
An Empirical Study of Predictive Modeling Techniques
of Software Quality

Taghi M. Khoshgoftaar1, Kehan Gao2, and Amri Napolitano1

1 Florida Atlantic University, Boca Raton, FL 33431, USA
taghi@cse.fau.edu, amrifau@gmail.com

2 Eastern Connecticut State University, Willimantic, CT 06226, USA
gaok@easternct.edu

Abstract. The primary goal of software quality engineering is to apply vari-
ous techniques and processes to produce a high quality software product. One
strategy is applying data mining techniques to software metrics and defect data
collected during the software development process to identify the potential low-
quality program modules. In this paper, we investigate the use of feature selection
in the context of software quality estimation (also referred to as software de-
fect prediction), where a classification model is used to predict program modules
(instances) as fault-prone or not-fault-prone. Seven filter-based feature ranking
techniques are examined. Among them, six are commonly used, and the other
one, named signal to noise ratio (SNR), is rarely employed. The objective of the
paper is to compare these seven techniques for various software data sets and as-
sess their effectiveness for software quality modeling. A case study is performed
on 16 software data sets and classification models are built with five different
learners. Our experimental results are summarized based on statistical tests for
significance. The main conclusion is that the SNR technique performs better than
or similar to the best performer of the six commonly used techniques.

Keywords: filter-based feature ranking techniques, software defect prediction,
software metrics, software quality.

1 Introduction

The quality of a software product is a key factor to that product’s success or failure,
and must be monitored and managed throughout the software development process.
Extensive studies have been dedicated towards improving software quality. One fre-
quently used method is software defect prediction, in which practitioners utilize soft-
ware metrics (attributes or features) gathered during the software development life
cycle, along with various data mining techniques, to build classification models for pre-
dicting whether a given program module (instance or example) is in the fault-prone (fp)
or not-fault-prone (nfp) class [18]. The primary benefit of such a strategy is that it fa-
cilitates intelligent project resource allocation for the potentially problematic modules.
For example, modules predicted to be fault-prone receive more inspection and testing,
resulting in better quality.

However, in the practice of software defect prediction, we find that superfluous soft-
ware metrics often exist in data repositories. Moreover, the collected software metrics

J. Suzuki and T. Nakano (Eds.): BIONETICS 2010, LNICST 87, pp. 288–302, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



An Empirical Study of Predictive Modeling Techniques of Software Quality 289

may not be complete, consistent, or useful; some metrics may be redundant or irrel-
evant to classification results. Therefore, using all available software metrics to train
a defect prediction model without considering the quality of the underlying software
measurement data is often not the best strategy. Selecting a subset of features that are
most important to the class attribute is needed prior to the model training process.

In this paper, we investigate seven filter-based feature ranking techniques to choose
subsets of features (metrics). Among the seven techniques, six of them are commonly
used methods, chi-square (CS), information gain (IG), gain ratio (GR), symmetrical
uncertainty (SU), and ReliefF (two types, RF and RFW) [25]; the remaining technique
is based on signal to noise ratio (SNR), which is a widely used concept in electrical
and communication engineering but which has only started being used in data mining
research very recently [17]. The idea of the filter-based feature ranking techniques is
as follows: (1) each independent attribute is individually paired with the class attribute;
(2) an intrinsic characteristic (score) of each attribute is evaluated; and (3) attributes are
ordered according to the calculated scores. Note that no classifiers are built during the
filter-based feature ranking process.

The main objective of this paper is to evaluate the effectiveness of seven filter-based
feature selection methods in the context of software quality estimation. The case study
data consists of software measurement and defect data from three real-world software
projects, including four data sets from a very large telecommunications software sys-
tem (LLTS) [12], nine data sets from the Eclipse project [28], and three data sets
from NASA software project KC1 [16]. In the case study, feature selection is per-
formed first, then defect prediction models are constructed using five different clas-
sifiers (naı̈ve Bayes, multilayer perceptron, support vector machine, logistic regression,
and K-nearest-neighbors) with the training data consisting of the software metrics se-
lected by the seven different approaches. The empirical results demonstrate that the
SNR technique has better performance than the other six commonly used feature se-
lection approaches on average. Moreover, SNR exhibits more stable performance than
some standard techniques such as RF and RFW with respect to different learners. From
a software practice point of view, researchers and practitioners would like to work with
a smaller set of metrics for defect prediction rather than analyze a large number of
metrics.

The remainder of the paper is organized as follows: Section 2 describes some related
work. Section 3 presents seven filter-based feature ranking techniques, five classifiers,
and the performance metric used in this study. Section 4 describes the empirical case
study, including software measurement data, results, analysis, and threats to empirical
validity. Section 5 summarizes the conclusions of the paper and some directions for
future work.

2 Related Work

Feature selection is the process of choosing some subset of the features and building a
classifier based solely on those. It can remove as many unnecessary features as possible,
leaving only those features which are useful in building a classifier. Feature selection



290 T.M. Khoshgoftaar, K. Gao, and A. Napolitano

has been extensively studied for many years in the data mining and machine learning
community. A good overview on various aspects of the attribute selection problem was
done by Guyon and Elisseeff [7]. They outlined the key techniques and approaches
used in attribute selection including feature construction, feature ranking, multivariate
feature selection, efficient search methods, and feature validity assessment methods.
Liu and Yu [19] provided a comprehensive survey of feature selection algorithms and
presented an integrated approach to intelligent feature selection.

Typically, feature selection techniques are divided into two types: wrapper-based
and filter-based. The wrapper-based approach involves training a learner during the
feature selection process, while a filter-based approach uses the intrinsic characteristics
of the data for feature selection and does not rely on training a learner. The primary
advantage of the filter-based approach over the wrapper-based approach lies in its faster
computation.

In this paper, we examine seven filter-based feature ranking techniques, six of which
are commonly used filter-based methods, while the other one, named signal to noise
ratio (SNR), has only been applied in data mining research very recently to select rele-
vant features in classification problems. Studies [5] showed that SNR’s ability to prop-
erly rank the features is affected by the number of features present. If the number of
features is too large (very high dimensional data) then ranking performance may be af-
fected by the presence of noise in the data. But in most cases, SNR combined with other
approaches shows improved performance. Next, we briefly discuss some of the recent
techniques that involve SNR in feature selection.

A PCC (Pearson correlation coefficient ) SNR hybrid method is shown to be very ef-
ficient in selecting genes in microarray expression data [5]. ANN (artificial neural net-
work) based feature selection using SNR for classification of Doppler ultrasound signals
has been studied by Güler and ı́beyli [6]. They devised an ANN-SNR based classifica-
tion method to classify Ophthalmic arterial Doppler signals and internal carotid arterial
Doppler signals. Lakshmi et al. [17] suggest a MSNR (maximized signal to noise ratio)
technique in the field of text classification. A novel GA-Taguchi based feature selection
method applies this SNR based technique on seventeen different real world data sets
and shows its superiority in selecting useful features [27]. In this paper, we study the
standard SNR technique and apply it to software quality modeling. To our knowledge,
no research has done this before.

We also notice that although feature selection has been widely applied in various data
mining problems [3,7,8,10,22], its application in software quality and reliability engi-
neering has been rather limited. Rodrı́guez et al. [21] applied feature selection to five
software engineering data sets using three filter-based models and three wrapper-based
models. The authors state that the reduced data sets maintained the prediction capability
of the original data sets while using fewer attributes. Chen et al. [2] have studied feature
selection using wrappers in the context of software cost/effort estimation. In recent stud-
ies [24,13], we investigated various feature selection techniques, including filter-based
and wrapper-based methods. It was concluded that the performances of the classifica-
tion models either improved or were not affected when over 85% of the features were
eliminated from the original data sets.



An Empirical Study of Predictive Modeling Techniques of Software Quality 291

3 Methodology

3.1 Standard Filter-Based Feature Ranking Techniques

Feature ranking assigns a score to each feature according to a particular method (met-
ric), allowing the selection of the best set of features. The six commonly used filter-
based feature ranking techniques considered in this work include [25]: chi-square (CS),
information gain (IG), gain ratio (GR), two types of ReliefF (RF and RFW), and sym-
metrical uncertainty (SU).

The chi-squared - χ2 (CS) test is used to examine the distribution of the class as it
relates to the values of the target feature. The null hypothesis is that there is no corre-
lation, i.e., each value is as likely to have instances in any one class as any other class.
Given the null hypothesis, the χ2 statistic measures how far away the actual value is
from the expected value:

χ2 =

r∑

i=1

nc∑

j=1

(Oi,j − Ei,j)
2

Ei,j

where r is the number of different values of the feature, nc is the number of classes (in
this work, nc = 2), Oi,j is the observed number of instances with value i which are
in class j, and Ei,j is the expected number of instances with value i and class j. The
larger the χ2 statistic, the more likely it is that the distribution of values and classes are
dependent; that is, the feature is relevant to the class.

Information gain, gain ratio, and symmetrical uncertainty are measures based on the
concept of entropy from information theory [25]. Information gain (IG) is the informa-
tion provided about the target class attribute Y, given the value of another attribute X.
IG measures the decrease of the weighted average impurity of the partitions compared
to the impurity of the complete set of data. IG tends to prefer attributes with a larger
number of possible values. If one attribute has a larger number of values, it will appear
to gain more information than those with fewer values, even if it is actually no more
informative. One strategy to solve this problem is to use the gain ratio (GR), which
penalizes multiple-valued attributes. Symmetrical uncertainty (SU) is another way to
overcome the problem of IG’s bias toward attributes with more values, doing so by
dividing by the sum of the entropies of X and Y.

Relief is an instance-based feature ranking technique introduced by Kira and Ren-
dell [15]. ReliefF is an extension of the Relief algorithm that can handle noise
and multiclass data sets, and is implemented in the WEKA1 tool [25]. When the
WeightByDistance (weight nearest neighbors by their distance) parameter is set
as default (false), the algorithm is referred to as RF; when the parameter is set to ‘true’,
the algorithm is referred to as RFW.

1 WEKA (Waikato Environment for Knowledge Analysis) is a popular suite of machine learn-
ing software written in Java, developed at the University of Waikato. WEKA is free software
available under the GNU General Public License. In this study, all experiments and algorithms
were implemented in the WEKA tool.



292 T.M. Khoshgoftaar, K. Gao, and A. Napolitano

3.2 Signal to Noise Ratio

Signal to noise ratio (SNR) [5], in the context of classification problems in data min-
ing, defines how well a feature discriminates two classes in a two-class problem. The
equation to calculate SNR is

SNR =
μP − μN

σP + σN

where μP and μN are mean values of a particular attribute for the samples from class P
and class N , and σP and σN are standard deviations for this attribute from the sample
set for class P and class N . Because of its discriminating power among the classes,
SNR is highly efficient to properly rank the features in terms of its relation to the output
class.

3.3 Classification Algorithms

The software defect prediction models are built using five different classification algo-
rithms, including Naı̈ve Bayes (NB) [25], Multilayer Perceptron (MLP) [9], Support
Vector Machine (SVM) [23], Logistic Regression (LR) [25], and K-nearest-neighbors
(KNN) [25]. These learners were selected for two key reasons: (1) they do not have a
built-in feature selection capability, and (2) they are commonly used in both software
engineering and data mining domains [11,18,20].

The WEKA data mining tool [25] is used to instantiate the different classifiers. Gen-
erally, the default parameter settings for the different learners are used (for NB and LR),
except for the below-mentioned changes. A preliminary investigation in the context of
this study indicated that the modified parameter settings are appropriate.

– In the case of MLP, the hiddenLayers parameter was changed to ‘3’
to define a network with one hidden layer containing three nodes, and the
validationSetSize parameter was changed to ‘10’ to cause the classifier to
leave 10% of the training data aside for use as a validation set to determine when
to stop the iterative training process.

– For the KNN learner, the distanceWeighting parameter was set to ‘Weight
by 1/distance’, and the kNN parameter was set to ‘5’.

– In the case of SVM, two changes were made: the complexity constant c
was set to ‘5.0’, and build Logistic Models was set to ‘true’. A linear ker-
nel was used by default.

3.4 Performance Metric

The Area Under the ROC (Receiver Operating Characteristic) curve, abbreviated as
AUC, is used for evaluating the defect prediction models in this study. If the fp mod-
ules are considered positive and the nfp modules are considered negative, then the ROC
curve plots the true positive rates versus the false positive rates. An ROC curve illus-
trates the classifier’s performance across all decision thresholds, i.e., a number between
0 and 1 that theoretically separates the fp and nfp modules. This is in contrast to most
defect prediction studies that use performance metrics based on the default decision
threshold value of 0.5. The AUC values range from 0 to 1, where a perfect classifier
provides an AUC value of 1 [11,25].



An Empirical Study of Predictive Modeling Techniques of Software Quality 293

Table 1. Software Data Set Characteristics

Data #Attri. #Inst. #fp %fp #nfp %nfp

SP1 42 3649 229 6% 3420 94%
LLTS SP2 42 3981 189 5% 3792 95%

SP3 42 3541 47 1% 3494 99%
SP4 42 3978 92 2% 3886 98%

E2.0-10 208 377 23 6% 354 94%
E2.0-5 208 377 52 14% 325 86%
E2.0-3 208 377 101 27% 276 73%
E2.1-5 208 434 34 8% 400 92%

Eclipse E2.1-4 208 434 50 12% 384 88%
E2.1-2 208 434 125 29% 309 71%
E3.0-10 208 661 41 6% 620 94%
E3.0-5 208 661 98 15% 563 85%
E3.0-3 208 661 157 24% 504 76%

KC1-5 62 145 36 25% 109 75%
NASA KC1-10 62 145 21 14% 124 86%

KC1-20 62 145 10 7% 135 93%

4 Case Study

4.1 Software Measurement Data

Experiments conducted in this study used software metrics and defect data collected
from real-world software projects, including a very large telecommunications software
system (denoted as LLTS) [12], the Eclipse project [28], and NASA software project
KC1 [16].

The software measurement data sets of LLTS consist of 42 software metrics, includ-
ing 24 product metrics, 14 process metrics, and four execution metrics. More details
about these software metrics can be seen in [12]. The dependent variable is the class
of the program module. A module with one or more faults is considered fp, and nfp
otherwise. The LLTS software system consists of four successive releases labeled SP1,
SP2, SP3, and SP4, where each release is characterized by the same number and type of
software metrics, but has a different number of instances (program modules). The SP1,
SP2, SP3, and SP4 data sets consist of 3649, 3981, 3541, and 3978 program modules,
respectively.

From the PROMISE data repository [28], we obtained the Eclipse defect counts and
complexity metrics data set. The original data for the Eclipse packages consists of three
releases denoted 2.0, 2.1, and 3.0, respectively. We chose three post-release defects
thresholds thd to determine the defective instances for each release. A program module
with thd or more post-release defects is labeled as fp, while those with fewer than thd
defects are labeled as nfp. In our study, we use thd ε {10, 5, 3} for release 2.0 and
3.0 while we use thd ε {5, 4, 2} for release 2.1. All nine derived data sets contain 208
independent attributes. Releases 2.0, 2.1, and 3.0 contain 377, 434, and 661 instances,
respectively.

We obtain the class-level data set for the KC1 data set also from the PROMISE repos-
itory. This is a publicly available data set that represents one of five NASA projects [16].
The original data contains a set of measures per module, including the number of de-
fects reported for the module. It included 145 instances, each containing 94 indepen-
dent attributes plus a defect attribute. After removing 32 Halstead derived measures,



294 T.M. Khoshgoftaar, K. Gao, and A. Napolitano

we have 62 independent attributes left. We used three different thresholds to define de-
fective instances, thereby obtaining three structures of the preprocessed KC1 data set.
The thresholds are 20, 10, and 5, indicating instances with number of defects greater or
equal to 20, 10, or 5 belong to the fp class, or the nfp class otherwise. The three data
sets are named KC1-20, KC1-10, and KC1-5, respectively.

The 16 data sets used in this work reflect software projects of different sizes with
different proportions of fp and nfp modules. Table 1 lists the characteristics of the 16
data sets utilized in this work.

4.2 Results of the Feature Selection Techniques

When using a filter-based feature ranking technique, the number of features (software
metrics) that will be selected for modeling must be given in advance for the technique.
In this study, we choose �log2 n� features that have the highest scores, where n is the
total number of the independent features. The reasons we adopt such a strategy in-
clude: (1) to our knowledge, related literature does not provide guidance on the ap-
propriate number of features to select in such ranking techniques; (2) a recent study
[14] recommended using �log2 n� features to build Random Forests learners for binary
classification for imbalanced data sets; and (3) a preliminary investigation showed that
�log2 n� is also appropriate for various learners. Consequently, a feature subset with
size of �log2 n� is used. That is, for the four LLTS data sets, we select �log2 42� = 6
features; for the nine Eclipse data sets, we select �log2 208� = 8 features; and for the
three NASA KC1 data sets, we select �log2 62� = 6 features.

Following the feature selection algorithms, the five different types of classification
models are constructed with data sets containing only the selected attributes. The defect
prediction models are evaluated in terms of the AUC performance metric, as stated
earlier. Due to paper size limitations, we could not present each individual classifier’s
performance. We only present the results of the NB and LR learners individually and
the average performance over five learners, as shown in Tables 2, 3, and 4 respectively.
However, the discussions and summaries are made based on the facts observed over all
five different classifiers.

In the experiments, ten runs of five-fold cross-validation were performed for model
training. The values presented in the tables represent the average AUC for every classi-
fication model constructed over the ten runs of five-fold cross-validation. All the results
of seven feature selection techniques and over 16 different software data sets are re-
ported. The best feature selection technique in terms of their AUCs for each data set
(row) is highlighted in bold. We also summarize the average performance (last row of
the table) for each feature selection technique across the 16 data sets.

The results demonstrate that SNR outperformed the other feature selection tech-
niques on average when the five classifiers are applied to the selected subset of features,
since the average AUC of SNR over the five learners is 0.8380 (last row of Table 4),
which is the highest score among the seven techniques. For the six commonly used
techniques, IG performed best on average; GR, RF, and RFW performed more poorly
than the other three techniques (IG, CS and SU). Of course, once the subset of features
is set, the classification performance is determined by the learners we select. For in-
stance, the feature subset selected by SNR demonstrated better performance than the



An Empirical Study of Predictive Modeling Techniques of Software Quality 295

Table 2. Classification Performance in terms of AUC for NB Classifier

Data Set CS GR IG RF RFW SU SNR

SP1 0.7846 0.7346 0.7831 0.7879 0.7882 0.7865 0.7995
SP2 0.8108 0.7613 0.8081 0.8053 0.8081 0.7729 0.8142
SP3 0.8184 0.7808 0.8118 0.8305 0.8190 0.7882 0.8067
SP4 0.7696 0.7519 0.7795 0.7731 0.7735 0.7592 0.8130

E2.0-10 0.7904 0.8074 0.8070 0.8455 0.8107 0.8158 0.8623
E2.0-5 0.8421 0.8078 0.8562 0.8617 0.8607 0.8464 0.8767
E2.0-3 0.7963 0.7458 0.8002 0.7857 0.8107 0.7940 0.8003
E2.1-5 0.8419 0.7919 0.8547 0.8022 0.8188 0.8269 0.8681
E2.1-4 0.8226 0.7917 0.8281 0.7688 0.7302 0.8170 0.8560
E2.1-2 0.7536 0.7614 0.7542 0.7993 0.7966 0.7551 0.8063
E3.0-10 0.8742 0.8463 0.8963 0.8044 0.8101 0.8540 0.9175
E3.0-5 0.8866 0.8785 0.8851 0.8481 0.8732 0.8817 0.9099
E3.0-3 0.8130 0.7974 0.8122 0.7789 0.8024 0.8072 0.8759

KC1-5 0.7484 0.7489 0.7438 0.7990 0.7832 0.7468 0.7847
KC1-10 0.7513 0.7729 0.7546 0.7585 0.7639 0.7719 0.7508
KC1-20 0.8525 0.8669 0.8569 0.8296 0.8987 0.8532 0.8646

Average 0.8098 0.7903 0.8145 0.8049 0.8093 0.8048 0.8379

Table 3. Classification Performance in terms of AUC for LR Classifier

Data Set CS GR IG RF RFW SU SNR

SP1 0.8021 0.7688 0.8014 0.8103 0.8091 0.7993 0.8176
SP2 0.8230 0.7935 0.8176 0.8221 0.8233 0.7909 0.8279
SP3 0.8354 0.7805 0.8361 0.8354 0.8387 0.8040 0.8336
SP4 0.8153 0.7816 0.8216 0.8118 0.8142 0.7802 0.8232

E2.0-10 0.8067 0.8173 0.8367 0.8493 0.8184 0.8214 0.8595
E2.0-5 0.8898 0.8695 0.8999 0.8907 0.8923 0.8895 0.9029
E2.0-3 0.8665 0.8140 0.8658 0.8345 0.8468 0.8600 0.8611
E2.1-5 0.8729 0.8394 0.8765 0.8728 0.8824 0.8655 0.8887
E2.1-4 0.8673 0.8587 0.8652 0.8252 0.7582 0.8706 0.8768
E2.1-2 0.8852 0.8774 0.8839 0.8607 0.8726 0.8829 0.8868
E3.0-10 0.9090 0.8808 0.9015 0.8672 0.8604 0.8850 0.9152
E3.0-5 0.9424 0.9334 0.9420 0.8974 0.9083 0.9360 0.9418
E3.0-3 0.9096 0.9019 0.9098 0.8267 0.8415 0.9066 0.9204

KC1-5 0.7774 0.7669 0.7711 0.8134 0.7946 0.7648 0.7990
KC1-10 0.7613 0.7649 0.7791 0.7393 0.7072 0.7734 0.7701
KC1-20 0.8202 0.8293 0.8160 0.7433 0.8420 0.8336 0.8252

Average 0.8490 0.8299 0.8515 0.8312 0.8319 0.8415 0.8594

feature subsets selected by the other approaches for 11 out of 16 cases when NB was
applied (see Table 2); 10 out of 16 cases when LR was used (see Table 3); seven out of
16 cases for MLP; six out of 16 for KNN; and four out of 16 for SVM. But on average,
SNR performed better than other techniques for eight out of 16 cases (see Table 4).

We also performed a one-way ANalysis Of VAriance (ANOVA) F-test [1] on the
classification performance for each technique across all the data sets to examine the
significance level of the performance differences. The ANOVA tests were performed
on the five classifiers individually. Once again, due to space limitation, we only present
the test results for NB, LR, and the average of all five classifiers. The underlying as-
sumptions of ANOVA were tested and validated prior to statistical analysis. The main
factor of our ANOVA experiment is the seven feature ranking techniques. The null hy-
pothesis for the ANOVA test is that all the group population means are the same, while
the alternate hypothesis is that at least one pair of means is different.



296 T.M. Khoshgoftaar, K. Gao, and A. Napolitano

Table 4. Classification Performance in terms of AUC for Five Classifiers

Data Set CS GR IG RF RFW SU SNR

SP1 0.7556 0.7236 0.7579 0.7627 0.7557 0.7593 0.7678
SP2 0.7863 0.7437 0.7741 0.7594 0.7619 0.7570 0.7906
SP3 0.7800 0.7379 0.7792 0.7818 0.7839 0.7593 0.7752
SP4 0.7641 0.7180 0.7722 0.7469 0.7512 0.7346 0.7781

E2.0-10 0.8172 0.8092 0.8404 0.8499 0.8178 0.8188 0.8693
E2.0-5 0.8758 0.8440 0.8850 0.8699 0.8674 0.8754 0.8905
E2.0-3 0.8333 0.7850 0.8358 0.8023 0.8158 0.8322 0.8300
E2.1-5 0.8767 0.8252 0.8882 0.8162 0.8299 0.8695 0.8800
E2.1-4 0.8664 0.8310 0.8680 0.7875 0.7207 0.8636 0.8654
E2.1-2 0.8512 0.8460 0.8500 0.8243 0.8328 0.8482 0.8598
E3.0-10 0.9018 0.8644 0.9128 0.8435 0.8304 0.8744 0.9065
E3.0-5 0.9228 0.9144 0.9226 0.8633 0.8760 0.9175 0.9247
E3.0-3 0.8822 0.8693 0.8812 0.7962 0.8134 0.8772 0.8964

KC1-5 0.7774 0.7589 0.7676 0.8049 0.7895 0.7634 0.7837
KC1-10 0.7714 0.7731 0.7760 0.7358 0.7084 0.7803 0.7641
KC1-20 0.8288 0.8418 0.8353 0.7989 0.8664 0.8355 0.8261

Average 0.8307 0.8053 0.8341 0.8027 0.8013 0.8229 0.8380

Table 5. One-way ANOVA

(a) NB
Source Sum Sq. d.f. Mean Sq. F p-value
Techniques 0.1982 6 0.0330 16.61 0
Error 2.2129 1113 0.0020
Total 2.4111 1119

(b) LR
Source Sum Sq. d.f. Mean Sq. F p-value
Techniques 0.1289 6 0.0215 7.59 0
Error 3.1523 1113 0.0028
Total 3.2812 1119

(c) Five Classifiers
Source Sum Sq. d.f. Mean Sq. F p-value
Techniques 1.2057 6 0.2010 43.11 0
Error 26.0682 5593 0.0047
Total 27.2739 5599

Table 5 shows the ANOVA results. It includes three subtables, each representing
the result for each individual case (NB, LR, and five classifiers). All the p-values are
less than the typical cutoff 0.05, indicating that for the main factor (Techniques), the
alternate hypothesis is accepted, namely, at least two group means are significantly dif-
ferent from each other. We continued our statistical validation by performing a multiple
comparison test on the main factor with Tukey’s Honestly Significant Difference (HSD)
criterion [1]. Note that for both ANOVA and multiple comparison tests, the significance
level α was set to 0.05.

The multiple comparison results are shown in Figure 1, displaying graphs with each
group mean represented by a symbol (◦) and the 95% confidence interval as a line
around the symbol. Two means are significantly different if their intervals are disjoint,
and are not significantly different if their intervals overlap. Matlab was used to perform
the ANOVA and multiple comparisons presented in this work. Based on the multiple
comparison results, we can conclude the following points:

– Among the six commonly used filter-based feature selection techniques, IG per-
formed best. This is true irrespective of what classifier is used to build classification
models. CS and SU performed averagely and GR, RF, and RFW performed poorly
on average.



An Empirical Study of Predictive Modeling Techniques of Software Quality 297

0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86

SNR

SU

RFW

RF

IG

GR

CS

(a) NB
0.82 0.83 0.84 0.85 0.86 0.87 0.88

SNR

SU

RFW

RF

IG

GR

CS

(b) LR

0.79 0.8 0.81 0.82 0.83 0.84 0.85

SNR

SU

RFW

RF

IG

GR

CS

(c) Five Classifiers

Fig. 1. Multiple Comparison

– SNR performed better than or similar to the best performer of the six commonly
used techniques (i.e., IG) across 16 data sets on average.

– Some techniques demonstrate relatively stable performance with respect to differ-
ent learners such as SNR and IG, while other techniques, such as RF and RFW,
show more fluctuational performance with respect to different learners.

– Overall, IG and SNR demonstrated better and more stable performance than other
approaches, and therefore are recommended by this study.

4.3 Discussion on Selected Software Metrics

From a software engineering point of view, a discussion on which software metrics were
selected is warranted. Due to paper size limitations, we only present the results on LLTS
SP1 as shown in Table 6. The table presents the selected subsets of software metrics for
the seven techniques. For example, for SP1, the CS technique produces a subset of
software metrics {5, 11, 15, 24, 33, 41}, where the values represent the software metric
ID numbers. The 42 software metrics are labeled with an ID number ranging from 1
to 42. From the table, we can see that 27 metrics were selected by at least one feature
selection technique and 15 metrics have never been selected by any techniques such as
metric 3, 4, 10, and so on. The second column of the table indicates the number of times
the metric is selected. All the detailed information related to the 42 software metrics are
listed in Table 7.

Our recent work [4] has shown that classification models built on smaller subsets of
features via the six commonly used filter-based feature selection techniques had similar



298 T.M. Khoshgoftaar, K. Gao, and A. Napolitano

Table 6. Software Metrics Selected for SP1

Metric Total # Filter-Based Techniques
ID selected CS GR IG RF RFW SU SNR
1 2 x x
2 1 x
5 2 x x
6 1 x
7 1 x
8 1 x
9 1 x

11 2 x x
12 1 x
15 3 x x x
17 1 x
19 2 x x
20 1 x
21 1 x
24 2 x x
27 2 x x
28 1 x
29 2 x x
30 2 x x
31 1 x
32 1 x
33 2 x x
34 2 x x
35 2 x x
36 3 x x x
41 1 x
42 1 x

or better performances than those built with a complete set of attributes. Thus, we did
not present the results for full data sets in this paper.

4.4 Threats to Validity

A typical software development project is very human intensive, which can affect many
aspects of the development process including software quality and defect occurrence.
Consequently, software engineering research that utilizes controlled experiments for
evaluating the usefulness of empirical models is not practical. The case study presented
in this paper is an empirical software engineering effort, for which the software engi-
neering community demands that its subject have the following characteristics [26]: (1)
developed by a group, and not by an individual; (2) be a large, industry-sized project,
and not a toy problem; (3) developed by professionals, and not by students; and (4)
developed in an industry/government organization setting, and not in a laboratory.

The software systems that are used in our case study were developed by professionals
in large software development organizations using established software development
processes and management practices. The software was developed to address real-world
problems. We note that our case studies fulfill all of the above criteria specified by the
software engineering community. The rest of this section discusses threats to external
validity and threats to internal validity.

Threats to external validity are conditions that limit generalization of case study
results. The analysis and conclusion presented in this article are based upon the metrics
and defect data obtained from 16 data sets of three software projects. The same analysis



An Empirical Study of Predictive Modeling Techniques of Software Quality 299

Table 7. Software Metrics for LLTS Data Sets

Metric ID Symbol Description

1 DES PR Number of problems found by designers during development of the current release.
2 BETA PR Number of problems found during beta testing of the current release.
3 DES FIX Number of problems fixed that were found by designers in the prior release.
4 BETA FIX Number of problems fixed that were found by beta testing in the prior release.
5 CUST FIX Number of problems fixed that were found by customers in the prior release.
6 REQ UPD Number of changes to the code due to new requirements.
7 TOT UPD Total number of changes to the code for any reason.
8 REQ Number of distinct requirements that caused changes to the module.
9 SRC GRO Net increase in lines of code.
10 SRC MOD Net new and changed lines of code.
11 UNQ DES Number of different designers making changes.
12 VLO UPD Number of updates to this module by designers who had 10 or less total updates in

entire company career.
13 LO UPD Number of updates to this module by designers who had between 11 and 20 total updates

in entire company career.
14 UPD CAR Number of updates that designers had in their company careers.
15 USAGE Deployment percentage of the module.
16 CALUNQ Number of distinct procedure calls to others.
17 CAL2 Number of second and following calls to others. CAL2 = CAL - CALUNQ where CAL is

the total number of calls.
18 CNDSPNSM Total span of branches of conditional arcs. The unit of measure is arcs.
19 CNDSPNMX Maximum span of branches of conditional arcs.
20 CTRNSTMX Maximum control structure nesting.
21 FILINCUQ Number of distinct include files.
22 KNT Number of knots. A “knot” in a control flow graph is where arcs cross due to a violation

of structured programming principles.
23 LOC Number of lines of code.
24 CNDNOT Number of arcs that are not conditional arcs.
25 IFTH Number of non-loop conditional arcs (i.e., if-then constructs).
26 LOP Number of loop constructs.
27 NDSENT Number of entry nodes.
28 NDSEXT Number of exit nodes.
29 NDSPND Number of pending nodes (i.e., dead code segments).
30 NDSINT Number of internal nodes (i.e., not an entry, exit, or pending node).
31 LGPATH Base 2 logarithm of the number of independent paths.
32 STMCTL Number of control statements.
33 STMDEC Number of declarative statements.
34 STMEXE Number of executable statements.
35 VARGLBUS Number of global variables used.
36 VARSPNSM Total span of variables.
37 VARSPNMX Maximum span of variables.
38 VARUSDUQ Number of distinct variables used.
39 VARUSD2 Number of second and following uses of variables. VARUSD2 = VARUSD - VARUSDUQ

where VARUSD is the total number of variable uses.
40 RESCPU Execution time (microseconds) of an average transaction on a system serving consumers.
41 BUSCPU Execution time (microseconds) of an average transaction on a system serving businesses.
42 TANCPU Execution time (microseconds) of an average transaction on a tandem system.

for another software system may provide different results which is a likely threat in
all empirical software engineering research. However, we place our emphasis on the
process of comparing the different feature selection techniques considered in this study.
Our comparative analysis can easily be applied to another software system. Moreover,
since all our final conclusions are based on ten runs of five-fold cross-validation and
statistical tests for significance, our findings are grounded in using sound methods.

Threats to internal validity are unaccounted for influences on the experiments that
may affect case study results. Poor fault proneness estimates can be caused by a wide
variety of factors, including measurement errors while collecting and recording soft-
ware metrics, modeling errors due to the unskilled use of software applications, errors



300 T.M. Khoshgoftaar, K. Gao, and A. Napolitano

in model-selection during the modeling process, and the presence of outliers and noise
in the training data set. Measurement errors are inherent to the data collection effort.
In our comparative study, a common model-building and model-evaluation approach is
used for all feature selection techniques and classifiers considered. Moreover, the ex-
periments and statistical analysis were performed by only one skilled person in order to
keep modeling errors to a minimum.

5 Conclusion

In the software quality modeling process, many practitioners often ignore a fact that
excessive metrics exist in data repositories. They directly use the available set of soft-
ware metrics to build classification models without regard to the quality of the under-
lying software measurement data, leading to inferior prediction accuracy and extension
of training time. Selecting software metrics that are important for defect prediction is
needed and critical before the model training process.

In this study, we investigated seven filter-based feature ranking techniques to select
the most important software metrics. Among the seven techniques, six of them are stan-
dard filter-based techniques that are commonly used, while the remaining one is the
signal to noise ratio (SNR) technique rarely used in feature selection. The main pur-
pose of this paper is to examine and compare all seven filter-based feature selection
techniques and evaluate their effectiveness in the context of software defect prediction.
The experiments were conducted on 16 different data sets obtained from three different
software projects. In order to alleviate the problem of potentially biased results gener-
ated by a specific classifier, we used five different learners to build classification models
with data sets containing only the selected attributes. Moreover, ten runs of five-fold
cross-validation were adopted to make the conclusions more persuasive.

The key conclusions are summarized as follows:

– For the six standard filter-based feature selection techniques, IG performed better
than the other five techniques on average across all data sets. This is true no matter
what classifier is used to build classification models. CS and SU performed slightly
worse than IG, but better than GR, RF, and RFW.

– The SNR technique showed better or similar performance to the best performer of
the six commonly used techniques, i.e., IG.

– Some techniques (such as SNR and IG) demonstrated more stable performance
than other techniques (RF and RFW) with respect to different learners.

– IG and SNR exhibit overall better and more stable performance than other ap-
proaches, and therefore are recommended by this study.

– Selecting fewer software metrics for defect prediction is very important to the soft-
ware quality assurance team, for instance, in our case study, working with six met-
rics is much easier and more practical than dealing with 42 metrics.

Future work will include more case studies with software measurement data sets of
other software systems. In addition, as very few research works utilize SNR to select
features, this concept presents a significant research area for computer scientists. More
research works that use SNR to rank features are expected.



An Empirical Study of Predictive Modeling Techniques of Software Quality 301

References

1. Berenson, M.L., Goldstein, M., Levine, D.: Intermediate Statistical Methods and Applica-
tions: A Computer Package Approach, 2nd edn. Prentice-Hall (1983)

2. Chen, Z., Menzies, T., Port, D., Boehm, B.: Finding the right data for software cost modeling.
IEEE Software 22(6), 38–46 (2005)

3. Forman, G.: An extensive empirical study of feature selection metrics for text classification.
Journal of Machine Learning Research 3, 1289–1305 (2003)

4. Gao, K., Khoshgoftaar, T.M., Wang, H., Seliya, N.: Choosing software metrics for defect
prediction: An investigation on feature selection techniques. Software: Practice and Experi-
ence. Special Issue: Practical Aspects of Search-Based Software Engineering 41(5), 579–606
(2011), doi:10.1002/spe.1043

5. Goh, L., Song, Q., Kasabov, N.: A novel feature selection method to improve classification
of gene expression data. In: Chen, Y.P. (ed.) Proceedings of the Second Conference on Asia-
Pacific Bioinformatics, pp. 161–166. Australian Computer Society, Darlinghurst (2004)

6. Güler, İ., ı́beyli, E.D.: Feature saliency using signal-to-noise ratios in automated diagnos-
tic systems developed for doppler ultrasound signals. Engineering Applications of Artificial
Intelligence 19(1), 53–63 (2006)

7. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of Machine
Learning Research 3, 1157–1182 (2003)

8. Hall, M.A., Holmes, G.: Benchmarking attribute selection techniques for discrete class data
mining. IEEE Transaction on Knowledge and Data Engineering 15(6), 1437–1447 (2003)

9. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall (1998)
10. Ilczuk, G., Mlynarski, R.: W Kargul, and A Wakulicz-Deja. New feature selection methods

for qualification of the patients for cardiac pacemaker implantation. Computers in Cardiol-
ogy 34(2-3), 423–426 (2007)

11. Jiang, Y., Lin, J., Cukic, B., Menzies, T.: Variance analysis in software fault prediction mod-
els. In: Proceedings of the 20th IEEE International Symposium on Software Reliability En-
gineering, Bangalore, Mysore, India, November 16-19, pp. 99–108 (2009)

12. Khoshgoftaar, T.M., Bullard, L.A., Gao, K.: Attribute selection using rough sets in soft-
ware quality classification. International Journal of Reliability, Quality and Safty Engineer-
ing 16(1), 73–89 (2009)

13. Khoshgoftaar, T.M., Gao, K.: Feature selection with imbalanced data for software defect
prediction. In: Proceedings of the 8th International Conference on Machine Learning and
Applications, Miami, Florida, USA, December 13-15, pp. 235–240 (2009)

14. Khoshgoftaar, T.M., Golawala, M., Van Hulse, J.: An empirical study of learning from imbal-
anced data using random forest. In: Proceedings of the 19th IEEE International Conference
on Tools with Artificial Intelligence, Washington, DC, USA, vol. 2, pp. 310–317 (2007)

15. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proceedings of 9th
International Workshop on Machine Learning, pp. 249–256 (1992)

16. Koru, A.G., Zhang, D., El Emam, K., Liu, H.: An investigation into the functional form of
the size-defect relationship for software modules. IEEE Transactions on Software Engineer-
ing 35(2), 293–304 (2009)

17. Lakshmi, K., Mukherjee, D.S.: An improved feature selection using maximized signal to
noise ratio technique for tc. In: Proceedings of the Third international Conference on infor-
mation Technology: New Generations, pp. 541–546. IEEE Computer Society Press, Wash-
ington, DC (2006)

18. Lessmann, S., Baesens, B., Mues, C., Pietsch, S.: Benchmarking classification models for
software defect prediction: A proposed framework and novel findings. IEEE Transactions on
Software Engineering 34(4), 485–496 (2008)



302 T.M. Khoshgoftaar, K. Gao, and A. Napolitano

19. Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and cluster-
ing. IEEE Transactions on Knowledge and Data Engineering 17(4), 491–502 (2005)

20. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn defect
predictors. IEEE Transactions on Software Engineering 33(1), 2–13 (2007)

21. Rodriguez, D., Ruiz, R., Cuadrado-Gallego, J., Aguilar-Ruiz, J.: Detecting fault modules
applying feature selection to classifiers. In: Proceedings of 8th IEEE International Confer-
ence on Information Reuse and Integration, Las Vegas, Nevada, August 13-15, pp. 667–672
(2007)

22. Saeys, Y., Abeel, T., Van de Peer, Y.: Robust Feature Selection Using Ensemble Feature
Selection Techniques. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008,
Part II. LNCS (LNAI), vol. 5212, pp. 313–325. Springer, Heidelberg (2008)

23. Shawe-Taylor, J., Cristianini, N.: Support Vector Machines, 2nd edn. Cambridge University
Press (2000)

24. Wang, H., Khoshgoftaar, T.M., Gao, K., Seliya, N.: Mining data from multiple software de-
velopment projects. In: Proceedings of 2009 IEEE International Conference on Data Mining
Workshops, Miami, Florida, USA, December 6, pp. 551–557 (2009)

25. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd
edn. Morgan Kaufmann (2005)

26. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: Experimen-
tation in Software Engineering: An Introduction. Kluwer International Series in Software
Engineering. Software Engineering. Kluwer Academic Publishers, Boston (2000)

27. Yang, C.-H., Huang, C.-C., Wu, K.-C., Chang, H.-Y.: A Novel GA-Taguchi-Based Feature
Selection Method. In: Fyfe, C., Kim, D., Lee, S.-Y., Yin, H. (eds.) IDEAL 2008. LNCS,
vol. 5326, pp. 112–119. Springer, Heidelberg (2008)

28. Zimmermann, T., Premraj, R., Zeller, A.: Predicting defects for eclipse. In: Proceedings of
the 29th International Conference on Software Engineering Workshops, p. 76. IEEE Com-
puter Society Press, Washington, DC (2007)


	An Empirical Study of Predictive Modeling Techniques of Software Quality
	Introduction
	Related Work
	Methodology
	Standard Filter-Based Feature Ranking Techniques
	Signal to Noise Ratio
	Classification Algorithms
	Performance Metric

	Case Study
	Software Measurement Data
	Results of the Feature Selection Techniques
	Discussion on Selected Software Metrics
	Threats to Validity

	Conclusion
	References




