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Abstract. Biological systems can generally adapt environmental chan-
ges and to create symbiotic relationship with other species, by changing
their intra-cellular states flexibly. However, the mechanisms for such flex-
ible adaptation and creation of symbiotic relationship remain unclear. In
this study, by using simple computer models of cells, we show that for
cells whose gene expression fluctuate stochastically, the adaptive cellular
state is inevitably selected by noise, even without sophisticated mecha-
nisms. Furthermore, by the fluctuation-induced adaptation mechanism,
we show that symbiotic relationships naturally appear in systems of in-
teracting cells. This mechanism can provide clues to understand flexible
adaptation and creation of symbiotic relationship. Applications of this
mechanism for designing artificial systems are also discussed.
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1 Introduction

Cells adapt to a variety of environmental conditions by changing the pattern
of gene expression and metabolic flux distribution. Furthermore, the flexible
changes in intra-cellular states of cells make it possible to create symbiotic rela-
tionship between different species through cell-cell interactions. Although these
adaptation and creation of symbiotic relationship are ubiquitous in nature, the
mechanisms for the flexible changes in intra-cellular state are not yet fully un-
derstood. In contemporary molecular biology, these adaptive responses are gen-
erally explained by signal transduction mechanisms, where external events are
interpreted by gene regulatory networks. For example, the Lac operon of Es-
cherichia coli encodes proteins involved in lactose metabolism, and expression of
the operon is controlled by a regulatory protein so that, when lactose is available,
these proteins are expressed in an efficient and coordinated manner [I]. However,
such program-like descriptions of adaptive response are not always able to ex-
plain the flexible adaptive behavior and creation of symbiotic relationship, since
such program-like responses require evolution of regulatory network, and the
program for adaptation to novel environmental changes and creation of symbi-
otic relationship that the species has not experienced cannot be programmed in
advance through evolutionary process.
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Furthermore, a recent study indicated the possibility that cells can respond to
environmental changes adaptively without pre-programmed signal transduction
mechanisms. Kashiwagi et al. demonstrated that E. coli cells select an appropri-
ate intra-cellular state according to environmental conditions without the help of
signal transduction mechanisms [2]. There, an artificial gene network composed
of two mutually inhibitory operons was introduced into E. coli cells, so that
states of gene expression are bistable. These authors found that the cells shift
to the adaptive cellular state by expressing the gene required to survive in the
environment. They also demonstrated that the selection of the adaptive attrac-
tor between bistable states by noise is possible by introducing phenomenological
activity that governs the synthesis and degradation of protein.

In our previous study [3], using an abstract cell model we demonstrated that
cells can select states most favorable for their survival among a large number of
other possible states as an inevitable outcome. By studying a model that consists
of a protein regulatory network and a metabolic reaction network, we showed
that cellular states with high growth rates are selected among a huge number
of possible cellular states, and this selection is only mediated by fluctuations of
gene expressions [456]. This selection of a higher growth state is theoretically
explained by noting that a state with lower growth speed is more influenced
by stochasticity in gene expression, so that it is easily kicked away triggering
a switch to a state with a higher growth rate. we showed that there is gener-
ally a negative correlation between the rate of noise-driven escape from a given
state and the cellular growth rate. Due to this negative correlation, an opti-
mal growth state is selected spontaneously. The results indicated the possibility
that cells can respond to environmental changes adaptively without finely-tuned
preprogrammed signal transduction mechanisms.

In this study, we analyze the possibility that this fluctuation-driven flexible
adaptation mechanism can explain flexible formation of symbiotic relationship
among cells. We construct a model of interacting cells in which each cell has
gene expression dynamics with stochastic fluctuation within. Using this model
of interacting cells, we show that the cell-cell interactions can cause mutually
adaptive response of cells by fluctuation of gene expression, that eventually re-
sults the formation of symbiotic relationship. In the first part of this paper, we
briefly present the mechanism of fluctuation-driven adaptation using a single cell
model. In the latter part, we show the result of the interacting cell model to show
the mechanisms of emergence of symbiotic relationship. The application of the
noise-based mechanisms for adaptation and formation of symbiotic relationship
are also discussed.

2 Fluctuation-Driven Adaptation

2.1 Cell Model

A schematic representation of the single cell model is shown in Fig.1. The cell
includes two networks, i.e., a gene regulatory network which controls expression
levels of proteins through each other, and a metabolic reaction network whose
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Fig. 1. A cell model with gene-metabolic networks

fluxes are regulated by the expression levels of the proteins. The internal state
of a cell is represented by a set of expression levels of n proteins (1, zg, -, Z,)
and concentrations of m metabolic substrates (y1,y2, " -, Ym). The time develop-
ment of protein expression is determined by (i) the synthesis of proteins, (ii) the
dilution of proteins by the growth in cell volume, and (iii) fluctuations in protein
expressions arising from stochasticity in chemical reactions. The dilution of pro-
teins is proportional to the growth rate of cell volume vy, which is determined
by the metabolic fluxes. Also, it is natural to assume that the rates of protein
synthesis are proportional to the growth rate v, since the decrease in protein
concentration by dilution due to the cell growth has to be compensated by syn-
thesis to maintain a steady state. In fact, some experimental studies showed
that the total protein concentration is relatively unchanged with the growth
rate [7], which suggests that the change of protein dilution rate was compen-
sated by changing protein synthesis rate. The adaptation mechanism presented
below works, even if the rigorous proportionality of protein synthesis and dilu-
tion rate to the growth rate is replaced by just a positive correlation between
the synthesis rate and the cell volume growth rate. Following this argument, the
dynamics of concentration of the i-th protein is chosen as follows:

dx;(t "
0 O30 Wi (1) = 0)uy (1) — 0y 6) + (1) )

j=1
The first and second terms in r.h.s. represent synthesis, dilution of the protein
1, respectively. In the first term, the regulation of protein expression levels by
other proteins are indicated by regulatory matrix W;;, which takes 1, 0, or -
1 representing activation, no regulatory interaction, and inhibition of the i-th
protein expression by the j-th protein, respectively. The synthesis of proteins
is given by the sigmoidal regulation function f(z) = 1/(1 + exp(—pz)), where
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z= (D" Wiz, (t) — 0) is the total regulatory input with the threshold 6 for acti-
vation of synthesis, and u indicates gain parameter of the sigmoid function. The
regulatory interactions are determined randomly with the rate p,, p;, indicating
the connection rate of excitatory paths and inhibitory paths, respectively. The
third term represents the noise in protein concentration with a certain ampli-
tude o satisfying < n;(t)n;(t") >= 6(t —t')d;;, where ¢ and j represent different
proteins. For simplification, we assume that the amplitude of the noise is inde-
pendent of the growth rate vy, whereas the inclusion of v, dependence does not
alter our results qualitatively

Temporal changes in concentrations of metabolic substrates are given by
metabolic reactions and transportation of substrates from the outside of the
cell. Each metabolic reaction is catalyzed by a corresponding protein. Some nu-
trient substrates are supplied from the environment by diffusion through the cell
membrane, to ensure the growth of a cell. Here, the dynamics of i-th substrate
concentration y; is represented as:

n m

eZZConk‘j, xjyk—ez ZC’onZJ Kajiy; + D(Y; — i) (2)

=1 k=1 §=1k'=1

where € indicates the coefficient for the metabolic reactions, and Con(i, j, k)
represents the reaction matrix of the metabolic network, which takes 1 if there
is a metabolic reaction from i-th substrate to k-th substrate catalyzed by j-th
protein, and 0 otherwise. The first and second terms of r.h.s. correspond to syn-
thesis and consumption of i-th substrate by metabolic reactions, respectively.
The third term of r.h.s. represents the transportation of the substrate through
the cell membrane, which is approximated by the linear term in the diffusion
process with a diffusion coefficient D. Y; is a constant representing the concen-
tration of i-th substrate in the environment. The concentration Y; is nonzero
only for nutrient substrates.

The cellular growth rate vy is determined by the dynamics in the metabolic
reactions. We assume that some of metabolic substrates are necessary for cel-
lular growth, and the growth rate v, is determined as a function of the con-
centrations of them. Several choices of the function are possible, and the re-
sults to be discussed are generally observed as long as the growth rate varies
drastically depending on the concentrations. Here we assume that the growth
rate is proportional to the minimal concentration among these necessary sub-
strates. In other words, among m metabolic substrates there are r substrates
(y1,Y2, -, yr) required for cellular growth, and the growth rate is represented
as vg X min(ylvaa T 7yr)~

We carried out numerical experiments with the model using several sets of
parameter values obeying the above constraints that allows for multiple attrac-
tors, and evaluated thousand of different randomly generated reaction networks.
We found that the adaptation processes triggered by noise shown below are gen-
erally observed, as long as the intra-cellular dynamics has multiple attractors.
In the next section, we present the typical behaviors obtained by using networks
consisting of n ~ 96 proteins and m ~ 32 metabolic substrates.
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Fig. 2. Time series of .protein expressions and growth rate. Randomly generated gene
regulatory network and metabolic network with n=96 and m=32 were used for the
simulation. (a) Time series of protein expressions. The vertical axis show the expression
levels of proteins, and the horizontal axis represents time. Six out of 96 protein species
are displayed. (b) Time series of growth rate observed during the time interval shown
in (a). Initially, the growth rate of the cell is relatively low and it fluctuates due to
the highly stochastic time course of protein expressions. After a few short-lived nearly
optimal states (c.f. 4800 and 5600 time steps), the cell finds a state of protein expression
that realize a relatively high growth rate. The parameters are 6=0.5, u=10, €=0.1,
D=0.1. In addition, we enhanced the rate of positive autoregulatory paths, so that the
regulatory network has multiple attractors. In the simulations, 30% of activating paths
are chosen as autoregulatory paths.

2.2 Simulation Results

In Fig.2, an example of the selection process of rapidly growing states, starting
from randomly chosen initial expression state, is shown by taking an adequate
noise amplitude in expression dynamics. Time series of concentrations of arbi-
trarily chosen proteins and growth rate of the cell v, are plotted in 2(a) and 2(b),
respectively. In the example, cells are set initially at a state with a low growth
rate. In such a state, stochasticity dominates the evolution of protein concentra-
tions with time. After itinerating among various expression patterns, the cellular
dynamics arrive at a state with a higher growth rate. Such a transition repeats
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Fig. 3. A model of interacting cells. Each cell has gene-metabolic networks as shown
in Fig.1. The cells interact with each other through the transport of metabolites into
and out of the surrounding medium. A certain amount of fresh medium containing
nutrient metabolites is continuously supplied from outside the environment, and the
same amount of medium with cells is discarded to keep the total amount of medium
constant. A cell divides in a time interval which is inversely proportional to the growth
rate.

until the growth rate becomes sufficiently high. Once a gene expression pattern
supporting the optimal growth is reached, the system maintains it over time.

This selection of higher growth states was observed for all of the one thousand
networks we simulated. It also worked independently of initial conditions. Note
that once one of the expression patterns is selected as an attractor, the flux
pattern on the metabolic network is uniquely determined. As a result, the cellular
growth rate vy is also fixed, which in turn affects the protein expression dynamics.
Here the influence of noise depends on the growth rate v, for each attractor.
When v, is small, the deterministic part of protein expression dynamics (i.e.,
the first and second terms of r.h.s. in eq.(1)) is small, so that the stochastic
part in the dynamics is relatively dominant in the protein expression dynamics.
Then, the probability to escape the attractor due to fluctuation is large. In
contrast, when the growth rate v, is large in the attractor, the magnitude of the
deterministic part of expression dynamics is larger than that of the stochastic
part. As a result, the probability to escape the state becomes small.

3 Emergence of Symbiotic Relationship by Cell-Cell
Interactions

In the previous section, we show that cells can change their internal state to
achieve higher growth rate by stochastic fluctuation, even without sophisticated
signal transduction machinery. The next question addressed here is what hap-
pens when cells with such fluctuation-driven adaptation mechanism interact each
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other? We can expect that, cells adapt to environment that is maintained by
other cells, which can result mutual adaptation and formation of symbiotic rela-
tionship without finely-tuned preprogram. To study this fluctuation-driven sym-
biotic formation, we constructed an interacting cell model in which each cell has
internal expression dynamics with fluctuation as in the previous section and they
interact each other through environment.

3.1 Interacting Cell Model

A schematic representation of the interacting cell model is shown in Fig.3. Each
cell has gene regulatory network and metabolic network, which are identical to
those in the previous section. We assume that some metabolites can penetrate
the cell membrane, and each cell communicates with its environment through
the transport of metabolic substrates. Thus, interactions between cells occur
throughout the environment. Also, e assume that the medium is well stirred by
neglecting the spatial variation of the concentration, so that all cells interact
with each other through an identical environment. In this model, we consider
only diffusion processes through the cell membrane. Thus, the rates of chemicals
transported into a cell are proportional to differences of chemical concentrations
between the inside and the outside of the cell. The cells are cultured in a tank
with a fixed volume, where fresh medium containing nutrient metabolite are
continuously supplied and the same amount of medium including the cells are
discarded. Thus, when the number of cells in the medium is ¢, the concentration
of i-th substrate in the medium Y; obeys the following differential equation:

= > Dy + DO - Yy) Q)

=1

where 3 represents the concentration of i-th substrate in j-th cell. The first term
in r.h.s. represents consumption and production of i-th substrate by the cells.
The second term represents the flow of the substrate from/to the environment,
in which D and Y; are constants. As an initial condition, we take a single cell,
with randomly chosen expression pattern. The number of cells increases due to
cell divisions, where the doubling time of a cell is inversely proportional to its
growth rate v,. As a result of increase of cell number, the concentrations of
nutrients in the tank decrease, which result a decrease of the growth rate v,.

3.2 Simulation Results

In this interacting cell system, cells can adapt the dynamically changing envi-
ronmental condition by the fluctuation-driven adaptation mechanism discussed
in the previous section. That is, the transition between attractor is driven by the
fluctuation in the expression dynamics, only when the growth rate v is small.
In Fig.4, we show a typical example of such adaptation process of interacting
cells, in which time evolutions of the number of cells in different attractors are
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Fig. 4. The emergence of symbiotic system driven by noise in cellular dynamics. Each
line represents the number of cells in each cell type. Here, the cell type is defined as a
cellular state which falls into a certain attractor. The noise amplitude 0=0.1.

plotted. In this simulation, the amplitude of noise ¢ = 0.1, while other pa-
rameters of intra-cellular dynamics are identical to those used in Fig.2. In this
example, the initial cell falls into a fixed cellular state (denoted by “type-1” in
Fig.4), and the number of cells having type-1 state increases by cell divisions.
As the result of increase of type-1 cells, the nutrients in the environment which
are required for the growth of type-1 cell are consumed and the concentrations
of these nutrients decrease. Then, the growth rate v, of type-1 cells decrease,
and the stochastic fluctuation starts to dominate the cellular dynamics of type-1
cells. By this fluctuation, the intra-cellular states of some cells are kicked out of
the type-1 state, and fall into different cellular states. The cells appeared after
this transition (e.g., type-2 and type-3) consume the waste products of type-1
cells in the environment as nutrients. Furthermore, after the increase of type-2
and type-3 cells, other cell types emerge by the fluctuation. The network of pro-
duction and consumption of substrates in the medium by the cells with different
states can form symbiotic relationships, for example, type-2 and type-5 cells sup-
ply the nutrients for their growth to each other. In this simulation, even though
the gene regulatory and metabolic networks are identical for all cells, complex
parasitic and symbiotic dynamics emerges by fluctuation-driven adaptive mech-
anism. Important point here is that, by this emergence of complex eco-system,
the cells can utilize the nutrient supplied from outside the environment more
efficiently than without such symbiotic relationship. In Fig.5, we plot how the
total cell number at the steady state depends on the amplitude of the noise.
As shown in the figure, when the amplitude of noise is small, the cellular state
of the cells is homogeneous and the total number of cells is relatively small. In
contrast, when the noise amplitude exceeds a threshold, the total cell number
increases. In this phase, cells start to change their intra-cellular state by noise,
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and parasitic and symbiotic relationships appear. Here, the cell-cell interactions
through production and consumption of metabolic substrates make it possi-
ble use the nutrient from outside the environment more efficiently in total,
even though each cell does not have sophisticated sensory machineries and pre-
programmed regulatory machineries for such formation of ecosystem. This spon-
taneous emergence of complex ecosystem driven by the noise provides clues to
understand the emergence and maintenance of real complex ecosystems includ-
ing networks of parasitic and symbiotic relationships.

2200 ————————y

2000

1800

1600

1400

1200

total cell number

1000
800

600 el
10°° 102 107
noise amplitude

Fig. 5. The relationship between the noise amplitude and cell number in the steady
state. When the noise amplitude is small, the state of cells are homogeneous, and
the total cell number is relatively small. With the increase of the noise amplitude,
a symbiotic relationship as shown in Fig.4 emerges, and the exchange of metabolites
among cells with different states can realize efficient utilization of nutrient, which result
total cell number in a steady state.

4 Discussion

We have carried out numerical experiments with our models using several sets of
parameter values that allow for multiple attractors in expression dynamics, and
have evaluated thousands of different randomly generated reaction networks. The
emergence of adaptation and symbiotic processes triggered by noise is observed
generally, independently of the details of the model. In fact, it emerges as long
as the following four requirements are satisfied: i) the coexistence of multiple
attractors; ii) the dependence of growth rate on attractors; iii) an increase of
cellular reaction processes with the speed of growth; and iv) the presence of
stochasticity in reaction dynamics. We have confirmed the robustness of our
results against changes in model parameters and rules. For example, the results
did not change when the model parameters such as coefficients of reactions were
changed, provided the above requirements were satisfied. Also, the specific form
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on how the growth rate depends on the expression dynamics is not important
for the result, instead the same results are obtained as long as the growth rate
is somehow determined by the expression dynamics.

This study provides a possible explanation for the flexible adaptation and for-
mation of symbiotic relationship. Although symbiotic relationship is quite ubig-
uitous in nature [§], the mechanism of formation of symbiotic relationship, that
is, how species maximizing their growth can create a cooperative relationship,
still remains unclear. This study show that, even when each cell in a cell society
maximizes the growth rate, as the result of transitions of cellular states by the
noise and selection of adaptive state, the cells with the cooperative relationship
naturally emerges.

The noise-driven symbiotic formation process presented in this study might
provide a novel control mechanism of multi-unit artificial systems in the field
of engineering. Modern artificial systems are generally controlled complicated
computer programs and interactions among units are precisely designed. How-
ever, in general, such control mechanism by complicated programs and precisely
designed interactions cannot respond adequately to circumstances for which no
response is pre-programmed and the system never faced. For example, if an un-
predictable interaction with other units occurs, to response adequately is difficult
for such elaborate artificial systems. Thus, a control mechanism that can respond
to unexpected condition is desirable for the robust control mechanism for artifi-
cial systems. The noise-driven adaptive and symbiotic process presented in this
study can be applied to such robust control mechanism. For example, recently
based on this noise-driven adaptive mechanism, a method for virtual topology
controls of internet traffic was proposed [9]. In this study, it was shown that the
noise-driven topology control method can successfully adapt changes of traffic
around twice higher variance comparing with conventional control method. For
more complex traffic networks, such as interacting multiple overlay networks,
the noise-driven mechanisms for the formation of symbiotic relationship we pro-
posed in this study might be applicable to robust traffic control method, since
this mechanism enables multi-unit systems to response unexpected condition
with aid of stochastic fluctuation in internal dynamics, as discussed throughout
this paper. We expect that this noise-driven robust control mechanism will be
applied for controlling multi-unit artificial systems in future.
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