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Abstract. A protein molecule assumes specific conformations under na-
tive conditions to fit and interact with other molecules. Due to the role
that three-dimensional structure plays in protein function, significant
efforts are devoted to elucidating native conformations. Many search al-
gorithms are proposed to navigate the high-dimensional protein confor-
mational space and its underlying energy surface in search of low-energy
conformations that comprise the native state. In this work, we identify
two strategies to enhance the sampling of native conformations. We show
that employing an enhanced fragment library with greater structural
diversity to assemble low-energy conformations allows sampling more
native conformations. To efficiently handle the ensuing vast conforma-
tional space, only a representative subset of the sampled conformations
are maintained and employed to further guide the search for native con-
formations. Our results show that these two strategies greatly enhance
the sampling of the conformational space near the native state.

Keywords: protein native state, conformational ensemble, probabilistic
search, tree-based projection-guided exploration, fragment library.

1 Introduction

The genomic revolution has resulted in millions of protein sequences for which
little functional information is available [24]. Due to the central role that protein
molecules play in biochemical processes in the cell, knowledge of the biological
function of a protein molecule promises to advance our understanding of the
living cell and various diseases. The spatial arrangement of a protein’s atoms,
interchangeably referred to as a structure or conformation, determines to a great
extent biological function. A protein molecule assumes specific conformations
under physiologic (native) conditions to fit and interact with other molecules.

Due to the role that structure plays in the biological function of a protein,
significant efforts are devoted to elucidating native structures. The Protein Struc-
ture Initiative has pushed experimental efforts and yielded native structures of
many proteins [27]. The great number of novel protein sequences with no known
structures and the time and cost associated with resolving structures in the wet
lab call for computational methods to complement wet-lab efforts.
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The Anfinsen experiments have shown that the amino-acid sequence governs
the folding of a protein chain into a “biologically-active conformation” under a
“normal physiological milieu” [2]. Anfinsen posited that, if one were to under-
stand how the amino-acid sequence determines the biologically-active or native
conformation, one could find such a conformation in silico. Research shows that
proteins are not rigid and that the biologically-active state is an ensemble of
(native) conformations [15, 12, 18]. Probing this ensemble when employing only
knowledge of the amino-acid sequence of a protein at hand continues to challenge
structural biology and has been proved NP-hard [13].

A protein chain consists of smaller building blocks, amino acids, each of which
contains many atoms. Amino acids connect their backbone atoms to form a
backbone chain, as shown in Fig. 1(a), with side-chain atoms dangling off the
backbone of each amino acid. Tracking the various conformations of a protein
chain involves exploring a vast conformational space of many dimensions. Many
degrees of freedom (dofs) are needed to represent a protein chain. One can re-
duce the representational detail through coarse-grained representations, such as
backbone-only representations, which track only conformations of the backbone.
Once a native backbone conformation is found, computational techniques can
be used to find physically-relevant placements of the side chains [8, 17].

(a) (b)

Fig. 1. (a) A chain of four amino acids is shown. Backbone atoms are labeled N (gray),
Cα (black), C (gray), and O (silver). A peptide bond between Ni and Ci+1 links two
amino acids together (i proceeds from N- to C-terminus, which refer to backbone N
and C atoms not involved in peptide bonds). Atoms in white are labeled R for residue.
There are 20 distinct residues or side chains in natural proteins. Side chain atoms dangle
off the backbone. (b) We cross-sect energy landscape (grid on z axis) and projection of
conformational space (grid on xy axis, 2 coordinates shown for visualization).

Many coarse-grained representations have been proposed [10]. Even when fo-
cusing on the backbone, many dofs remain. A protein chain of n amino acids
poses 2n backbone dihedral angles that can be modified to obtain backbone con-
formations. The conformational space of interest is narrowed when focusing on
native conformations. These conformations are associated with the lowest en-
ergies in a funnel-like energy surface that underlies the protein conformational
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space [12]. The totality of atomic interactions in a protein conformation results in
a potential energy that is directly related to the probability of that conformation
to be populated under native conditions [12].

The search for the low-energy native conformations is challenging, because the
energy surface is rich in local minima. Some of the minima may be introduced by
coarse-grained energy functions designed to operate on coarse-grained conforma-
tions. By reducing the number of atoms modeled, coarse-grained representations
and the energy functions that operate on them are more computationally ap-
pealing than all-atom functions. All available energy functions are empirical.
However, it is generally accepted that modern functions do not significantly
hamper a powerful conformational search [10].

A powerful search algorithm needs to populate a sufficient number of energy
minima in order to probe the native state without spending impractical resources
on irrelevant regions of the search space. Without any a priori information, it is
not possible to know what a sufficient number of minima is or where the relevant
regions are. The only knowledge is that native conformations are associated with
low energies. This is the main reason why it remains challenging for search algo-
rithms to obtain native conformations. Computing these conformations, however,
is crucial in associating structural and functional information with novel protein
sequences, engineering novel proteins, predicting protein stability, and modeling
protein-ligand or protein-protein interactions [6, 39, 21].

We have recently proposed a probabilistic search algorithm that essentially
addresses the question of where to devote exploration time [31]. The algorithm
gathers information about regions of the conformational space and energy sur-
face it explores. Discretizations of the explored conformational space and energy
surface are employed to further guide the search in the conformational space.

The algorithm essentially grows a search tree in conformational space, rec-
onciling two goals: (i) expanding towards low-energy conformations while (ii)
not oversampling geometrically-similar conformations. The first goal guides the
tree deep in the energy surface. The second goal grows the tree wide in confor-
mational space. Energies of computed conformations are partitioned into levels
through a discretized one-dimensional (1d) grid. The grid helps select conforma-
tions associated with lower energy levels more often for expansion. The search
keeps track of computed conformations in a low-dimensional projection space,
which is discretized to select for expansion low-energy conformations that fall in
under-explored regions (see Fig. 1(b)). The employment of discretization layers
is inspired by sampling-based motion-planning work that uses decompositions,
subdivisions, and projections of the search space to balance the exploration be-
tween coverage and progress toward the goal [35, 30, 28, 38, 23, 22, 29, 9, 36].

In this work, we focus on further enhancing the sampling of the conforma-
tional space near the native state while employing reasonable resources. This
goal is crucial, given the potential inaccuracies inherent in a coarse-grained en-
ergy function and the fact that the native state is an ensemble of conformations.
We identify two strategies to enhance sampling. We propose to increase the
complexity of the conformational space while reducing the granularity of the
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conformational ensemble maintained in the search tree. An enhanced library
of structurally diverse fragment configurations is used to assemble low-energy
conformations and increase the complexity of the search space. Increasing the
complexity appears counterintuitive to efforts to expedite search. The discretiza-
tions employed in our search algorithm, however, allow exploiting the complexity
without wasting resources. Moreover, a second strategy is proposed to efficiently
handle the vast conformational space that ensues from employing the enhanced
fragment library. Only a representative subset of the sampled conformations are
maintained and employed to further guide the search for native conformations.
Results show the proposed strategies enhance the sampling of the conforma-
tional space near the native state. Our work may be promising for large-scale
proteomics applications, where the focus is on quickly probing the native state
and then refining selected conformations in detailed biophysical studies.

The rest of this paper is organized as follows. A brief summary of related work
is provided in section 1.1. Our method is described in section 2. Results follow
in section 3. The article concludes with a discussion in section 4.

1.1 Related Work

Where should a search algorithm devotes its time? Regions that lead to the solu-
tion space are not known a priori, since stochastic search of a high-dimensional
space affords only a local view. An effective search algorithm needs to strike the
right balance between populating a large number of distinct low-energy regions
and focusing further resources to regions likely to lead to the energy basin corre-
sponding to the native state. Ingredients for success were identified most notably
in [25, 26]. Work in [25] introduced the idea of a two-stage hierarchical explo-
ration that searches the whole conformational space first and then narrows the
search in a later stage to smaller regions with low energy and distinct geometry.

Since the success of locating the energy basin in the second stage depends
on the regions populated by the first stage, the emerging state-of-the-art tem-
plate is to sample a large number of low-energy conformations in the first stage,
essentially to build a broad map of the energy landscape [33, 6, 7, 5, 11, 32].
Clustering is then conducted over the conformations to reveal distinct minima
that constitute good starting points from which expensive (in finer detail) local
searches in the second stage can reach the basin. In contrast, coarse graining
is employed to reduce the computational cost of the first stage. It still takes
weeks on multiple CPUs to obtain a large number of low-energy conformations
potentially relevant for the native state [33, 6, 7, 11, 32]. Since the local searches
employed in the second stage are computationally expensive, it is important that
the first stage reveal few distinct local minima worth exploring in greater detail.

The first stage of the search and the analysis over the conformations are often
independent of each-other. As a result, computed conformations cannot be en-
sured to be geometrically-distinct. Incorporating geometric diversity during the
exploration is non-trivial, in part because it remains difficult to find meaningful
conformational (reaction) coordinates on which to measure geometric diversity.
Popular measures like least Root-Mean-Squared-Deviation (lRMSD) and radius
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of gyration (Rg) are confined to the analysis because they can mask away im-
portant differences. Specifically, work in [33] has shown that important minima
can be missed even when employing Rg to select distinct conformations obtained
at a current temperature to initiate MC trajectories at the next temperature in
a Simulated Annealing MC search. Significant work in biophysics is devoted to
finding effective reaction coordinates for proteins (cf. to [10]).

The search algorithm we have recently proposed [31, 34] incorporates analysis
over explored regions of the conformational space and where they map in the
protein energy surface in order to adaptively determine where next to devote
resources. The analysis is carried out over discretizations of the explored space
in order to properly guide the search over the continuous conformational space
(a brief summary of the essential ingredients of the algorithm is provided in sec-
tion 2). As the description of our method and results shows, the sampling of the
conformational space near the native state can be further enhanced if one in-
creases the complexity of the space while reducing the size of the conformational
ensemble maintained in the search tree.

2 Methods

We first summarize the main steps of the algorithm proposed in [31, 34] (shown
below). Given a protein sequence α, the goal is to obtain an ensemble Ωα, where
the lowest-energy backbone-only conformations are sufficiently close to the native
state that they can be further refined to recover this state in all-atom detail.

Input: α, amino-acid sequence
Output: ensemble Ωα of conformations

1: Cinit ← extended coarse-grained conf from α
2: AddConf(Cinit,LayerE ,LayerProj)
3: while Time AND |Ωα| do not exceed limits do
4: �← SelectEnergyLevel(LayerE)
5: cell← SelectGeomCell(�.LayerProj.cells)
6: C ← SelectConf(cell.confs)
7: Cnew ← ExpandConf(C)
8: AddConf(Cnew,LayerE ,LayerProj)
9: Ωα ← Ωα ∪ {Cnew}

An explicit 1d grid is defined over interval [Emin, Emax], where Emin is the
minimum energy over computed conformations, and Emax is the energy of the
extended conformation. Energy levels � are generated every δE units, which is set
to a small 2 kcal/mol, so that the average energy Eavg(�) over conformations in a
level � ∈ LayerE captures well the distribution of energies in �. This discretization
is used to bias the selection towards conformations in lower energy levels through
the quadratic weight function w(�) = Eavg(�)·Eavg(�)+ε, where ε = 2−22 ensures
a non-zero probability of selection for conformations with higher energies. A level
� is selected with probability w(�)/

∑
�′∈LayerE

w(�′).
An implicit 3d grid is associated with � based on a uniform discretization of

geometric coordinates. Three coordinates that capture extrema in a 3d structure
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are adapted from the ultrafast shape recognition (USR) features proposed in [3].
A second weight function selects cells with fewer conformations as in 1.0/[(1.0+
nsel) · nconfs], where nsel records how often a cell is selected, and nconfs is
the number of conformations that project to the cell. Once a cell is chosen, the
actual conformation selected for expansion is obtained at random over those in
the cell, since conformations in the same cell have similar energies (within δE).

A new conformation Cnew that expands the tree (and grows the confor-
mational ensemble Ωα) from a selected C conformation is sampled through a
Metropolis Monte Carlo technique that employs fragment-based assembly. The
backbone dihedral angles of a selected fragment of three amino acids (trimer) in
C are exchanged with angles from a library of trimer configurations built from
a non-redundant subset of known protein native structures. A total of n− 2 (n
amino acids in the chain) exchanges are evaluated and accepted with probability
according to the Metropolis criterion to obtain Cnew.

Applications on different protein sequences reveal that the ensemble Ωα of
low-energy backbone conformations sampled for a sequence in a few CPU hours
contains many conformations similar to the known native structure [31]. Com-
parisons with a Monte Carlo trajectory show the algorithm has a higher sampling
capability [31, 34]. However, detailed inspection of how the algorithm navigates
the conformational space near the native state reveals that the ability to add
low-energy conformations diminishes significantly with time. It becomes more
difficult to find new low-energy conformations in underexplored regions of the
conformational space. Moreover, the multitude of conformations retained in Ωα

imposes restrictions on execution time, further restricting the search.
We propose two strategies to help the exploration find more low-energy con-

formations near the native state. An enhanced fragment library with greater
structural diversity is proposed to assemble low-energy conformations and sam-
ple more conformations near the native state. To efficiently handle the ensuing
vast conformational space, only a representative subset of the sampled conforma-
tions are maintained and employed to further guide the tree in conformational
space. We detail each of these strategies next.

2.1 Enhancing the Trimer Configuration Library

In recent years fragment-based assembly has been incorporated into most state-
of-the-art protein conformational search algorithms [16, 6, 7, 5, 11, 20]. The
diversity of the fragment library influences the quality of the assembled confor-
mations [20]. Indeed, the domain of the conformational search space is primarily
determined by the fragment library. To provide the exploration a greater domain
in which to search for native conformations, we propose an enhanced fragment
library that essentially adds complexity to the conformational space.

The original fragment library (OFL) used in our recent work [31, 34] con-
tains trimer configurations, organized by trimer amino-acid sequence. A subset
of nonredundant protein structures is extracted through the PISCES server [37]
from the Protein Data Bank (PDB) [4]. The subset contains only proteins that
have ≤ 40% sequence similarity, ≤ 2.5Å resolution and R-factor ≤ 0.2. The
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40% cutoff reduces the topologies that are over-populated by similar protein se-
quences in the PDB. The remaining 6, 000 protein chains are split into all over-
lapping trimers. The configurations, backbone dihedral angles, of these trimers
are recorded in a fragment library indexed by trimer amino-acid sequences.

When a conformation is selected for expansion, each of the n−2 Monte Carlo
moves propose to replace a trimer configuration with a configuration extracted
from the fragment library. In OFL, the candidate configurations are only those
with the same amino-acid sequence as the sequence of the trimer configura-
tion chosen for replacement. Focusing only on trimer configurations with the
same amino-acid sequence does not allow considering configurations that, while
slightly different in sequence, may allow assembling novel conformations that
meet the Metropolis criterion. Analysis of protein structures reveals that pro-
teins have similar native structures with as little as 15% sequence identity [14].
Excluding trimer configurations simply because their amino-acid sequence is not
identical to that of the trimer configuration selected for replacement restricts the
conformational search space. This may prevent sampling novel conformations
potentially relevant for the native state of the given protein sequence.

We propose to expand the conformational space available to our algorithm
with an enhanced fragment library (EFL). Local features predicted from the
given sequence α are employed to design a structurally-diverse high-quality li-
brary of configurations. The candidate trimer configurations in EFL are depen-
dent on α, and we refer to a specific library instance designed from a given α as
EFLα. Our construction of EFLα biases towards trimer configurations that share
features with those predicted from α. Essentially, EFLα, whose construction is
detailed below, allows selecting configurations that have similar (not necessarily
identical) sequences to a trimer configuration selected for replacement. While
containing a more diverse set of configurations at the disposal of the expansion
routine in the algorithm, EFLα does not contain more configurations that OFL.
The configurations are limited to those that share secondary structure annota-
tions with the annotation predicted on α.

EFLα is constructed as follows. A multiple sequence alignment (MSA) lists
proteins that have similar sequences to the given α. PSI-BLAST [1] is then em-
ployed to analyze the MSA and yield for each position i in α a list of amino acids
that can replace the amino-acid at position i. The resulting position-specific pro-
file for α reveals what alternative trimer sequences can be considered as similar
to a trimer from position i to i+2. The configurations of these trimers, extracted
from a nonredundant database of protein structures as detailed above, can be
added as candidate configurations to those extracted for the trimer sequence
from i to i + 2. A filtering step improves the quality of the resulting configura-
tions. Only configurations with the same secondary structure (as present in the
known protein structures from which the trimer configurations are extracted)
as that predicted for α with PSI-PRED [19] are added as candidate configura-
tions for a trimer. Considering configurations of similar sequences but identical
secondary structures has become very popular in ab-initio structure prediction
methods that employ fragment-based assembly [6].
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The resulting EFLα represents (in the number of ways conformations can be
assembled with the configurations in the library) a conformational space that
is not only larger, but also more likely to share local structural motifs with
the native structure of the given sequence α. Results in section 3 show that our
algorithm is able to take advantage of this more complex conformational space to
discover more conformations relevant for the native state than when employing
the original fragment library.

2.2 Reducing the Granularity of the Conformational Ensemble Ωα

One of the benefits of employing trimer configurations to assemble conformations
is that hundreds of thousands of conformations can be sampled this way in less
than a day on one CPU. Maintaining all these conformations in the ensemble
Ωα introduces both a practical memory limitation and unnecessary difficulty in
selecting a conformation for expansion. Our recent work limits the exploration
to three hours on one CPU in order to limit the size of the conformational
ensemble [31, 34]. Limiting the size of the conformational ensemble, however,
limits the explorative power of the algorithm. Moreover, the enhanced fragment
library increases the size of the conformational space to be sampled. In order
to explore this broader space while not limiting the sampling capability of the
algorithm, we change the purpose of the conformational ensemble Ωα. Instead
of maintaining every sampled conformation in Ωα, the ensemble now maintains
only a carefully selected a subset of the sampled conformations through which
to represent the explored conformational space.

By essentially reducing the granularity of Ωα, the linear relationship between
running time and memory requirements is removed. Each Cnew generated is first
evaluated for geometric novelty before being added to Ωα. Clustering by lRMSD
is computationally prohibitive to be performed after every sampled conformation
Cnew. Instead, we propose a less costly but effective strategy, which reduces the
size of Ωα by a factor of 10 to 100 (see Fig 2 in section 3). The strategy adds
minimal computation overhead and does not impact the ability of the algorithm
to sample low-energy conformations near the native state.

The granularity reduction exploits a feature of the energetic and geometric
projection layers that is actually exploited in the selection process: two confor-
mations that lie in the same energy level � and projection cell r will be geo-
metrically similar (for some similarity threshold τ). Analysis shows that for the
chosen granularity of 30 geometric cells per dimension (in the geometric projec-
tion grid) the value of τ is less than 1Å (using lRMSD). For this value of τ ,
an arbitrary cutoff of one conformation per � and r would suffice. However, the
strategy we employ is not dependent on the chosen granularity of the geometric
projection grid. Instead, if two conformations share the same � and r, their sim-
ilarity is determined using lRMSD. If the lRMSD is below a chosen τ (set at 1Å
in our experiments), then only one of the conformations, selected at random, is
retained; either the existing conformation is replaced or the new conformation
is discarded with equal probability.
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2.3 Implementation Details

The algorithm is implemented in C++ and runs single-threaded on an AMD 2.66
GHz Dual-Core Opteron with 4 GB of RAM. All reported times are based on
CPU user time. The similarity threshold τ is set to 1Å. All other parameters are
as in previous work [31, 34]. Results that compare the enhanced fragment library
to the original library are obtained after 48 hours. This gives the algorithm ample
time to sample different combinations of fragment configurations in the libraries
and reduces the role of stochastic variations in our comparisons.

3 Results

We apply the proposed strategies to enhance the sampling of the native state of
the six protein sequences listed in section 3.1. Section 3.2 compares the quality of
the enhanced fragment library with the original one. Section 3.3 then shows the
degree to which granularity reduction compresses the conformational ensemble
Ωα. Finally, section 3.4 shows how the proposed strategies enhance the sampling
of conformations near the native state for each of the chosen protein sequences.

3.1 Target Proteins

Table 1 lists the six targeted protein sequences, Pin1 Trp-Trp ww domain (wwD),
human β-defensin 2 (hbd2), bacterial ribosomal protein (L20), immunoglobulin
binding domain of streptococcal protein G (GB1), calbindin D9k, and the African
Swine Fever Virus pB119L protein. The proteins are selected to span different
sizes (number of amino-acids) and known native topologies.

Table 1. PDB Id, fold, and number of amino acids are shown for each of the six pro-
teins. PDB Id refers to a unique identifier associated with an experimentally-resolved
native structure deposited for a protein in the PDB.

Protein wwD hbd2 L20 GB1 Calbindin D9k pB119L

PDB Id 1I6C 1FD4 1GYZ 1GB1 4ICB 3GWL

Fold β α/β α α/β α α

Nr. AAs 26 41 60 60 76 106

3.2 Quality of the Enhanced Fragment Library

The quality of the fragment libraries is evaluated using the local-fit score intro-
duced in [20]. The local-fit score measures the degree to which a fragment library
fits a given native protein structure not used to construct the library. The chain
of a given protein is broken into all its overlapping trimers. The configurations
available for each resulting trimer in the library are then scanned to find the
configuration closest (in terms of lRMSD) to the configuration of the trimer in
the given native structure. The local-fit score associated with a given protein is
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the average over the lowest lRMSDs obtained for all trimers defined over the
chain of the protein. The local-fit score, referred to as lRMSDf , is calculated
for each of the six proteins listed above and is reported in Table 2. The scores
obtained when employing the original fragment library are compared with those
obtained when employing the enhanced fragment library.

Table 2. Local-fit lRMSDf scores and lRMSDs between assembled conformations and
known native structures are shown when employing the original fragment library (nor-
mal font) and enhanced fragment library (bold) for each of the six target proteins

Protein wwD hbd2 L20 GB1 Calbindin D9k pB119L

lRMSDf (Å) 0.09 0.08 0.02 0.04 0.06 0.06 0.06 0.06 0.03 0.02 0.05 0.03

lRMSD (Å) 5.36 5.02 8.46 6.21 9.74 7.94 6.39 9.01 6.04 5.78 25.04 10.69

Table 2 shows (row 2) that overall lower local-fit scores are obtained when
employing the enhanced fragment library. Similarly, if one assembles the confor-
mation with the lowest lRMSD configurations from each library for each selected
trimer in a given protein chain, the enhanced fragment library yields conforma-
tions that are closer to the known native structures. Lower lRMSDs from the
native structure are reported for most of the proteins in Table 2 (row 3). This is
not surprising, since the enhanced fragment library does not limit the search for
fragment configurations to those with the same amino-acid sequence as the se-
lected trimer. The high lRMSDs between the assembled conformations and the
known native structures, especially for GB1 and pB119L, make the case that
suboptimal fragment configurations are needed to assemble an optimal confor-
mation. This further attests to the difficulty of assembling native conformations
and the need for non-trivial search methods with powerful sampling capability.

3.3 Reduction of Ensemble Ωα

Fig. 2. Granularity reduction low-
ers the rate of growth of Ωα

(red line vs. blue line). The Black
line shows maximum ensemble size
stored in a 32-bit machine.

Reducing the granularity of the Ωα ensemble
significantly reduces the number of conforma-
tions retained in memory. The rate of mem-
ory consumption is now directly related to the
algorithm’s ability to discover geometrically-
novel conformations with similar energies. In
practice, this enhancement allows exploring
the conformational space for an indefinite pe-
riod of time. Fig 2 illustrates the relation-
ship between runtime and memory require-
ment for the algorithm on Calbindin D9k (sim-
ilar results are observed for all other tested
systems).
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3.4 Effectiveness of Enhanced Fragment Library

The ensemble Ωα contains low-energy coarse-grained conformations that are
good candidates for all-atom energetic refinement. In Table 3 we report the low-
est lRMSD between the conformations in Ωα and the known native structure
for each protein. The lowest lRMSDs are compared when employing the orig-
inal versus the enhanced fragment library. Table 3 shows that lower lRMSDs
are obtained when employing the enhanced fragment library. This library al-
lows the search algorithm to assemble conformations that are closer in lRMSD
to the native state compared to the original fragment library. Fig. 3 shows the
lowest-lRMSD conformation obtained with the enhanced fragment library super-
imposed over the known native structure for each of the six targeted proteins.

Table 3 also shows the lowest lRMSD obtained on each protein when employ-
ing the state-of-the-art Rosetta structure prediction method [6]. To keep the
comparisons similar, only the coarse-grained structure prediction component of

Table 3. The minimum lRMSD to the native structure is shown for each of the six
target proteins. Data obtained when employing the original library is in normal font.
Data obtained with the enhanced fragment library is highlighted in bold. The final row
shows the data obtained when employing Rosetta [6].

Protein wwD hbd2 L20 GB1 Calbindin D9k pB119L

min-lRMSD (Å) 4.52 3.47 5.34 5.84 5.11 3.66 6.89 6.31 5.76 4.70 10.32 8.30

Ros-lRMSD (Å) 2.90 6.17 3.68 2.67 2.73 9.13

Fig. 3. The lowest lRMSD conformation obtained with the enhanced fragment library
is drawn in red and superimposed over the known native structure in transparent blue
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Rosetta is employed. This component is initiated from each of the six target
sequences and allowed to run for the same amount of time, 48 CPU hours. Com-
parison of the lowest lRMSDs obtained with Rosetta to those obtained with our
method when employing the enhanced fragment library shows that Rosetta sig-
nificantly outperforms our method by more than 2 Å on only one protein, GB1.
Our method obtains better results on three of the target proteins. The ability of
Rosetta to perform better on GB1 may originate from the coarse-grained energy
function and the modulation of temperature during its coarse-grained search.
Our discussion in section 4 lists a more accurate energy function and incorpora-
tion of temperature modulation as interesting directions for future research.

The enhanced fragment library, coupled with the reduction of the confor-
mational ensemble Ωα, allows the search algorithm to enhance its sampling of
the native state. Figure 4 shows histograms of lRMSDs of conformations in
Ωα from the known native structure, superimposing the histograms obtained
when employing both the enhanced and original fragment ensemble. These his-
tograms show that the enhanced fragment ensemble allows the search algorithm
to increase the number of computed conformations with lower lRMSD to the
known native structure. This increase is significant for wwD, L20, calbindin,
and pB119L. pB119L is longer than the other proteins and is used here to test
the upper limits of the search algorithm, with neither library allowing us to
obtain conformations below 8Å lRMSD from the native structure.

The histogram representation in Figure 4 is useful, because local maxima in
the histograms correspond to potential clusters of conformations that can be
detected with simple clustering techniques. The ensembles obtained with the
enhanced fragment library for each protein contain more of these maxima at low
lRMSDs. A technique interested in selecting a few conformations would obtain
more native-like conformations if the enhanced fragment library is employed.

4 Discussion

This paper investigates the effect of increasing the complexity of the conforma-
tional search space while decreasing the sample size required to represent it on a
probabilistic search algorithm. We propose a more structurally diverse fragment
library to provide our search algorithm with a larger conformational space. To
efficiently handle the vast search space, we reduce the granularity of the confor-
mational ensemble that the algorithm maintains to represent the space it has
explored. Our results show that these two strategies allow the search algorithm
to enhance the sampling of conformations relevant for the native state.

Our search algorithm, recently introduced in [31, 34], makes use of discretiza-
tions over projection layers of the energy surface and conformational space to
guide its search towards diverse low-energy conformations. The algorithm is a
first step towards rapidly computing coarse-grained native conformations from
amino-acid sequence alone. The strategies proposed here address the need to
enhance the sampling capability of the algorithm. Our results show that the
proposed strategies confer the algorithm with the capability to conduct a longer,
more detailed exploration and improve its sampling of native conformations.
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(a) wwD (b) hbd2

(c) L20 (d) GB1

(e) Calbindin D9k (f) pB119L

Fig. 4. (a-f) show the percentage of conformations in the ensemble Ωα for a given
lRMSD from the native structure. Data obtained with the enhanced fragment library
are shown with a thick red line and those obtained with the original fragment library
are shown with a thin blue line.
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The work conducted in this paper lays the foundations for further future
work. The enhanced sampling capability shown in this work will allow investi-
gating different selection-related weight functions, novel projection coordinates,
and coarser representations to further enhance the sampling capability of the
algorithm on more complex high-dimensional conformational spaces of larger
protein systems with challenging native topologies. Furthermore, state-of-the-
art coarse-grained energy functions and a temperature modulation scheme will
be pursued to further enhance the sampling capability of the method.
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