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Abstract. The annotation of DNA regions that regulate gene tran-
scription is the first step towards understanding phenotypical differences
among cells and many diseases. Hypersensitive (HS) sites are reliable
markers of regulatory regions. Mapping HS sites is the focus of many sta-
tistical learning techniques that employ Support Vector Machines (SVM)
to classify a DNA sequence as HS or non-HS. The contribution of this pa-
per is a novel methodology inspired by biological evolution to automate
the basic steps in SVM and improve classification accuracy. First, an
evolutionary algorithm designs optimal sequence motifs used to associate
feature vectors with the input sequences. Second, a genetic programming
algorithm designs optimal kernel functions that map the feature vectors
into a high-dimensional space where the vectors can be optimally sepa-
rated into the HS and non-HS classes. Results show that the employment
of evolutionary computation techniques improves classification accuracy
and promises to automate the analysis of biological sequences.

Keywords: DNase I hypersensitive sites, evolutionary algorithms, sup-
port vector machines, genetic programming, kernel functions, motifs.

1 Introduction

Many diseases and phenotypical differences among cells are caused by variations
in non-coding regions of DNA that regulate gene transcription [29,15]. Since the
successful annotation of the human genome with functional coding regions [6],
locating regulatory regions is now the remaining challenge to mapping out the
entire human genome [29,15]. Based on the observation that regulatory regions
bind with transcription-factor binding proteins to activate or repress following
genes, many experimental techniques originally relied on detecting transcription-
factor binding sites to locate regulatory regions. This approach has proved costly
and time consuming [1]. Current techniques rely instead on identifying sites
that precede regulatory regions and are particularly sensitive to DNA-modifying
enzymes like non-specific endonuclease DNase I [41,13,26,4,35,29,15]. A wealth
of short DNA sequences determined to be hypersensitive (HS) sites are now
available from high-throughput experimental techniques [35,9].
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Despite the discovery that HS sites are reliable markers of regulatory regions,
rapid annotation of the entire human genome requires a combination of ex-
perimental and computational techniques [33]. The abundance of HS sequences
already identified in wet laboratories allows applying statistical learning tech-
niques to automate the annotation process. Recent work explores the employ-
ment of Support Vector Machines (SVM) to the binary classification problem of
classifying short DNA sequences as HS or non-HS [33,21]. SVMs have a solid the-
oretical foundation in statistical learning theory and are the most widely used
machine learning technique in binary classification problems [39]. In bioinfor-
matics, SVMs have been applied to predict protein localization sites [14], DNA
translation start sites [43], DNA splice sites [42,20,19], and more (cf. to [32]).

Despite their broad applicability, important decisions in an SVM classifier
remain problem specific and require some understanding of the problem domain.
Essentially, an SVM maps non-vector data, such as text, graphs, and strings,
into a vector space where a hyperplane can be found to optimally separate the
vectors into the two available classes. The process consists of two basic steps.
In the context of classifying input DNA sequences as HS or non-HS, the first
step involves associating feature vectors with the input sequences. The second
step involves mapping the feature vectors into a high-dimensional space where
labeled data can be linearly separable by a hyperplane. Once the hyperplane is
computed, predicting the label of an unlabeled data point involves determining
on which side of the hyperplane the point lies.

The success of an SVM classifier depends on both the choice of the feature
space and the internal transformation, the kernel function, used. Often, the main
novelty in applying an SVM to a new classification problem is the extraction of
meaningful features that allow converting the input data into vectors. For in-
stance, if training sequences belonging to one class are known to contain specific
subsequences with higher frequency than the sequences belonging to the other
class, these subsequences could be used as features, and their frequency of oc-
currence can be used to convert an input sequence into a feature vector. Such
information is not available to non-experts, and significant time and resources
are often devoted to finding features that give meaningful vectors.

The particular choice of a kernel function that transforms the feature vec-
tors into a high-dimensional space where the data are linearly separable is also
problem-specific. Finding an optimal kernel function is nontrivial, and many
researchers rely on testing a small number of predefined kernels. Well-known
kernel functions include the Linear, Polynomial, Radial Basis, Gaussian Radial,
and Sigmoid kernel functions [2]. One needs to determine not only the kernel
function that yields the highest classification accuracy, but also the optimal val-
ues for the various parameters contained in the kernel function. Finding the
right kernel function and the right parameters for the selected kernel function is
a tedious optimization process requiring many cycles of experimentation.

The contribution of this paper is a novel methodology that removes the need
for expert input and automates the two basic components of an SVM classifica-
tion, feature and kernel selection, all the while improving classification accuracy.
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The methodology is inspired by biological evolution and employs evolutionary
computation techniques to evolve optimal features and optimal kernel functions.
We have recently proposed an evolutionary algorithm (EA) to design optimal
features [21]. The novelty in the work presented here is the combination of these
features with novel optimal kernel functions evolved through a novel genetic pro-
gramming (GP) algorithm. Our results show that the employment of these evo-
lutionary computation techniques to select optimal features and optimal kernel
functions automates the process of SVM classification and significantly improves
the classification accuracy.

The rest of this paper is organized as follows. A brief summary of related work
is provided in section 1.1. Our method is described in section 2. Results follow
in section 3. The article concludes with a discussion in section 4.

1.1 Related Work

The issue of extracting meaningful features from biological sequences is cir-
cumvented when employing implicit string kernels. These kernels directly as-
sociate distances in the feature space through suffix trees or other similarity
measures [24]. In other applications, one first associates feature vectors with
input sequences and then uses a kernel function to obtain distances in the fea-
ture space through dot product calculations [25]. Extracting explicit features has
distinct advantages. The features can encapsulate important biological features,
and their relative strength or contribution to learning can be directly measured.

Often, the main novelty in applying an SVM to a new classification problem
is the extraction of meaningful features that allow converting the input data into
vectors. When no prior knowledge is available to guide the design of meaning-
ful features, spectrum features are often employed to explicitly map an input
sequence to a vector space [25]. A k-spectrum is the set of d = |Σ|k features
that correspond to all strings of length k (k-mers) generated from an alphabet
Σ. A d-dimensional feature vector is then associated with an input sequence by
recording the frequency of occurrence of each of the d k-mers in the sequence.
Such an approach is employed in [33] to to recognize HS sequences.

Using spectrum features, however, has the disadvantage of an exponential
increase in the number of features as the spectrum length increases. For instance,
the 6-mers employed in [33] result in 4096 features. A high number of features
adversely impacts the performance of the SVM, both in terms of running time
and classification accuracy. Analysis in [33] and our recent work [21] reveals
that a very small percentage of the 6-spectrum features actually contribute to
learning. These observations, together with our hypothesis that sequence motifs
in HS sequences may make for better features, motivated our recent work [21].

Instead of enumerating fixed-length sequences, our work in [21] proposes an
EA to explore the space of fixed-length sequences in search of optimal motifs that
best discriminate between HS and non-HS sequences. Employing these motifs
instead of spectrum features improves the classification accuracy by as much as
10% [21]. We have shown the benefits of employing these motifs over spectrum
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features in other bioinformatics applications [22]. We employ the EA proposed
in [21] and briefly summarized in section 2 to obtain features in this work.

The success and effectiveness of an SVM classifier depends not only on the
choice of the feature space, but also the selected kernel function. Many re-
searchers test a small number of predefined kernels functions, such as Linear,
Polynomial, Radial Basis, Gaussian Radial, and Sigmoid [2], to select one that
yields the highest classification accuracy. Many of the kernel functions contain
parameters that need further tuning to improve accuracy. Finding the right ker-
nel function and the right parameters can be a tedious optimization process.

A heuristics-based grid search technique is often employed to tune kernel
parameters [28]. Particle Swarm Optimization and Genetic Algorithms (GAs)
have been employed to find optimal parameters in a Gaussian kernel in [8,18].
Evolutionary-based methods are beginning to be applied not only to find op-
timal parameters in a selected kernel function, but also to design an optimal
kernel function [34,11]. GP is employed in [12] to evolve kernel functions. The
functions in [12] are not guaranteed to follow Mercer’s theorem, so optimality is
not guaranteed. Additionally, in all current applications of GP, a small prede-
fined set of kernel functions is employed to evolve new kernel functions [12,38].
The set includes only the Linear, Gaussian, and Polynomial functions, excluding
many other known kernel functions. Additionally, the cost parameter C, which
controls the trade off between allowing misclassification errors during training
of the SVM and forcing rigid margins, is kept at a fixed value in [12,38].

In this paper, the optimal features obtained with an EA are combined with
an optimal kernel function obtained with a GP algorithm. The main novelty of
the work presented here is a novel approach that allows simultaneously evolving
kernel functions, their parameters, and the SVM cost parameter C. Unlike the
existing work summarized above, an extensive list of available kernel functions
is employed to evolve new functions. Additionally, the evolution of the kernel
functions in our GP is subjected to the Mercer’s theorem that kernel functions
be positive semi-definite [36], thus guaranteeing optimality.

2 Methods

The EA introduced in our recent work [21] and employed here to obtain mean-
ingful features is briefly summarized below. The rest of the section details the
novel GP algorithm we propose to evolve kernel functions, their parameters, and
the SVM cost parameter C.

2.1 Finding Over-Represented Motifs in DNA Sequences

The EA we introduce in [21] essentially searches for motifs that best discrimi-
nate between HS and non-HS sequences. The motifs are variable-length strings
of length l ∈ {6, . . . , 12} generated from the the IUPAC code [5] shown in Ta-
ble 1. In addition to the 4-letter {A,T,C,G} DNA alphabet, the IUPAC code
contains ambiguous symbols that allow specifying groups of nucleotides with
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shared chemical properties. The motifs vary in length from 6-mers to 12-mers
because no a priori information is available on the length of optimal motifs.
Additionally, work in [33], which employs 6-mers generated over the 4-letter al-
phabet of DNA, shows that no shorter than 6-mers are needed to achieve high
classification accuracy with an SVM.

Table 1. IUPAC code is adapted from [5]

SymbolMeaning Description Origin

G G Guanine
A A Adenine
T T Thymine
C C Cytosine
R G or A puRine
Y T or C pYrimidine
M A or C aMino
K G or T Ketone
S G or C Strong interaction
W A or T Weak interaction
H A or C or T H follows G in alphabet
B G or T or C B follows A in alphabet
V G or C or A V follows U in alphabet
D G or A or T D follows C in alphabet
N G or A or T or C aNy

The EA searches the space of candidate motifs using a (μ+ λ)-ES-style EA,
where μ is the number of parents and λ is the number of offsprings generated
as each population of motifs evolves. The first population contains μ randomly
generated motifs. In each generation, parents are selected uniformly at random
to produce λ offsprings through mutation and crossover. Truncation is employed
to determine which of the μ fittest individuals (motifs) will survive as the next
generation of parents. In our recent work [21] and experiments here, μ = 500
and λ = 200. Our recent work [21] additionally shows that the island-model ap-
proach yields better motifs than crossbreeding motifs of different lengths, which
is confirmed by other work [40,7]. In the island-model approach, each island con-
tains motifs of the same length (i.e., one motif species) and evolves in isolation
and in parallel with other islands without migration. It is also interesting to
point out that both in nature and evolutionary algorithms, offsprings produced
by structurally dissimilar parents are inviable.

Given a current population of motifs, there is an equal chance of applying
either mutation or crossover to generate a new offspring. If the mutation operator
is chosen, each motif in the current population has equal probability of being
selected as a parent. The mutation operator is equivalent to the bit flip operator.
Any of the symbols of the chosen parent has equal probability of being mutated
into any of the symbols of the IUPAC code. When applying crossover, any pair
of motifs has equal probability of being selected as parents. The genetic material
of the parents is combined to produce an offspring. While the EA algorithm we
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introduce in [21] allows for two-point or uniform crossover, the best results in [21]
and the results in this work are obtained with the one-point crossover. While
crossover is intended to mix the genetic code of each parent and confer it to
fit children, the mutation operator is a fundamental evolutionary mechanism to
provide diversity. Mutation is intended to prevent all offsprings/sought solutions
of the fitness function to fall into a local optimum [7].

While the true fitness of an individual should be evaluated in the context of
SVM-based classification, doing so on each offspring is computationally imprac-
tical. We employ a simpler fitness function that approximates how spectrum
features in an SVM are employed in the kernel function [33]. Given a k-mer
w, the fitness value f(w) = 100 ∗ |c(w)HS/totalHS − c(w)non−HS/totalnon−HS|,
where c(w) counts the number of sequences containing w, and total normalizes
by the number of known sequences in each class (HS or non-HS). According to
this fitness function, a motif that is found in all HS sequences but no non-HS
sequences, or alternatively in all non-HS sequences but no HS sequences, will
have the highest fitness score of 100. A motif found with the same frequency in
non-HS and HS sequences will have the lowest score of 0. Analysis in our recent
work [21,22] shows that the fitness value of the top motifs strongly correlates
with the classification accuracy these motifs confer to an SVM.

In the results in section 3, an upper bound 5000 generations is used (conver-
gence in the top fitness scores is generally obtained within the first 500 genera-
tions). The top 200 motifs of the final population are then employed to construct
feature vectors from the input DNA sequences. These feature vectors need to be
transformed by a kernel function. The GP algorithm proposed below searches
the space of positive semi-definite kernel functions for the one that yields the
highest SVM classification accuracy when applied to the feature vectors.

2.2 Genetic Programming Algorithm

The GP algorithm we propose searches over the space of positive semi-definite
kernel functions in order to guarantee optimality. We first discuss the concept
of kernel closure and then detail the elements of the proposed GP algorithm.

Kernel Closure. Kernel functions must be continuous, symmetric, and prefer-
ably have a positive (semi-)definite Gram matrix [36]. Kernels that satisfy Mer-
cer’s theorem are positive semi-definite, meaning that their kernel matrices have
non-negative eigenvalues. The use of a positive definite kernel insures that the
optimization problem will be convex and the solution will be unique [36]. Work
in [3] has demonstrated that kernels which are only conditionally positive definite
can outperform most classical kernels in many applications. Moreover, new kernel
functions can be constructed by combining well-known positive (semi)-definite
kernel functions through specific mathematical manipulations that guarantee
closure; that is, the new kernel functions inherit the properties of the kernel
functions used to construct them [37].
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Guaranteeing Closure. In this work, we employ an extensive list of kernel func-
tions that have been proved to be positive (semi)-definite to construct new kernel
functions that obey the closure property. The mathematical manipulations that
allow doing so are listed in Table 2.

Table 2. Mathematical operations that guarantee closure. x, y refer to two feature
vectors on which the kernel operates. k1 and k2 refer to two kernel functions used to
construct a new kernel function k.

Add: k(x, y) = k1(x, y) + k2(x, y)
Scalar: k(x, y) = a · k1(x, y)
Multiply: k(x, y) = k1(x, y) · k2(x, y)
Exponential: k(x, y) = ek1(x,y)

Kernel Functions. Below is the extensive list of kernel functions that have
been proved to be positive (semi)-definite and have been successfully employed
in SVM classification. Our GP algorithm employs all of these kernel functions
to evolve new ones.

(a) Linear Kernel. The linear kernel is the simplest kernel function. It is given
by the inner dot product between two vectors and employs an optional coefficient
c: k(x, y) = xT y + c.

(b) Polynomial Kernel. The polynomial kernel is a non-stationary kernel well
suited for problems where all the training data is normalized. The kernel contains
parameters for slope α, coefficient constant c, and degree d: k(x, y) = (αxT y+c)d.

(c) Gaussian Kernel. The Gaussian kernel is an example of the radial basis
function kernel that is successfully employed as the default kernel in mainstream
SVM implementations and applications. The adjustable parameter σ plays a
major role in the performance of the kernel: k(x, y) = e−σ‖x−y‖2

.

(d) Laplace Kernel. The Laplace kernel is another radial basis functional kernel,

which is less sensitive to changes in the σ parameter: k(x, y) = e−
‖x−y‖

σ .

(e) Anova Kernel. The Anova kernel is another radial basis function kernel that
performs well in multidimensional regression problems [16]: k(x, y) = (

∑
k=1

ne−σ(xk−yk)
2

)d.

(f) Sigmoid Kernel. The sigmoid kernel is popular due to its origin from neural
network theory. Despite being only conditionally positive definite, it has been
successful in various applications: k(x, y) = tanh (αxT y + c).

(g) Rational Quadratic Kernel. This kernel is often employed for faster compu-

tations to obtain similar results to the Gaussian kernel: k(x, y) = 1− ‖x−y‖2

‖x−y‖2+c .
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(h) Inverse Multiquadratic Kernel. The Inverse Multiquadratic kernels has also
been shown to be positive definite: k(x, y) = 1√

‖x−y‖2+c2
.

(i) Circular Kernel. The Circular kernel is inspired from statistics. It is an
example of an isotropic stationary kernel and is positive definite in R2: k(x, y) =

2
π arccos (− ‖x−y‖

σ )− 2
π

‖x−y‖
σ

√
1− ‖x−y‖2

σ .

(j) Spherical Kernel. The Spherical kernel is similar to the circular kernel, but

it is positive definite in R3: k(x, y) = 1 − 3
2
‖x−y‖

σ + 1
2 (

‖x−y‖
σ )3 if ‖x − y‖ < σ.

Otherwise, k(x, y) = 0.

(k) Wave Kernel. The Wave kernel is also symmetric positive definite: k(x, y) =
θ

‖x−y‖ sin (
‖x−y‖

θ ).

(l) Spline Kernel. The Spline kernel is given as a piecewise cubic polynomial
and is positive semi-definite: k(x, y) = Πd

i=11 + xiyi + xiyimin (xi, yi) − xi+yi

2

min (xi, yi)
2 + min (xi,yi)

3

3 , where x, y ∈ Rd.

(m) Bessel Kernel. The Bessel kernel is well known in the theory of function

spaces of fractional smoothness. It is given by k(x, y) = Jv+1(σ‖x−y‖)
‖x−y‖−n(v+1) , where J

is a Bessel function of order 1.

(n) Cauchy Kernel. The Cauchy kernel is a long-tailed kernel that can be used to
give long-range influence and sensitivity over a high-dimensional space of feature
vectors: k(x, y) = 1

1+ ‖x−y‖2
σ

.

(o) Chi-square Kernel. The Chi-square kernel comes from the well known chi-

square distribution: k(x, y) = 1−∑n
i=1

(xi−yi)
2

1
2 (xi+yi)

.

(p) Histogram Kernel. The Histogram Intersection kernel has been successfully
used for image classification but is generally applicable to a variety of other
applications: k(x, y) =

∑n
i=1 min (xi, yi).

(q) Generalized T-Student Kernel. The Generalized T-Student kernel has been
proven to have a positive semi-definite matrix: k(x, y) = 1

1+‖x−y‖d .

Genetic Programming. Our GP algorithm simultaneously searches the space
of kernel functions (and their parameters) and SVM cost parameters C. Each
population consists of 2, 000 individuals. The first generation contains the ex-
tensive list of kernel functions detailed above, together with default values for
their parameters and the SVM cost parameter C. A total of 30 generations are
evolved to obtain the kernel function and cost parameter C that yield the high-
est classification accuracy (convergence in the fitness scores is observed after 20
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generations). The fitness of each individual in a population is the classification
accuracy obtained by applying the SVM on the feature vectors obtained with the
above EA using the kernel function and parameter C contained in the individual.

Representation. Each individual is represented as a forest of two trees. One tree
maintains the kernel function, and the other the cost parameter C. The tree that
maintaints C consists of only one node, and is subjected only to the mutation
operator. The representation of the kernel tree in each individual is analogous to
the parse trees employed for Lisp expressions. Each non-terminal node in a kernel
tree is either a mathematical operator (add, scalar, multiply, exponential) or a
predefined kernel function (from the extensive list detailed above). Each terminal
node in a kernel tree is either a kernel parameter (e.g., σ, d, θ) or one the input
feature vectors x, y. See Fig. 1 for some examples of kernel functions.

Closure Constraint on Kernel Tree. Under the principle of closure, each node in
the kernel tree may take any subtree as a child. In basic form, closure allows any
non-terminal node to be a parent of any other node. We employ strongly typed
GP (STGP) to evolve kernel functions. STGP places additional type constraints
on the nodes, specifying the nodes that may link with others. STGP is typically
used to allow child nodes to pass data to a parent that is guaranteed to be able to
read the data [31]. This constraint allows the mutation and crossover operators
to generate semantically-correct trees.

Ephemeral Constants. The cost parameterC and the various parameters of a ker-
nel function (e.g., σ, d, θ) are terminal nodes internally implemented as ephemeral
constants (ERC) [7] in our GP algorithm. All ERCs undergo mutation only. Pa-
rameters that take values inR are sampled uniformly at random frompreset ranges
each time they undergomutation. For instance, the range of values forC is [2−5, 25].
Parameters that take integer values (e.g., in the Anova andBessel kernel functions)
are internally implemented as ERC-int nodes. Table 3 gives a summary of all the
non-terminal (mathematical operators and predefined kernel functions from the
extensive list detailed above) and terminal nodes (ERC and ERC-int nodes repre-
senting kernel parameters and the SVM cost parameter C).

Mutation. The mutation operator is applied both to parameters and kernel
functions. A tree is first picked at random (out of the tree maintaining the
kernel function and the single-node tree maintaining the cost parameter C). A
node is than picked at random from the selected tree. Every ERC located in
the subtree rooted at the selected node is then mutated according to a Gaussian
probability distribution on over the preset range of the parameter maintained in
the ERC node. When the selected tree is the kernel tree, the mutation operator
changes the structure of the kernel function. Mutation is implemented through
the growth method in [23]. A node picked at random from the kernel tree is
replaced by a randomly-generated subtree, as illustrated in Fig. 1.
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Table 3. All terminal and non-terminal nodes are shown

Name (Symbol) Formula Args,Constrs

Polynomial (P) k(x, y) = (αxT y + c)d 3,c,d ∈ R
Linear (L) k(x, y) = xT y + c 3,c ∈ R
Sigmoid (S) k(x, y) = e−σ‖x−y‖2 3,σ ∈ R
Laplace (Lp) k(x, y) = e−

‖x−y‖
σ 3, σ ∈ R

Anova (A) k(x, y) = (
∑n

k=1 e
−σ(xk−yk)

2

)d 3,σ ∈ R
Rational Quadratic (RQ) k(x, y) = 1− ‖x−y‖2

‖x−y‖2+c
3,c ∈ R

Inv. MultiQuadratic (IQ) k(x, y) = 1√
‖x−y‖2+c2

3,c ∈ R

Circular (CLR) k(x, y)= 2
π
arccos (− ‖x−y‖

σ
) − 2

π
‖x−y‖

σ

√
1− ‖x−y‖2

σ
3,σ ∈ R

Spherical (SPL) k(x, y) = 1− 3
2

‖x−y‖
σ

+ 1
2
( ‖x−y‖

σ
)3 if ‖x− y‖ < σ 3,σ ∈ R

Wave (W) k(x, y) = θ
‖x−y‖ sin ( ‖x−y‖

θ
) 3,0 ≤ θ < 2π

Spline (SLN) k(x, y) = Πd
i=1 1 + xiyi + xiyi min (xi, yi) −

xi+yi
2

min (xi, yi)
2 + min (xi,yi)

3

3

3,d ∈ I

Bessel (B) k(x, y) =
Jv+1(σ‖x−y‖)
‖x−y‖−n(v+1) 4 ,n ∈ I

Cauchy (Cy) k(x, y) = 1

1+
‖x−y‖2

σ

3,σ ∈ R
Chi-Square (CHI) k(x, y) = 1−∑n

i=1
(xi−yi)

2

1
2
(xi+yi)

2

Histogram (HI) k(x, y) =
∑n

i=1 min (xi, yi) 2
T-Student (T-s) k(x, y) = 1

1+‖x−y‖d 3 ,σ ∈ R
Add (+) k(x, y) = k1(x, y) + k2(x, y) 2Kernels
Multiply (∗) k(x, y) = k1(x, y) · k2(x, y) 2Kernels
Scalar (Sc) k(x, y) = a · k1(x, y) 1Kernel,a∈R
Exponential (E) k(x, y) = ek1(x,y) 1Kernel

xi, . . . , xn 0,input
yi, . . . , yn 0,input

ERC-int Integer
ERC Real

Crossover. the crossover operator applies only to the kernel tree. Parents are
selected through the standard Tournament selection, and the standard Koza-
style crossover mechanism is employed to generate an offspring kernel function.
Compatible parents are sought; that is, individuals are randomly sampled from
a population until two are found whose kernel trees have the same constraints.
A random node is then chosen in each parent tree such that the two nodes have
the same return type. If, by swapping subtrees at these nodes, the two trees do
not violate maximum depth constraints, the swap is performed. Otherwise, the
hunt for random nodes is repeated. Fig. 1 provides an illustration of crossover.

Bloat Control. One issue in GP is the unconstrained growth of individuals with
no performance improvement. This growth, called bloat, may be limited by spe-
cial genetic operators that restrict the maximum tree depth of an individual.
An alternative technique, parsimony pressure, penalizes the size of an individ-
ual by making it less fit. We employ a simple technique, lexicographic tourna-
ment selection, to control bloat. Lexicographic tournament selection is similar to
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tournament selection. The only difference is that, if multiple individuals have the
same fitness, the individual with the shortest tree depth is chosen [30].

Putting it All Together. The optimal features are evolved separately through
the EA we propose in [21] and employ here to convert input DNA sequences into
feature vectors. The fitness of each individual in the GP algorithm is measured
as the classification accuracy obtained when applying an SVM with the kernel
function and cost parameter C in the individual on the feature vectors. The
data set with the input DNA sequences and methodology employed to measure
classification accuracy are detailed below.

Fig. 1. Mutation (left) and crossover (right) are illustrated on sample kernel trees

Data Set. Input sequences are obtained from noble.gs.washington.edu/proj/hs.
They consist of 280 HS sequences and 737 non-HS sequences experimentally ob-
tained from throughout the human genome. The HS sequences were identified
through a novel experimental methodology that employs cloning and in-vivo
activity of K562 erythroid cells [35]. The non-HS sequences were not hypersen-
sitive when tested in the same cell type. HS and non-HS sequences have similar
average lengths of 242 nucleotides.

Test Methodology. The performance of the SVM is tested via 10-fold cross-
validation on the total set of 1017 sequences (280 HS and 737 non-HS). The set
is randomly divided into 10 subsets of equal size. The SVM is trained on 90%
of the subsets and tested on the 10% held out. This is referred to as 10-fold
validation. The area under the ROC curve is reported as an average over the
10-fold validations.
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Implementation Details. The method is implemented in Java and run on an Intel
Core2 Duo machine with 4GB RAM and 2.66GHz CPU. The EA implementation
builds upon the GP implementation of ECJ software [27]. We use the open-source
Biojava project [17] to integrate bioinformatics utilities for genomic sequences
and the libSVM package [10] for the SVM implementation.

3 Results

The EA is run 30 different times to obtain 30 different sets of top motifs. In
each case, the resulting feature vectors are tested with the SVM cross-validation
test, employing a default kernel and default parameters. The kernel used is the
radial basis function shown to outperform other predefined kernels in our recent
work [21]. The average accuracy obtained with this kernel over 30 different runs,
each of which results in a different set of 200 top-scoring motifs, is 82.9, with a
standard deviation 1.1. The maximum and minimum accuracies obtained over
these runs are 77.1 and 85.15, respectively.

Table 4 shows how the classification accuracy changes when the kernel param-
eters are tuned with the grid search technique in [10]. Only three sets of feature
vectors are tested, the worst, average, and best features, respectively associated
with the minimum, average, and maximum accuracies obtained with the default
RBF kernel. Reported values are averaged over the 10-fold cross-validation.

Table 4. Accuracies obtained with the tuned RBF kernel when employing worst,
average, and best features

Worst Features Average Features Best Features

Tuned Kernel 79.30 83.78 85.39

Table 5 shows the classification accuracies obtained when the tuned RBF
kernel is replaced with the top kernel function and parameter values obtained
by our GP algorithm. The values reported in Table 5 are averaged over the top
kernel and parameters obtained from 30 different runs of our GP algorithm.
Standard deviations vary from 0.2 to 0.4.

Table 5. Accuracies obtained when replacing the tuned RBF kernel with the evolved
kernel and parameters reported by the GP algorithm

Worst Features Average Features Best Features

Evolved Kernel 82.17 85.97 87.21

Finally, Table 6 shows some of the top individuals (kernel and cost parameters
C) obtained. The fitness of each individual (SVM classification accuracy on best
features vectors) is shown in the last column.
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Table 6. Fitness values are shown for some of the top individuals (kernel function and
cost parameter) obtained with our GP algorithm

Evolved Kernel Cost Parameter Fitness

(∗(CY (x)(y)(6.1394E − 4))(S(x)(y)(7.4104004E − 4))) 17.85 87.35
(CLR(x)(y)(10.746466)) 1.18 86.85
(CY (x)(y)(2.3240509E − 4)) 1.68 86.81
(Sc(SPL(x)(y)(56.92857))(48.207794)) 1.00 86.79
(∗(CY (x)(y)(30.50425))(SPL(x)(y)(92.285255))) 1.24 86.77

4 Conclusions

Our results show that employing an EA algorithm to obtain meaningful features
and a GP algorithm to obtain new better kernel functions and values for the
SVM cost parameter C significantly improve the accuracy of an SVM classifica-
tion for the HS recognition problem. Moreover, the employment of evolutionary
computing automates important decisions in SVM, which often require previous
expert knowledge or significant experimentation.

Some of the top kernel functions obtained by our GP algorithm are a combi-
nation of operators, such as exponential, multiplication,or scalar over predefined
kernels, such as Gaussian, Sigmoid, and Linear. The presence of kernel functions,
such as Cauchy, Circular, Spiral, and Student-T among top-scoring kernels fur-
ther justify our employment of an extensive list of kernel functions in our GP
algorithm. We emphasize that our GP algorithm maintains closure and guaran-
tees the optimality of obtained kernels.

While the fitness of an evolved kernel function is estimated in the context of
the SVM classification, the fitness of the motifs sought to associate meaningful
feature vectors with input sequences employs a simpler filter function in the in-
terest of keeping computational cost low. Since the fitness of a kernel function is
intimately dependent on the feature vectors employed in the SVM classification,
our future work will consider integrated evolutionary schemes that evolve kernels
and motifs in tandem. Co-evolution of features and kernels may further boost
classification accuracies but at an expected computational cost. Distributed im-
plementations will be sought to manage the computational cost.

Acknowledgments. We are indebted to Sean Luke and Keith Sullivan for
insights on GP and Rezarta Dogan and Sarang Kayande for discussions on this
work.
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