to the nature,
size, and levels of these profiles, the entities to be profiled, and the exact learning
techniques used in updating these profiles. The reward and penalty techniques
used in such reinforcement learning can be realized by maintaining a history
about the queries propagated.

A monolithic technique based on attribute and value pairs for matching, as
used by a majority of the current approaches, is clearly not sufficient to identify
the most appropriate services for a given query, as it does not not differenti-
ate between multiple similar services for a given query. As compared to this
approach, matching based on multiple levels such as the type, the semantic con-
tract, synchronization constraints, QoS values, and temporal attributes will allow
the selection of the most appropriate (or relevant) services and/or also rank them
using the outcome of the match for a given query. Thus, multi-level matching
is a way to compare two software services and can help to determine whether
one service can be substituted for another service or if one service can interact
with the other service. An implicit requirement to support such a multi-level
match is the presence of a multi-level specification that formally describes many
facets (e.g., programmatic, semantic, QoS, etc.) of a service. The exact mecha-
nisms for describing such a multi-level specification of a service and associated
matching operators depend on the nature of a particular facet. For example,
the type hierarchy can be used during the syntactical matching, while numeri-
cal operators can be used for the matching of QoS values. These definitions of
matching operators help to capture the notions of generalization, specialization,
substitutability, sub-typing, and interoperability of software services.

One machine learning approach for agent (or software service)1 selection (also
called acquaintance learning), in the context of document classification, is de-
scribed in [12]. It uses use a vector space model, term frequency-inverse document

1 In this paper, we have used the term agent interchangeably with the term service, as
agents also offer specific services. In particular, we restrict ourselves to agents offering
document classification services in this paper.



312 R.R. Raje et al.

frequency method, with various and disparate document collections to produce
classification a gents with varying vocabularies that classify new documents by
similarity to generated centroids. If an agent generates a null vector the docu-
ment is unclassified, but might be classified by an agent with a different vocabu-
lary. An 81 term Computer Science vocabulary was broken into nine disjoint sub-
vocabularies creating agents that attempt to classify their own document sets, and
time permitting, try to assist other remote agents. In the multi-opinion model all
remote agents try to classify unclassified documents but as the number of agents
available increases a saturation point is reached where more agents result in a
small incremental increase in successful classificationwhile response time increases
linearly with the number of agents. Thus, proper selection of a small number of
remote agents could achieve high performance at low response time and could be
achieved by creating a small acquaintance list for each agent using a reinforcement
learning algorithm called Pursuit Learning algorithm. On the basis of quickest re-
turn, or highest similarity value return, a best acquaintance is chosen and given
a positive ranking weight which will modify the probability that its future choice
will result in a reward. Algorithm performance compared to four best off line cho-
sen agents resulted was 39% better than a random selection and 363% better than
a worst four performance [12].

The limitation of the approach described above is that all agents need to carry
out their task of document classification to generate the performance-based re-
inforcement signal, although only a small number are selected in the overall task
execution. This leads to a large amount of duplicate, redundant computation. In
contrast, in this paper, we propose that the reinforcement signals should be gen-
erated by multi-level specification matching, rather than actual execution results
of all the contacted agents. Since such matching is substantially faster and less
computationally expensive than the tasks for which the agents are designed, the
overall discovery system will be computationally much more efficient. However,
a critical question remains regarding the relative accuracy of such specification
matching-based reinforcement learning of agents, since specifications are merely
proxies of the capabilities of each agent. We argue that, due to the inherent ro-
bustness and noise tolerance of probabilistic reinforcement learning methods and
due to the fact the discovery relies only on correct rank-ordering of the agents
(rather than requiring very accurate values of the performance measures), such
approximate matching-based reinforcement learning may result in near optimal
discovery system, albeit with a much lower cost than performance-based discov-
ery systems. Indeed, in this paper, we present experimental studies related to
the same information classification domain as that reported in [12], to validate
this claim.

2 Related and Past Work

There are many efforts at designing discovery systems in the domain of service-
oriented architecture. For example, Jini [1], UPnP [2], SLP [3,4], UDDI [5],
CORBA Trader [6], MDS [7], Agora [13], Ninja [8], and WSPDS [9] use the



Software Service Selection by Multi-level Matching 313

attribute-value pairs, which are used in the matching process. DReggie [14],
Structural ontology matching techniques [15,16], various UDDI enhancements
[17,18,19,20] and SemB-UDDI[21] perform matching by the use of semantic on-
tology and markup languages such as DAML [22]. Such a combination does
improve the matching performance over the basic attribute-value matching.
GloServ [23], CDBMS [24] and OCTOPOS [25] use an hierarchy-based approach
to matching. An enhancement of GloServ [26] is achieved by adding to it an
ontology-based matching.

There have also been some efforts of designing DS in Cloud Computing. For
example, the Cloud Service Discovery System [27] finds relevant Cloud services
by using a simple Cloud Ontology, a frequency analysis, and similarity measures.
[28] provides architecture for the cloud services to perform service selection with
adaptive performances and minimum cost. The service selection algorithm still
has the limitation of performing the basic keyword-based matching. [29] indi-
cates the discovery process based on simple attribute matching provided by the
experimental platform of Amazon EC2. All these efforts employ fairly minimal
approaches to describe the services that are deployed in clouds and hence, their
matching semantic tends to be simplistic. None of these approaches use cus-
tomization and multi-level matching that is beyond the basic attribute-based
and the ontology-based semantic matching schemes.

Query Manager Link Manager Adapter ManagerDomain Security Manager

HH HH HH

MR MR

RMI.NET CORBA

Adapter

Components

Authentication

Active Registries

MR Meta−repositories

Query

(Headhunter) (Headhunter) (Headhunter)

Meta−repositories

Internet Component Broker

Pro−active DiscoveryPro−active Discovery

Query

Fig. 1. The UniFrame Resource Discovery Service (URDS)

2.1 UniFrame Resource Discovery Service (URDS)

UniFrame [30] provides an environment for a seamless inter-operation of hetero-
geneous distributed services. A service in UniFrame is described by a multi-level
specification, called UMM specification, which is an enhancement of the multi-
level contract principle introduced in [31]. The UMM specification for a service
is primarily made up of syntactic, semantic, synchronization, QoS, and deploy-
ment levels. Hence, in UniFrame the services are deployed on the network with
their multi-level specifications. The URDS provides the infrastructure that sup-
ports the publication, deployment, and detection of the services. The URDS is a
pro-active and hierarchical discovery system. The URDS architecture [32,33,34],
shown in Figure 1, consists of: a) Headhunters (HH), b) Active Registries (ARs),



314 R.R. Raje et al.

and c) Internet Component Broker (ICB). Each headhunter is associated with
a meta-repository, which serves as a local store. Services, when implemented,
are registered with the active registries using their UMM specifications. Once
services are registered, the task of a headhunter is to discover them pro-actively,
store their UMM specifications in its meta-repository, and perform a matching
between the UMM specifications and any incoming queries issued by the user.
The headhunters use multi-level matching (i.e., matching all the levels of the
UMM specifications while responding to a specific query to identify relevant
services. Headhunters may collaborate with each other if a requested service is
not available in their local stores. The active registries are enhanced versions
of the native registries of various implementation models (e.g., Java-RMI) with
which services are registered. These enhancements allow Active Registries to
listen and respond to multi-cast messages from the headhunters and have intro-
spection capabilities to discover the services along with their specifications. The
Internet Component Broker comprises of the Query Manager (QM), the Domain
Security Manager (DSM), Adapter Manager (AM), and the Link Manager(LM).
The Domain Security Manager serves as an authorized entity, which handles
the secret key generation and distribution and enforces group memberships on
other entities in URDS. The purpose of the Query Manager is to dispatch a
user’s query to the available headhunters. These headhunters then return lists of
services matching the search criteria expressed in the query. The Link Manager
serves to establish links with other Internet Component Brokers for the purpose
of creating a federation and to propagate queries received from the Query Man-
ager to other linked Internet Component Brokers. The Adapter Manager allows
interoperability between heterogeneous services that may be needed to create a
distributed system. In this paper, we have used the URDS (mainly the head-
hunter and its multi-level matching techniques) for the Multi-agent Classification
System along with the principles of customization.

2.2 Reinforcement Learning

Originally motivated by mathematical psychology models of animal and child
learning, reinforcement learning refers to the ability of an agent to learn long-
term optimal behavior through the use of a reinforcement, i.e., an on-line per-
formance feedback from a teacher or environment. The reinforcement, in turn,
may be qualitative, infrequent, delayed, or stochastic. There is a rich body of
reinforcement learning literature encompassing a wide array of learning models
and algorithms. One of the earliest models of reinforcement learning is called a
learning automaton [35] where the agent attempts to learn the optimal ac-
tion from a finite set using reward/penalty reinforcement from a stationary
teacher/environment with unknown reward probabilities. The learning problem
is formulated as updating the agent’s action probabilities on the basis of trials
consisting of an action performed and the reinforcement received. While a wide
variety of model-based and model-free learning algorithms has been proposed
for a learning automaton with different asymptotic convergence properties, a



Software Service Selection by Multi-level Matching 315

popular model-free algorithm is the so-called LRI(Linear Reward-Inaction) al-
gorithm described by

pi(k + 1) = pi(k) + αr(k)(1 − pi(k))

pj(k + 1) = pj(k)− αr(k)pj(k)

where pi(k) is the agent’s probability of choosing action ai at trial k , ai is
the action chosen at trial k , r(k) is the reinforcement received (with r(k) = 0
signifying penalty, and r(k) = 1 signifying reward) , and α > 0 is the learning
step-size. The idea is to increase the probability of the chosen action linearly if
a reward is received (while reducing the other action probabilities) and not to
change the action probabilities if a penalty is received. The LRI algorithm has
been shown to be ε-optimal, i.e., the asymptotic probability of converging to the
optimal action can be made as close to 1 as desired by choosing a sufficiently
small step-size α. While the LRI algorithm belongs to the class of model-free
learning algorithm (since it does not maintain or use any estimate of the envi-
ronmental reward probabilities), there are also algorithms that are model-based.
The Pursuit Learning Algorithm [35], for example, maintains and updates esti-
mates of the reward probabilities, and adjusts the action probabilities by a step
size in the direction of the unit vector that represents the current estimate of
the optimal action. The Pursuit Learning Algorithm has also been proved to be
ε-optimal.

It is quite clear that some form of machine learning technique needs to be
used for the selection of remote services (i.e., acquaintance learning) to deal
with uncertainty and/or dynamic changes in the environment. The advantage
of reinforcement learning over other machine learning approaches (such as su-
pervised learning and unsupervised learning) is that the former is inherently an
on-line learning method, where the reinforcement data required for learning is
generated during operation, thereby avoiding a large effort in off-line data gener-
ation and collection. Further, the reinforcement feedback signal needs to be only
a qualitative and noisy indicator of how well the agent is performing, rather
than a labeling of the data (as in supervised learning) to indicate the ”correct”
action. These advantages are particularly relevant in open, dynamic services en-
vironments where existing services may be removed and new services may be
added at unknown instants of time. Reinforcement learning offers the possibil-
ity of adapting to these dynamic changes, by making use of the reinforcement
feedback, without a large effort (and/or delay) in retraining of the agent. Hence,
we have used the reinforcement learning technique in our proposed methodology
for the design of a multi-agent classification system.

3 Methodology

Based on the work reported in [12], we propose a Multi-agent Classification Sys-
tem with specification matching. In this system, we propose the use of active
registry and headhunters of the URDS for choosing the correct agent for classifi-
cation of an incoming document. Multiple classification agents will register their



316 R.R. Raje et al.

UMM specifications with the active registries and are eventually discovered by
the headhunters. The headhunter in our experiments maintains an acquaintance
list made up of top three classification agents. This list is dynamically updated
using the reinforcement learning with the help of previous collaboration history.
Unlike [12], the headhunter maintains its acquaintance based on matching of
agent specifications with the clients query. For example (more details of our ap-
proach are provided in next section) in one scenario, the headhunter chooses the
members of the acquaintance list by selecting the top three agents decided by
the matching of their specifications against the incoming query and then the top
acquaintance with highest matching score is chosen for the task of classification.
Reward in the reinforcement learning algorithm is based on the matching score.
Top acquaintance gets reward of 1 and all other acquaintance get reward of 0.
Their Action Probability, and Estimated reward probability are updated by the
formulas given above (and given in [12]). Headhunter now updates its acquain-
tance list by choosing the agent based on its action probability. To explore the
learning we use following algorithm for choosing the first acquaintance:

SortedActionProbability holds the action probability values of all the
agents in an ascending order.

Rand = RandomNum(0,1);

Sum = SortedActionProbability [0];

i=0;

While(Rand<Sum)

{

Sum=Sum+SortedActionProbability[i++];

}

ChooseAgentAtIndex[i];

Other acquaintances are the agents with highest Estimated Reward Probability.
Thus by using matching technique for choosing the acquaintance, we reduce the
classification cost and final classification is only done by the topmatching acquain-
tance. This technique is useful when the specification of an agent or service
clearly describes the agent. If the specification is detailed enough then we can
correctly identify the best service for that query. Next section analyzes the experi-
mental results of this system. Similar to experiments described in [12], our experi-
ments implement the pursuit learning algorithm for learning automata that works
in feedbackwith environment. For each action, the environment provides reward or
punishment reinforcementwith some probability.We have designed amodel-based
pursuit algorithm thatmaintains the estimate of the action probabilities, which are
unknown to classification agents. A query from the client is forwarded to a head-
hunter. Each headhunter maintains an acquaintance list and keeps track of each
agent’s action probability. It matches the user query with registered UMM speci-
fications of agents.Whenever a successful match is found, the headhunter rewards
and increases the action probability of the selected agent. Initially, all the agents
have an equal probability and eventually each agent will be tried and explored.

We have implemented two different techniques for matching of agent UMM
specification to queries. The first technique is called as the explicit matching. In



Software Service Selection by Multi-level Matching 317

this technique, the queries contain a domain and sub domain of the document
to be classified. Every agent when registered with the headhunter provides a
detailed UMM specification which is extended to include its domain of classifi-
cation. Hence in this approach, the headhunter matches the query domain along
with other parts of the UMM specification and decides the matching score. This
technique assumes that the clients have some idea about the classification do-
main. On the other hand, if the clients do not have any idea about the domain
of the document they want to classify, then the explicit domain matching will
not work. Hence, we use another method wherein the headhunter selects the
acquaintances in a random manner initially. In both these cases, after the initial
selection, the future selections of agents use the reinforcement learning technique.

4 Experimentation

We conducted a number of experiments to test the effectiveness of the proposed
approach. The first set of experiments did not use the reinforcement learning
algorithm used and the headhunter would just select any random agent for clas-
sification or would send the document to all the agents for classification. This
formed as the base cases for comparing the classification performance. The next
sets of experiments involved the use of acquaintance lists of headhunters selected
by using the explicit (i.e., the direct description of classification domain) and im-
plicit (i.e., using the thesaurus) matching techniques. Our experiments included
ten agents with overlapping thesauri and ten sets of documents from a single
sub domain. The results and analysis of experiments are provided below.

4.1 Experiments without Reinforcement Learning Algorithm

Experiment 1: In this experiment, all documents were sent to all classifier agents
so that the resulting classification success rate was 100%. However, since all
classifier agents attempted to classify all documents, this is by far the most
expensive method computation and communication-wise.

Experiment 2: In this experiment, documents were sent to three classifier
agents chosen at random. The classification success rate was observed to be only
40%, but the computation time required was less than the previous experiment.

Experiment 3: In this experiment, documents were sent to only one randomly
chosen classifier agent. The success rate in classification was observed to be only
20% in this case but it was faster than the previous two cases.

4.2 Experiments with Reinforcement Learning Algorithm
Using Explicit Matching

Experiment 1: Classification achieved by selecting the Top Acquaintance
In this experiment, the top acquaintance is selected by a headhunter for clas-

sification queries by means of the matching the document domain, along with
other aspects of the UMM specification of agents. As the acquaintance list is



318 R.R. Raje et al.

Fig. 2. Explicit Classification by Selecting the Top Acquaintance – Classification Time

constantly updated, using the reinforcement algorithm, during each classifica-
tion only the top one is chosen. The performance (processing time), and the
classification success rate are shown Figures 2 and 3 respectively. In Figure 2,
the X-axis denotes the 100 documents (10 sets of 10 documents) and the Y-axis
indicates the processing time (in milli-seconds) taken by the top acquaintance.
After the initial period, the classification time saturates a value that is between
2 and 4 ms. The X-axis in Figure 3 indicates the set number (each set consisting
of 10 documents), while the Y-axis indicates the number of successful document
classifications for each set. From Figure 3, it can be seen that the classification
performance quickly reaches the 100% level (i.e., 10 successful classifications
in each set). This is hardly a surprise, as the top acquaintance which is most
suitable for classification, is learnt by the headhunter quickly. When compared
with the non-learning based exhaustive technique (Section 4.1), this scheme pro-
vides a comparable performance with a lot less computation (i.e., only one agent
classifying the documents versus all 10 agents classifying the documents).

Fig. 3. Explicit Classification by Selecting the Top Acquaintance – Classification
Success



Software Service Selection by Multi-level Matching 319

Experiment 2: Classification done by Randomly chosen acquaintance.

Fig. 4. Explicit Classification by Selecting a Random Acquaintance – Classification
Time

In this case, an agent is selected by the headhunter from the acquaintance
list in a random manner. Figures 4 and 5 show the performance of this scheme.
The X and Y axes indicate the same entities as in Figures 2 and 3. As seen
from Figure 4, the classification time varies randomly an in some cases is similar
to the one in Figure 2, and the classification performance (Figure 5) is poorer
than the case with the selection of the top-acquaintance (Figure 3). This is also
expected, as the random selection does not guarantee the selection of the top
acquaintance.

Fig. 5. Explicit Classification by Selecting a Random Acquaintance – Classification
Success

4.3 Experiments with Reinforcement Learning Algorithm Using
Implicit Matching

Experiment 1: Classification achieved by selecting the Top Acquaintance
In this experiment, the top acquaintance is selected by a headhunter for classi-

fication queries in a random manner initially. The selected agent gets a chance to



320 R.R. Raje et al.

Fig. 6. Implicit Classification by Selecting the Top Acquaintance – Classification Time

Fig. 7. Implicit Classification by Selecting the Top Acquaintance – Classification
Success

classify the document and if it is successful, it gets a reward (as indicated above
by the reinforcement algorithm), else it gets a penalty. The future iterations
always use the top acquaintance during the selection process. The performance
(processing time), and the classification success rate are shown Figures 6 and
7 respectively. In Figure 6, the X-axis denotes the 100 documents (10 sets of
10 documents) and the Y-axis indicates the processing time (in milli-seconds)
taken by the top acquaintance. After the initial period, the classification time
saturates a value that is close to 2 ms. The X-axis in Figure 7 indicates the set
number (each set consisting of 10 documents), while the Y-axis indicates the
number of successful document classifications for each set. From Figure 7, it can
be seen that the classification performance quickly reaches the 100% level (i.e.,
10 successful classifications in each set). This is hardly a surprise, as the top
acquaintance is learnt by the headhunter quickly.

Experiment 2: Classification achieved by selecting Randomly chosen
Acquaintance.

In this case, the initial acquaintance list is randomly selected and an agent is
also selected by the headhunter from the acquaintance list in a random manner.
Again, the selected agent, if successful, gets a reward, else gets a penalty and
the list is updated accordingly. Figures 8 and 9 show the performance of this
scheme. The X and Y axes indicate the same entities as in Figures 6 and 7. As



Software Service Selection by Multi-level Matching 321

Fig. 8. Implicit Classification by Selecting a Random Acquaintance – Classification
Time

Fig. 9. Implicit Classification by Selecting a Random Acquaintance – Classification
Success

seen from Figure 8, the classification time is similar to the case with the selection
of the top acquaintance (Figure 6) but the classification performance (Figure 9)
is poorer than the case with the selection of the top-acquaintance (Figure 7).
This is also expected, as the random selection does not guarantee the selection
of the top acquaintance.

4.4 Experiments Involving Fault Situations

Here to simulate the fault situations, during the classification process, the top
acquaintance agent is deleted from the system after every 10 document classi-
fications and after every next 10 passes a new agent is added to the system.
The results are presented below Figures 10 and 11. As seen from Figure 10,
the classification time does increase when the top acquaintance agent is deleted
and it does reduce as the system learns the new top acquaintance. However, the
classification performance (as shown in Figure 11) does not exhibit a predic-
tive pattern. This can be attributed to the randomness of documents and the
inclusion of a random agent into the system.



322 R.R. Raje et al.

Fig. 10. Classification while Deleting the Top Acquaintance – Classification Time

Fig. 11. Classification while Deleting the Top Acquaintance – Classification Time

4.5 Summary of Experimental Results

The above experiments indicate that the learning-based algorithm outperforms
the discovery without learning (except the case where the documents are sent
to all the agents) when the classification success is chosen as the metric of per-
formance. When classification done by all classifiers, and with no learning, the
classification success is 100% but it is at the cost of additional computation.
In the case of explicit and implicit matching, with learning based algorithm,
the scheme which uses the top acquaintance for classification outperforms the
scheme where randomly selected acquaintances are used in the classification.
The scheme involving top acquaintances for classification achieves a comparable
classification success with the exhaustive case (i.e., on learning but the usage of
all the agents in classification). Thus, incorporation of learning, in addition to
multi-level matching, delivers a comparable performance while selecting appro-
priate agents for document classification.

5 Conclusion

In this paper, we have presented a method for learning of preferred acquaintance
by using specification matching for classification agents. This is useful where
agents are not only distributed in nature but they randomly join and leave the



Software Service Selection by Multi-level Matching 323

system. Our experiments show that the learning based on specification matching
not only reduces cost of sending document to all classifier, but also gives a good
classification performance. We show that, with little overhead of maintaining
model based pursuit learning algorithm and specification matching, the service
discovery system converges fast and provides near optimal solution as far as the
classification success is considered.

References

1. Sun Microsystems. Jini Specifications V2.0,
http://wwws.sun.com/software/jini/specs/

2. UPnP Organization. UPnP Home Page (2005), http://www.upnp.org

3. Kemp, J., St. Pierre, P.: Service Location Protocol for Enterprise Networks. Wiley
and Son Inc., ISBN 0-47-3158-7

4. OpenSLP Organization. OpenSLP Home Page (2005),
http://www.openslp.org

5. UDDI Technical White Paper (2000),
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf

6. Object Management Group. Trading Object Service Specification (2000),
http://www.omg.org/docs/formal/00-06-27.pdf

7. Globus Toolkit (2007), http://www.globus.org/toolkit/

8. von Behren, J., Brewer, E., Borisov, N., Chen, M., Welsh, M., MacDonald, J., Lau,
J., Culler, D.N.: A Framework for Network Services. In: Proceedings of USENIX
Annual Technical Conference (2002)

9. Banaei-Kashani, F., Chen, C., Shahabi, C.: WSPDS: Web Services Peer-to-peer
Discovery Service (2004),
http://infolab.usc.edu/DocsDemos/isws2004_WSPDS.pdf

10. Dabrowski, C., Mills, K., Quirolgico, S.: A Model-based Analysis of First-
Generation Service Discovery Systems. Technical report, NIST Special Publication,
500-260 (October 2005),
http://w3.antd.nist.gov/pubs/SP500_260final.pdf

11. Thathachar, M., Sastry, P.: A New Approach to the Design of Reinforcement
Schemes for Learning Automata. IEEE Transactions on System Man Cybernet-
ics 15, 168–175 (1985)

12. Mukhopadhyay, S., Peng, S., Raje, R., Palakal, M., Mostafa, J.: Multi-Agent Infor-
mation Classification Using Dynamic Acquaintance Lists. Journal of the American
Society for Information Science and Technology 54(10), 966–975 (2003)

13. Seacord, R., Hissam, S. and Wallnau, K. Agora: A Search Engine for Software
Components. Technical report, Carnegie Mellon University, CMU/SEI-98-TR-011,
ESC-TR-98-011 (1998)

14. Chakraborty, D., Perich, F., Avancha, S., Joshi, A.: DReggie: A Smart Service Dis-
covery Technique for E-Commerce Applications. In: Proceedings, 20th Symposium
on Reliable Distributed Systems (October 2001)

15. Di Martino, B.: Semantic web services discovery based on structural ontology
matching. In: Proceedings of IJWGS (2009)

16. Lin, C., Wu, Z., Deng, S., Kuang, L.: Automatic Service Matching and Service
Discovery Based on Ontology. In: Jin, H., Pan, Y., Xiao, N., Sun, J. (eds.) GCC
2004. LNCS, vol. 3252, pp. 99–106. Springer, Heidelberg (2004)

http://wwws.sun.com/software/jini/specs/
http://www.upnp.org
http://www.openslp.org
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf
http://www.omg.org/docs/formal/00-06-27.pdf
http://www.globus.org/toolkit/
http://infolab.usc.edu/DocsDemos/isws2004_WSPDS.pdf
http://w3.antd.nist.gov/pubs/SP500_260final.pdf


324 R.R. Raje et al.

17. Paolucci, M., Kawamura, T., Payne, T., and Sycara, K. Importing the Semantic
Web in UDDI. In: Workshop on EBusiness and Semantic Web (2001)

18. Kawamura, T., De Blasio, J.-A., Hasegawa, T., Paolucci, M., Sycara, K.: Prelim-
inary Report of Public Experiment of Semantic Service Matchmaker with UDDI
Business Registry. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang,
J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 208–224. Springer, Heidelberg (2003)

19. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic Matching of
Web Services Capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, pp. 333–347. Springer, Heidelberg (2002)

20. Colgrave, J., Akkiraju, R., Goodwin, R.: External Matching in UDDI. In: Proceed-
ings of IEEE international Conference on Web Services (2004)

21. Aguilera, U., Abaitua, J., Diaz, J., Bujan, D., Ipina, D.: Semantic Matching Al-
gorithm for Discovery in UDDI. In: Proceedings of International Conference on
Semantic Computing (2007)

22. DARPA. The DARPA Agent Markup Language (2006), http://www.daml.org/
23. Arabshian, K., Schulzrinne, H.: GloServ: global service discovery architecture. In:

Mobile and Ubiquitous Systems: Networking and Services, pp. 319–325 (2004)
24. Skouteli, C., Samaras, G., Pitoura, E.: Concept-based discovery of mobile services.

In: MDM 2005: Proceedings of the 6th International Conference on Mobile Data
Management, pp. 257–261. ACM, New York (2005)

25. Gu, T., Qian, H., Yao, J., Pung, H.: An architecture for flexible service discovery
in OCTOPUS. In: ICCCN, pp. 291–296 (2003)

26. Arabshian, K., Dickmann, C., Schulzrinne, H.: Ontology-Based Service Discovery
Front-End Interface for GloServ. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimi-
ano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E.
(eds.) ESWC 2009. LNCS, vol. 5554, pp. 684–696. Springer, Heidelberg (2009)

27. Taekgyeong, H., Kwang, M.: An Ontology-enhanced Cloud Service Discovery Sys-
tem. In: Proceedings of International Multiconference of Engineers and Computer
Scientists (2010)

28. Zeng, W., Zhao, Y., Zeng, J.: Cloud service and service selection algorithm re-
search. In: Proceedings of ACM/SIGEVO Summit on Genetic and Evolutionary
Computation (2009)

29. Rajiv, R., Liang, Z., Xiaomin, W., Anna, L.: Peer-to-Peer Cloud Provisioning:
Service Discovery and Load-Balancing. In: Proceedings of CoR (2009)

30. Indiana University Purdue University Indianapolis. UniFrame Project (2010),
http://www.cs.iupui.edu/uniFrame

31. Beugnard, A., Jezequel, J., Plouzeau, N., Watkins, D.: Making Components Con-
tract Aware. IEEE Computer 32(7), 38–45 (1999)

32. Siram, N.: An Architecture for the UniFrame Resource Discovery Service. Master’s
thesis, Indiana University Purdue University Indianapolis, Department of Com-
puter and Information Science (2002)

33. Siram, N., Raje, R., Bryant, B., Olson, A., Auguston, M., Burt, C.: An Architecture
for the UniFrame Resource Discovery Service. In: van der Hoek, A., Coen-Porisini,
A. (eds.) SEM 2002. LNCS, vol. 2596, pp. 20–35. Springer, Heidelberg (2003)

34. Raje, R., Gandhamaneni, J., Olson, A., Bryant, B.: MURDS: A Mobile-Agent-
based Distributed Discovery System. In: Taniar, D. (ed.) Encyclopedia of Mobile
Computing and Commerce, Hershey, USA, vol. 1, pp. 207–212 (2007)

35. Narendra, K.S., Thathachar, M.A.L.: Learning Automata: An Introduction.
Prentice-Hall (1989)

http://www.daml.org/
http://www.cs.iupui.edu/uniFrame

	Software Service Selection by Multi-level Matching and Reinforcement Learning
	Introduction
	Related and Past Work
	UniFrame Resource Discovery Service (URDS)
	Reinforcement Learning

	Methodology
	Experimentation
	Experiments without Reinforcement Learning Algorithm
	Experiments with Reinforcement Learning Algorithm Using Explicit Matching
	Experiments with Reinforcement Learning Algorithm Using Implicit Matching
	Experiments Involving Fault Situations
	Summary of Experimental Results

	Conclusion
	References




