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Abstract. Empirical studies show that most real social networks exhibit both a 
significant average connectivity and marked heterogeneity. While the first 
precludes the emergence of cooperation in static networks, it has been recently 
shown that the latter induces a symmetry breaking of the game, as cooperative 
acts become dependent on the social context of the individual. Here we show how 
adaptive networks can give rise to such diversity in social contexts, creating 
sufficient conditions for cooperation to prevail as a result of a positive assortment 
of strategies and the emergence of a symmetry breaking of the game. We further 
show that realistic heterogeneous networks of high average connectivity where 
cooperation prevails can result from a simple topological dynamics. 
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1 Introduction 

Conventional Evolutionary Game Theory (EGT) predicts that natural selection favors 
the selfish and strong [1, 2], in contrast with empirical evidence which shows that 
cooperation is widespread in nature. The issue of cooperation has been traditionally 
dealt with in EGT making use of the Prisoner’s Dilemma (PD), and several mechanisms 
have been proposed which make cooperation evolutionary viable [3, 4]. Among those, 
the structure of the network along which individuals interact drastically affects the 
chances of cooperation. While homogeneous networks (degree-homogeneous) open a 
small window of opportunity for cooperation to thrive [5-9], heterogeneous networks 
(degree-heterogeneous) induce a remarkable boost of cooperative behavior [6, 10-13]. 
This enhancement, however, is limited to social networks exhibiting low average 
connectivity, whereas data on realistic networks [14-19] shows that values of the 
average connectivity (z) up to 170 are possible. This requires yet another mechanism to 
allow the survival of cooperation. 

In this work we shall explore this new mechanism, making use of a PD game in 
which the benefits collected by the participants may be proportional to the costs 
expended. Besides the conventional scenario in which every cooperator contributes 
the same amount to each game they participate in, we shall also explore the limit in 
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which every cooperator contributes the same overall amount, irrespective of the total 
number of games they participate in. This is particularly relevant whenever 
heterogeneous networks are at stake. In such setting the evolution of the interaction 
network (see below) may break the original symmetric game into an asymmetric 
game, as the actual game played by each player becomes dependent on their social 
context [11, 20]. 

Here, we use a simple adaptive network model [21] that combines strategy 
evolution with topological evolution [3, 22, 23]. We consider individuals with limited 
cognitive capacities and investigate the necessary conditions for cooperation to thrive. 
We will show that network heterogeneity, which emerges as a result of a co-evolution 
of strategy and topology, is crucial for the appearance and stability of cooperative 
action. This break of symmetry is naturally induced by a simple dynamics in which 
individuals revise their contacts uniquely based on their myopic self-interest. 

Fig. 1. Readjusting social ties. 
Cooperators and defectors 
interact along the links of a 
network. A (B) is dissatisfied 
(satisfied) since B (A) is defector 
(cooperator). Consequently A 
wants to change the link whereas 
B does not. The success of the 
rewiring will depend on the 

fitness values Π(A) and Π(B) of A and B, respectively. With probability p (see section 3.3) A 
redirects the link to a random neighbor of B. Otherwise, with a probability 1 - p, A will stay 
linked to B. Other possibilities may occur depending on the strategies of the chosen individuals 
(see section 3.3). 

2 Co-evolution of Strategy and Topology 

We consider a population of individuals that can be either cooperators (C) or 
defectors (D). They only keep information on their first neighbors, and engage in 2-
person PD, where Cs contribute a cost c whereas Ds do not contribute any cost. The 
total amount is multiplied by an enhancement factor F and then shared equally 
between the two players. Hence, a player i (i =1, 2) using strategy si (si = 1 if C, 0 if 
D) will get the payoff Pi = Fc(s1 + s2)/2 – csi [20]. For 1 < F < 2 we get the payoff 
ranking characteristic of a two-person PD.  

In the equation above we have considered that Cs contribute a fixed cost c per 
game. We can consider a somewhat different scenario in which Cs now distribute the 
same cost c among all games they play. In this case, if player i is a C, she/he will pay 
a cost ci = c/ki, where ki is the player’s connectivity (number of neighbors). 
Consequently, the payoff that a player gets from this game is Pi = F(c1s1 + c2s2)/2 – 
cisi. 
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It is reasonable to make this distinction in the costs paid by Cs when we allow 
different individuals to have different number of neighbors (k), a situation that 
naturally occurs on a heterogeneous graph. For instance, the interaction between two 
Cs directly connected but with different ks will result in a higher payoff for the player 
with the smaller number of links. This will translate in a symmetry breaking of the 
game. 

Following the convention of Ref. [20] we will refer to the game where Cs 
contribute a fixed cost per game as the conventional prisoner’s dilemma (CPD); and 
to the game where Cs contribute a fixed cost per individual we call the distributed 
prisoner’s dilemma (DPD). 

In addition, both Cs and Ds are able to decide, on an equal footing, which ties they 
want to maintain and which they want to change. Given an edge with individuals A 
and B at the extremes, we say that A (B) is satisfied with that edge if the B (A) is a C, 
being dissatisfied otherwise. If, for instance, A is satisfied, then they will keep the 
link. If not, then they will compete with B to rewire the link (see Fig. 1 and section 
3.3), rewiring being attempted to a random neighbor of B. 

This is justifiable on the fact that individuals, who have a limited knowledge of 
their social environment, will look for new social ties by proxy [24]. In this sense, A 
is more likely to encounter one of B’s friends and become neighbors with them. In 
addition, selecting a neighbor of an inconvenient partner may turn out to be a good 
choice, since this partner also tries to establish links with Cs, making it more likely 
that the rewiring results in a tie to a C. 

The fact that in our model Cs and Ds interact via social ties they both decide upon 
establishes a coupling between individual strategy and population structure: the game 
payoff induces an entangled co-evolution of strategy and structure. The adaptive 
nature of the social structure explained above introduces a new time scale, τa, not 
necessarily equal to the time scale associated with strategy evolution, τe. We define a 
ratio of time scale W = τe/τa, which determines the cooperative state of the population 
at the end of the evolution.  

Indeed, whenever τe << τa, that is, W≈0, we recover the results of [6, 25]. On the 
other hand, with increasing W, individuals become ever more proficient at adapting 
their ties. In general, however, one expects the two time scales to be of comparable 
magnitude in realistic situations (cf. Figs. 2 and 3). 

More intuitively, W provides a measure of individuals’ responsiveness to adverse 
ties: large values of W reflect populations in which individuals react promptly to 
adverse ties, whereas smaller values of W reveal the opposite behavior. 

3 Materials and Methods 

We place individuals on the nodes of a graph, to a total of N. A total of NE links 
represent the social ties between individuals. Graphs will evolve in time as individuals 
change their ties. The average connectivity z = 2NE/N is conserved since we do not 
create nor destroy links. We require that graphs remain connected at all times. To 
enforce this condition we impose that nodes connected by a single link cannot lose 
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this link. Each simulation starts from a homogeneous random graph in which all 
nodes have the same number of links randomly connected to other nodes [26]. 

We also computed the cumulative degree distribution 
11( )

N
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=

− −=  . 

Ni indicates the number of nodes with i links so D(k) gives the probability of 
finding nodes in the graph with degree greater or equal to k. The maximum value of 
the connectivity of a graph is kmax which provides a simple measure of the 
heterogeneity of a graph since D(k) = 0 for k > kmax. 

Whenever W > 0, evolution of strategy and structure proceed together under 
asynchronous updating. Choice of type of update event depends on W. If we assume, 
without loss of generality, τ= 1, then a strategy update event is chosen with 
probability 1/(1+W), a structural update event being selected otherwise. 

A strategy update event is defined in the following way, corresponding to the so-
called pairwise comparison rule [27]: One node A is chosen at random and another 
node B is chosen randomly among A’s first neighbors. The individuals A and B 
interact with all their first neighbors, according to CPD or DPD. As a result, they 
accumulate the total payoffs Π(A) and Π(B), respectively. The individual A will 
imitate the strategy of B with a probability that increases with the payoff difference, 
which is given by the Fermi distribution function p = 1/[1+e−β[Π(B)−Π(A)]].  

The value of β ≥ 0 (which plays the role of an inverse temperature in statistical 
physics), controls here the intensity of selection [27]: β→0 leads to neutral drift 
whereas β→∞ leads to the so-called imitation dynamics, often used to model cultural 
evolution. 

Cs and Ds interact via the links of a network. Two individuals, A and B, connected 
by one link, may be satisfied or dissatisfied. In Fig. 1, B is satisfied, whereas A is not, 
since A (B) is a C (D). Therefore, A wants to change the link whereas B does not. The 
action taken depends on the fitness Π(A) and Π(B) of A and B, respectively. With a 
probability p, defined above in terms of the Fermi distribution, A redirects the link to 
a random neighbor of B. With probability 1 − p, A stays linked to B. Whenever both 
A and B are satisfied, nothing happens. When both A and B are dissatisfied, rewiring 
takes place such that the new link keeps attached to A with probability p and attached 
to B with probability 1 − p. 

We start our simulations from a homogeneous random graph [26], in which all 
nodes have the same number of links (z), randomly linked to arbitrary nodes. The 
population size is N = 103 with average connectivities z = 20, 30, and 40 (the value z = 
30 used in Fig. 2 and Fig. 3, right panel, reflects the mean value of the average 
connectivities reported in [13] for socials networks). We always start with 50% of Cs 
randomly distributed in the population. In all cases we used c = 1 for the cost of 
cooperation (ci = 1/ki for an individual i playing the DPD). 

Each value in the figures corresponds to an average over 104 different randomly 
generated configurations and graphs. In each of those we average and evolution over 
9x105 generations after discarding a transient period of 105 generations. 

At the end of each evolution we also computed the maximal connectivity kmax 
associated with the final graph and the cumulative degree distribution, which are the 
basis of the results plotted in Figs. 3. 
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Fig. 2. Co-evolution for different time scales. Equilibrium fraction of cooperators as a 
function of the enhancement factor F using a homogeneous random graph of z = 30 and β = 1.0. 
Left panel: Under CPD it is difficult for cooperation to emerge unless we allow a fast 
adaptation of the network structure. As W increases, the rate of link rewiring also increases, and 
so does the viability of cooperation. Right panel: Under DPD, in addition to the adaptive 
assortment of Cs, cooperation benefits from the break of symmetry associated with the nature 
of the dilemma and emerging heterogeneity of the network. 

4 Results and Discussion 

The results of Fig. 2 show the fraction of Cs that survive at the end of evolution (see 
section 3.4) for different values of W. We plot the graphs for the interval 1 < F < 2, 
for both the CPD and the DPD. For W = 0 cooperation can be hardly sustained, since 
the network remains static and equal to the initial homogeneous random network (see 
above). Moreover, in homogeneous networks the CPD and DPD games are 
equivalent, as the differences between both amounts to a rescaling of the intensity of 
selection. It is only when we give individuals the chance to change their social ties, 
than we begin to see differences. As Cs (Ds) seek for Cs to cooperate (exploit), Cs 
tend to acquire a higher number of links when compared with Ds. This self-organized 
heterogeneity benefits the emergence of cooperation [10], in particular when highly 
connected nodes are occupied by Cs [28]. 

Yet, in the DPD paradigm, as the network changes, the actual game played by each 
individual may also change with her degree. The DPD can represent a situation where 
individuals have limited resources and therefore, as the network becomes more 
heterogeneous with increasing W, so do the amounts contributed by different Cs. As 
shown in Ref. [20], in the DPD paradigm the condition for a highly connected C to 
become advantageous becomes less stringent the larger their connectivity. On the 
contrary, under the CPD paradigm, the cost of cooperation plays a major role in the 
overall fitness of the cooperative hub, which means that the larger their connectivity, 
the harder it will be for the cooperative hub to become advantageous with respect to  
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any D in their neighborhood. Consequently, when compared with the CPD paradigm, 
the DPD will promote cooperation as it benefits from the additional break of 
symmetry of the game induced by evolution of the social structure. 

 

Fig. 3. Co-evolution for different networks. CPD game for F = 1.8 and β = 1.0 using 
homogeneous random graphs. Upper left panel: Equilibrium fraction of cooperators as a 
function of W for different values of z. For each value of z, there is a critical value of the time 
scale Wcrit, above which cooperators wipe out defectors. Lower left panel: Maximum value of 
the connectivity in the population as a function of W. Wcrit increases monotonically with z. 
Right panel: Cumulative distributions for different values of W. Starting from a homogeneous 
random network with kmax = z = 30, just as we increase W, the distribution widens, resulting in 
both single scale networks (W = 0.5, solid brown line) and broad-scale networks (W > 3, dotted 
black and grey lines). Wcrit is also the value for which the heterogeneity of the associated 
network reaches a maximum. The results obtained for DPD are qualitatively the same. 

Nevertheless, in both games, for a sufficient large W, we will get a full cooperative 
scenario: The quicker the individuals are able to alter their social ties, the easier it is 
for Ds to become extinct. This behavior is better understood from the upper left panel 
of Fig. 3: For small W, Cs never survive long, but, as W approaches a critical value 
Wcrit, they become increasingly better at wiping out Ds. The Wcrit increases 
monotonically with z, which makes sense because there are more links to be rewired. 
In practice, Wcrit is determined as the value of W at which cooperation reaches 50%. 
Thus, the survival of cooperation relies on the capacity of individuals to adjust to 
adverse ties, even when the average connectivity is high. 

Fig. 3 also provides evidence of the detailed interplay between strategy and 
structure. On one hand, strategy updating promotes a local assortment of strategies, 
since Cs breed Cs and Ds breed Ds. On the other hand, structural updating promotes 
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local assortative interactions between Cs and disassortative interactions between Ds 
and Cs. When both are active, strategy update will promote assortativity among Cs, 
but will restrain disassortativity between Ds and Cs, which overall will benefit the 
emergence of cooperation. Additionally, since graphs will become heterogeneous for 
any W > 0, as a result of structural update (we are starting from homogeneous 
graphs), it will become easier for strategy update to promote cooperation, and even 
more when we play the DPD (see Fig. 2). 

From the left panels of Fig. 3, the overall onset of increase of heterogeneity 
qualitatively follows the wave of cooperation for the corresponding z [21]. Indeed, the 
overall heterogeneity of the graph increases with W until it reaches a maximum at 
Wcrit, above which heterogeneity again decreases down to a stationary value [21]. This 
is clearly shown in the right panel of Fig. 3 for a CPD with an enhancement factor F = 
1.8. The results shown suggest that the adaptive dynamics of social ties accounts for 
the heterogeneities observed in realistic social networks [16]. The DPD produces 
results similar to the ones represented in Fig. 3. Also, similar analytic results were 
already obtained in a simpler model of link rewiring [29]. 

Our results show that to understand the emergence of cooperative behavior in a 
realistic scenario, one should consider simultaneously the evolution of the social 
network of interactions and the evolution of individual strategies. We show how an 
adaptive social network can easily transform a defection dominance scenario into a 
different one where cooperation may thrive. Moreover, the co-evolutionary process of 
strategy and structure can produce realistic heterogeneous networks. Hence, besides 
providing a bottom-up answer to the problem of cooperation, the proposed mechanism 
also shows how complex social topologies can result from simple social dynamical 
processes, exclusively based on local assumptions. In addition, the emergence of such 
heterogeneous structures with diverse social contexts becomes particularly relevant 
whenever individuals contributions are correlated with the social context they are 
embedded in. In this regime, network dynamics is able to remove the game symmetry of 
the PD in homogeneous networks, opening a route for cooperation to thrive. 

Finally, the DPD used here relies on the fact that all cooperators are effectively 
assessed as cooperators, irrespectively of the amount contributed. In fact, such 
assessment should rely on a social norm [30], which may evaluate an action as 
“Good” or “Bad”. From this perspective, our setting considers a social norm where 
the act of giving is seen as more important than the amount given, under which, as we 
show, cooperation prevails. 
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