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Abstract. This paper investigates a bio-inspired framework, iNet-
EGT/C, to build adaptive, cooperative and stable network applications.
In this framework, each application is designed as a decentralized set of
agents, each of which provides a functional service and possesses bio-
logical behaviors such as migration, replication and death. iNet-EGT/C
implements an adaptive behavior selection mechanism for agents. Its
selection process is modeled as a series of evolutionary games among be-
haviors. iNet-EGT/C allows agents to seek to operate at evolutionarily
stable equilibria and adapt to dynamic networks by invoking evolutionar-
ily stable behaviors. It is theoretically proved that each behavior selection
process retains stability (i.e., reachability to at least one evolutionarily
stable equilibrium). iNet-EGT/C leverages the notion of coalitions for
agents to select behaviors as coalitional decisions in a cooperative man-
ner rather than individual decisions in a selfish manner. This cooperative
behavior selection accelerates agents’ adaptation speed by up to 78%.

Keywords: Evolutionary game theory, Adaptive and cooperative net-
work applications, Stability in adaptive networking.

1 Introduction

Large-scale network applications such as data center applications and cloud com-
puting applications are required to autonomously adapt to dynamic changes in
network conditions such as workload and resource availability [I]. To address this
requirement, this paper investigates a bio-inspired framework for autonomous
adaptive network applications. In the framework, each application is designed as
a decentralized group of software agents. This is analogous to a bee colony (an
application) consisting of multiple bees (agents). Each agent implements a func-
tional service (e.g., web service) and follows biological behaviors such as migra-
tion, replication and death. This paper focuses on an adaptive behavior selection
mechanism for agents, called iNet-EGT/C (iNet-EGT, coalitional edition). It is
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designed after immunological antigen-antibody reaction, which produces antibod-
ies specific to antigens (e.g., viruses) for eliminating them. iNet-EGT/C models a
set of network conditions (e.g., workload and resource availability) as an antigen
and models an agent behavior as an antibody. Each agent contains iNet-EGT/C
as its behavior selection mechanism (or its immune system). iNet-EGT/C allows
each agent to autonomously sense its surrounding network conditions (an anti-
gen) and select a behavior (an antibody) suitable for the sensed conditions. For
example, agents may invoke the replication behavior at the network hosts that
accept a large number of user requests for their services. This leads to the adap-
tation of agent availability. As a result, agents can improve their throughput.
Also, agents may invoke the migration behavior to move toward the network
hosts that receive a large number of user requests for their services. This leads
to the adaptation of agent locations; agents can improve their response time.

In iNet-EGT/C, antigen-antibody reaction (i.e., behavior selection) process
is modeled with evolutionary game theory. Each agent contains a set (or popu-
lation) of behaviors. In the population, randomly-selected two behaviors play a
game. The game distinguishes a winning behavior and a losing behavior based on
their payoffs, which indicate the likelihood for the behaviors to adapt an agent
to the current network conditions. The winner replicates itself and increases its
share in the population. The loser disappears in the population. This way, the
population state (i.e., behavior distribution in the population) changes as a se-
ries of games are repeatedly performed. iNet-EGT/C theoretically proves that
the population state converges to an evolutionarily stable equilibrium. It is the
state that, regardless of the initial population state, the population always con-
verges to. In that state, no other behaviors except a dominant behavior, called
an evolutionarily stable behavior, can dominate the population. Thanks to this
property, iNet-EGT/C allows each agent to seek to operate at equilibria by in-
voking evolutionarily stable behaviors as rational and adaptive decisions.

iNet-EGT/C leverages the notion of coalitions to compute payoffs. A coalition
is a group of agents that reside on neighboring hosts. Each agent computes the
payofls for its behaviors based on (1) its surrounding network conditions and (2)
the behaviors that agents in its coalition intend to invoke. This way, agents seek
evolutionarily stable behaviors as coalitional decisions in a cooperative man-
ner rather than individual decisions in a selfish manner. This coalitional payoff
computation is designed to accelerate the adaptation speed of agents.

This paper describes the design of iNet-EGT/C and evaluates it through
theoretical and simulation studies. Both studies verify that iNet-EGT/C allows
agents to seek to operate at evolutionarily stable equilibria and adapt to dynamic
networks. The notion of coalitions accelerates agents’ adaptation speed by 78%.

2 Related Work

iNet-EGT/C extends its predecessors: iNet [2] and iNet-EGT [3]. It shares the
same goal with them; bio-inspired adaptive behavior selection However, they are
different in their approaches to the goal. iNet takes a stochastic approach with
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a genetic algorithm; it does not guarantee stability (i.e., reachability to at least
one equilibrium) in behavior selection. iNet-EGT takes an evolutionary game
theoretic approach; however, it does not consider the notion of agent coalitions.

Game theoretic approaches have been studied for several aspects in networks;
for example, job allocation [, security [5H7] and routing [8.[9]. They seek ra-
tional networking strategies in static networks, but do not consider adaptation
in dynamic networks. [9] does not guarantee stability in its strategic decision
making. None of [4H9] considers the notion of coalitions in games.

[I0,I1] leverage evolutionary game theory for adaptive routing in dynamic
networks. Unlike [I0|TT], iNet-EGT/C performs the mutation operation to better
adapt to future changes in network conditions. Moreover, iNet-EGT/C considers
the notion of agent coalitions, which is beyond the scope of [10,11].

[12H16] study behavior selection mechanisms for agent-based systems. [12]
13] propose rule-based mechanisms, which are similar to iNet-EGT/C in that
they implement deterministic behavior selection. However, unlike [12,[13], iNet-
EGT/C guarantees stability in behavior selection. Moreover, in general, it main-
tains lower time complexity in behavior selection (O(k) where k denotes the num-
ber of games) than rule-based mechanisms (O(MlogM) where M denotes the
number of behavior types). [I4HI6] propose non-deterministic behavior selection
with stochastic algorithms. Due to their stochastic processes, they fail to retain
stability; they often search inconsistent solutions under the same problem set-
ting (or the same set of network conditions) in different runs/trials. In contrast,
iNet-EGT/C considers determinism in behavior selection to retain stability.

3 Preliminaries: Evolutionary Game Theory

In a conventional game, the objective of a player is to choose a strategy that max-
imizes its payoff. In contrast, evolutionary games are played repeatedly by players
randomly drawn from a population [I7]. This section overviews key elements in
evolutionary games: evolutionarily stable strategies and replicator dynamics.

3.1 Evolutionarily Stable Strategies (ESS)

Suppose all players in the initial population are programmed to play a certain (in-
cumbent) strategy k. Then, let a small population share of players, z € (0, 1), mu-
tate and play a different (mutant) strategy ¢. When a player is drawn for a game,
the probabilities that its opponent plays k and ¢ are 1 — x and x, respectively.
Thus, the expected payoffs for the player to play k and ¢ are U(k, xf + (1 — x)k)
and U(¢, zl + (1 — x)k), respectively.

Definition 1. A strategy k is called evolutionarily stable if, for every strategy
L#k, a certain T € (0,1) exists, such that the inequality

Uk, e+ (1 —x)k) >U, 2+ (1—2)k) (1)
holds for all x € (0, 7).
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If the payoff function is linear, Equation [ derives
(1 —=2)U(k, k) + 2U(k,0) > (1 —2)U¢, k) + zU(L,0) (2)
If x is close to zero, Equation [2 yields either
Uk, k)>U(Lk), or Uk, k) =U(l, k) and U(k,?) > U(¢,£) (3)

This indicates that a player associated with the strategy k gains a higher payoff
than the ones associated with the other strategies. Thus, no players can benefit
by changing their strategies from k to the others. This means an ESS is a solution
on a Nash equilibrium. An ESS is a strategy that cannot be invaded by any
alternative (mutant) strategies that have small population shares.

3.2 Replicator Dynamics

The replicator dynamics describes how population shares associated with differ-
ent strategies evolve over time [18]. Let A (t) > 0 be the number of players that
plays the strategy k € K, where K is the set of available strategies. The total
population of players is given by A(t) = Z‘k@l Ak(t). Let zx(t) = Ap(t)/A(t) be
the population share of players that play k& at time ¢. The population state is
defined by x(t) = [z1(t), -+, 2k (t), -, 2k (t)]. Given x, the expected payoft of
playing k is denoted by U(k, x). The population’s average payoff, which is same
as the payoff of a player drawn randomly from the population, is denoted by
U(x,x) = Z‘Ifi‘l xy - U(k,x). In the replicator dynamics, the dynamics of the
population share x is described as follows. &y is the time derivative of xy.

T =z - [U(k,x) — U(x,x)] (4)

This equation states players increase (or decrease) their population shares when
their payoffs are higher (or lower) than the population’s average payoff.

Theorem 1. If a strategy k is strictly dominated, then xj(t)i—oo — 0.

A strategy is said to be strictly dominant if its payoff is strictly higher than any
opponent strategies. As its population share grows, it dominates the population
over time. Conversely, a strategy is said to be strictly dominated if its payoff
is lower than that of a strictly dominant strategy. Thus, strictly dominated
strategies disappear in the population over time.

There is a close connection between Nash equilibria and the steady states of
the replicator dynamics, in which the population shares do not change over time.
Since no players change their strategies on Nash equilibria, every Nash equilib-
rium is a steady state of the replicator dynamics. As described in Section 3] an
ESS is a solution on a Nash equilibrium. Thus, an ESS is a solution at a steady
state of the replicator dynamics. In other words, an ESS is the strictly dominant
strategy in the population on a steady state.

In iNet-EGT/C, an agent maintains a population of its behaviors. In a single
behavior selection process, behaviors are randomly drawn from the population
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to play games repeatedly until the population reaches a steady state. Then,
iNet-EGT/C allows each agent to identify a strictly dominant behavior in the
population and invoke it as an evolutionarily stable behavior (or ESS).

4 iNet-EGT/C

The immune system is an adaptive defense mechanism that regulates the body
against dynamic environmental changes such as antigen invasions. Through a
number of interactions among antibodies, the immune system evokes antigen-
antibody reaction to produce antibodies specific to detected antigens. In each
interaction, an antibody stimulates or suppresses another one according to its
affinity to an antigen. A stimulated antibody replicates itself and increases its
population. Conversely, a suppressed one dies and decreases its population. This
way, the population of specific antibodies rapidly increases following the recog-
nition of an antigen and decreases again after eliminating the antigen. Adaptive
immune response is an emergent product of interactions among antibodies.

iNet-EGT/C is designed after antigen-antibody reaction. Each agent contains
iNet-EGT/C as its own behavior selection mechanism (or as its own immune sys-
tem). An antigen is modeled as a set of network conditions: C = {¢1,ca, -, cr}
where L denotes the number of network conditions that each agent senses on a
host. This paper considers three network conditions (L = 3):

— Queue length: The number of user requests in a request queue, which each
host operates to store incoming user requests until they are processed by the
agents running on the same host.

— Workload change rate: The rate of workload change per a unit time. Work-
load is computed as the number of incoming user requests per minute given
to the agents running on the same host.

— Resource utilization: Memory consumption, in percentage, by the agents run-
ning on the same host.

An antibody is modeled as an agent behavior. B = {by,bs,---,by} denotes a
set of available behavior types. This paper considers four types (M = 4):

Migration: Agents may migrate from one platform to another.

— Replication: Agents may make a copy of themselves. A replicated (child)
agent is placed on the host that its parent agent resides on.

Death: Agents may die and disappear in the network. When an agent dies,
its underlying host releases the resources (e.g. memory space) it consumes.

Do-nothing: Agents may choose to do nothing.

Each agent maintains a population (P) of behaviors, each of which is of a certain
behavior type. The population’s size is given by N =}, 5 n; where n;, denotes
the number of behaviors of the behavior type b € B.
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4.1 Evolutionary Games in iNet-EGT/C

An interaction (stimulation or suppression) between antibodies is modeled as an
evolutionary game between behaviors. Listing [[l shows how iNet-EGT/C allows
each agent to select/invoke a specific behavior under a given set of network
conditions through a series of evolutionary games.

The population P is initialized with initializePopulation() (Line 2). Ini-
tially, all behavior types have the equal population share. (npep is equal for
every b.) randomlySelect() draw two behaviors randomly from the population
(Line 6), and performGame() distinguishes them to a winning one and a losing
one according to their payoffs, which indicate the likelihood for the behaviors
to adapt an agent to the current network conditions (Line 8). The notion of
payoffs is modeled after the notion of affinity in the immune system. The loser
behavior is suppressed and disappears in the population. The winner behavior
is stimulated and replicated to increase its population share (Line 9). It is also
mutated at the probability of p,, (Lines 10 and 11).

A behavior whose population share is the largest is called a current major
behavior. An agent invokes the current major behavior when its population
share (zp) exceeds a threshold (¢s) (Lines 15 and 16). Similar to the immune
system, the behavior selection in iNet-EGT/C is designed as an emergent prod-
uct of games (interactions) among behaviors (antibodies).

1 function selectBehavior ()

2 P <« initializePopulation (V)

3 while true do

4 W0

5 for i «+ 1 to |P|/2 do

[ {behaviory, behaviora} < randomlySelect (P)
7 P < P\ {behaviory, behaviory}

8 winner < performGame (behaviory , behaviors)
9 replica < replicate (winner)

10 if random() < p,, then

11 replica < mutate(replica)

12 W «— W U winner U replica

13 end for

14 P+W

15 if b where be P and zp>ts then

16 return b

17 end if

18 end while

19 end function

20

21 function performGame (behaviory,behaviors)

22 C «+ getNetworkConditions ()

23 O + getCurrentMajorBehaviors()

24 p1 + |[{behaviory, R}| — rank(behaviory, O, C)

25 p2 < |{behavior1, R}| — rank(behaviors, O, C)

26 if p1 > p2 then return behavior;

27 else if p; <p2 then return behaviors

28 else return randomlySelect ({behaviory, behaviora})

29 end function

Listing 1. Pseudocode of Behavior Selection
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4.2 Coalitional Payoff Functions

In order to compute the payoffs of an agent’s behaviors, iNet-EGT/C considers
the agent’s coalition, which consists of the agents running on the local host and
direct neighbor hosts. Equation [l shows the coalitional payoff function F;(b) for
the behavior type b of agent i under a set of network conditions C.

Fi(b) = |{b,0}| — rank(b, 0, C) (5)

O = {01,092, -,04} denotes a set of current major behaviors of the other agents
in the same coalition. (¢ indicates the number of those agents.) See also Line 22
to 25 in Listing [l

The function rank() in Equation [ compares b and O (i.e., ¢ + 1 behaviors in
total) with respect to domination factors and yields b’s domination rank. The
domination ranking is a ranking scheme that considers the Pareto optimality
among multiple factors (or objectives) [I9]. A behavior b € B is said to dominate
a behavior ¥/ € B if b’s factor values are better than, or equal to, '’s in all
domination factors, and b’s factor values are better than 0"’s in at least one
domination factors. This paper considers three domination factors:

— Queue length
— Resource utilization

— Load balancing: The variance of queue lengths in the local and neighboring
hosts

A behavior b’s factor values are computed as the network conditions in the case
where agent i invokes b and the other agents in its coalition invokes O.

Figure [Il shows an example that illustrates how to use the proposed coali-
tional payoff functions. In this example, four agents (a, b, ¢ and d) runs on a
host. (For simplicity, this example ignores neighbor nodes.) Agent b’s current
major behavior is migration (M). ¢’s and d’s are death (D) and replication (R),
respectively. Thus, agent a’s payoff functions (Fo(R), Fo(M), Fo(N) and F, (D))
are formulated for its four behaviors, as shown in Figure [Il

Figure 2l depicts an example domination ranking among agent a’s four be-
haviors. In a three dimensional space whose axises represent domination factors,
each behavior is plotted based on its factor values. (In this space, the smaller
factor values, the better.) For example, R’s factor values are computed as the
network conditions in the case where agent a invokes the replication behavior
and the other three agents invoke their current major behaviors.

R dominates all the other behaviors; it is given a rank value of 1. D dominates
N, but does not dominate M. However, D is superior to M in two factors, and
M is superior in one factor. Thus, D and M are given the rank values of 2 and 3,
respectively. N is given a rank value of 4. Given rank values, F,,(R) =4—1=3,
F,(D)=4—-2=2F,(M)=4-3=1,and F,(D)=4—-4=0.
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Fig. 2. An Example Domination Ranking

5 Stability Analysis

This section theoretically analyzes the stability of cooperative behavior selection
in iNet-EGT/C. More specifically, this theoretical analysis is intended to prove
that the population states of all agents in the same coalition converge to evolu-
tionarily stable equilibria. The proof consists of three steps: (1) designing a set
of differential equations that describe the dynamics of the population state, (2)
proving a cooperative behavior selection process has equilibria, and (3) proving
the the equilibria are asymptotically (or evolutionarily) stable. The proof uses

the following terminology and variables.

- X)) = {;U(li)(t)@éi) (t),---, ;Ug\? (t)} denotes the population state of agent
i at time t, where x, = '\ is the population share of b€ B (3, zp = 1).

- Fb(i) denotes the coalitional payoff of b € B in agent 1.



A Game Theoretic Framework for Cooperative Network Applications 197

— pb = @ - ¢(F, — Fy) denotes the probability that a behavior of b € B
replicates itself by winning a game against a behavior of k € B. ¢(Fy — Fy)
is the conditional probability that the fitness value of b is higher than that
of k.

The dynamics of b’s population share is described as follows.

Ty = Z {mk‘PZ*l'b'pllf}:mb Z i {p(Fy — Fi) — ¢(Fi — Fy)}

keB,k#b keB,k#b
= Tp Z Tk * Cpk where Cpk = ¢(Fb - Fk) - ¢(Fk - Fb)) (6)
keB,k#b

Note that, if k is strictly dominated, 2 (t)t—co — 0. (See Theorem )
Theorem 2. The population state of an agent converges to an equilibrium.

Proof. Tt is true that, given the design of fitness functions (Figure [), differ-
ent behavior types have different fitness values under the same set of network
conditions. In other words, given a particular set of network conditions, a be-
havior type becomes strictly dominant. Assume that F} > F5 > --- > Fjy, and
by Theorem 1, the population state converges to an equilibrium: X (¢);c0 =
{xl(t)va(t)7 T 7xM(t)}t%00 - {1a 0,--- 70}

Theorem 3. The equilibrium found in Theorem [ is asymptotically stable.

Proof. At an equilibrium where X = {1,0,---, 0}, Equation[@ can be downsized
by substituting z1 =1 — 29 — -+ — 2.

M
Zy = zplep1 (1 — zp) + Z Zi - o] whereb=2,...,. M (7
i=2,i#b

Z(t) = {za(t), z3(t), - -,z (t)} denotes the downsized population state. Given
Theorem[I] Z(t) converges to an equilibrium: Z(t);—o0 = Zeg = {0,0,---,0}.

If all Eigenvalues of the Jaccobian matrix of Z(t) has negative Real parts, Z¢,
is asymptotically stable. The Jaccobian matrix J’s elements are:

Oz Ozplepr (1 — 2p) + Zfim-#b Zi * Cbi)
Jor = 5 = 5 (8)
2kl z=2., 2k |Z=Zecq
where b,k =2,..., M
Therefore, J is given as follows, where ca1,¢31, -+, cpr1 are J’s Eigenvalues.
cs1 0 -+ 0
0 c31 -+ O
J= )
0 0 - can

cp1 = —¢(Fy — Fp) < 0 for every b; therefore, Z., is asymptotically stable.
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6 Simulation Evaluation

This section evaluates iNet-EGT/C through simulations. Figure [3 shows a sim-
ulated server farm (or cloud computing environment) that consists of 100 (10 x
10) hosts in a grid topology. User requests travel from users to agents via user
access point. This simulation study assumes that a single (emulated) user runs
on the access point and transmits user requests to agents. At the beginning of a
simulation, four agents are deployed on randomly-selected hosts. Each agent has
its own iNet-EGT/C that contains the population of 100 behaviors. (N = 100 in
Listing[T]). 25 behaviors are of each of four behavior types: migration, replication,
death and do-nothing. Mutation rate (p,, in Listing [l and behavior selection
threshold (¢s in Listing [Il) are set to 0.05 and 0.95, respectively.

User requests
from users

Fig. 3. Simulated Server Farm

Figure @ shows a trace of workload (the number of user requests) given to
agents. It follows an empirical workload measurement at www.ibm.com [20].
The largest workload spike occurs at 12:00 from 3,000 to 9,000 messages/min.

210
E e Workload T
% 8 | —— Throughput (with coalitions)
\i/ Throughput (without coalitions)
o 6
% :
E 4
© d——————
i —
g ! ! | ! ! | ! | | | |
2 0 T i i i i i
g
0200 300 6:00 9:00 12:00 15:00 18:00 21:00

Simulated Time (hour)

Fig. 4. Workload and Throughput
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6.1 Adaptability and Stability

Figure Bl shows how the population state (i.e., behavior distribution) changes
over time (from 0:00 to 6:00) in an agent deployed at the beginning of a simula-
tion. The number of replication behaviors increases in the first 15 minutes, and
the population converges to an evolutionarily stable state. This means that the
agent in question replicates itself to process a given workload. (Initially-deployed
four agents are not enough to efficiently process a given workload.) Then, the
do-nothing behavior takes over the replication behavior to dominate the popu-
lation; the population converges to another evolutionarily stable state. At this
point, agents have replicated enough to process the current workload; the agent
in question does not replicate itself anymore. As illustrated in Figure Bl iNet-
EGT/C allows agents to successfully seek evolutionarily stable equilibria in their
behavior selection according to dynamic network conditions.

O Migration A\ Replication X Death [J DoNothing

DoNothing \
I

Replication

Population state (behavior distribution)

0:00 1:00 2:00 3:00 4:00 5:00 6:00
Simulated Time (hour)

Fig. 5. Changes in Population State

Figure [0 shows how agent availability (i.e., the number of agents) changes
dynamically. It increases when the replication behavior dominates the behav-
ior population (e.g., around 0:00 and 3:00; See Figure [l) in response to work-
load spikes. Conversely, agent availability decreases when the death behavior
dominates the behavior population (e.g., around 9:00 and 15:00) in response to
workload drops. Figure [l demonstrates that iNet-EGT/C allows agents to dy-
namically adapt their availability by invoking their behaviors according to the
evolutionarily stable states they are on.

Figures [ and [7 show the throughput (i.e., the number of processed requests)
and response time that agents yield. At the beginning of a simulation, they yield
low throughput and high response time because four agents are not enough
to efficiently process all user requests. During a simulation, throughput and
response time degrade when workload spikes. However, as agents perform their
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Fig. 6. Agent Availability

behaviors by seeking evolutionarily stable equilibria, they adapt their throughput
and response time to dynamic workload changes.

5
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l | Ay
b)Y, b Mool e fgeho Pl

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00
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Fig. 7. Response Time

Figure[8 depicts the average behavior population state among agents: Sq.q(t) =
A%t) > maxpep{xy(t)}. A(t) denotes the total number of agents running in the
network. ¢ and b index agents and behavior types, respectively. maxye g{xs(t)}
denotes the share of the current major behavior in an agent’s behavior popula-
tion. Saug(t) increases as the current major behavior’s share increases in each
agent. It approaches 1.0 (e.g., > 0.95) when the current major behaviors domi-
nate behavior populations and remain effective for agents to adapt to the current
network conditions. This means that agents’ behavior population states reaches
evolutionarily stable equilibria. Squ4(t) decreases when the current major be-
haviors are no longer effective and the other behaviors take over to dominate
behavior populations. For example, Sg,q(t) remains high from 1:00 to 3:00 be-
cause agents have adapted to network conditions by 1:00 and the do-nothing
behavior is effective until 3:00 (See also Figure [Bl) However, the do-nothing be-
havior becomes ineffective when workload spikes at 3:00; Sqvq(t) decreases until
another behavior (the replication behavior in this case; See Figure[Hl) takes over
and dominates the behavior population. Sa.g(t) stays over 0.95 during 82% of
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the total simulation time. Figure[8 demonstrates that iNet-EGT/C allows agents
to seek to operate at evolutionarily stable equilibria in dynamic networks.
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Fig. 8. Average Behavior Population State

6.2 Impacts of Agent Coalitions on Adaptability

Figures @ and [1 illustrate agents’ throughput and response time with the no-
tion of coalitions disabled. Both figures show that, upon workload spikes (at
0:00, 3:00, 6:00 and 12:00), agents adapt their performance faster by computing
payoffs in a cooperative manner with the notion of coalitions. Figure [0 depicts
throughput in percentile (i.e., ratio of throughput over workload). The through-
put of 100% indicates that agents process all of user requests. Similar to Figure[d],
Figure [@ demonstrates that agents improve their throughput faster with coali-
tions enabled. With coalitions enabled, throughput stays over 90% during 85%
of the total simulation time, while 69% with coalitions disabled.

120
100 v ‘ s
Tel
3
% 60
2 @
E ~ With coalitions
20 Without coalitions
0\ T T ; T T % | % | | % | | % | | % | |
0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00

Simulated Time (hour)

Fig. 9. Throughput (%)

Table [1l shows how soon agents yield the throughput of 100% and 75% upon
workload spikes. Agents consistently accelerate their throughput adaptation by
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Table 1. Adaptation Speed in Throughput (Minutes)

Workload Spike at 0:00 3:00 6:00 12:00
Throughput Improvement Rate 100% 75% 100% 75% 100% 75% 100% 75%
Without coalitions 32 22 46 32 64 36 58 48
With coalitions 18 10 36 12 48 14 51 22
Speedup 178% 220% 127% 267% 133% 257% 114% 218%

leveraging the notion of coalitions. The average speedups of 100% and 75%
throughput adaptation are 138% and 241%, respectively.

Figure [0 depicts agent availability with coalitions disabled. It verifies that,
upon workload spikes and drops (at 0:00, 3:00, 6:00, 9:00, 12:00, 15:00 and 18:00),
agents adapt their availability faster by leveraging the notion of coalitions.

Figure [I0 shows agent availability in percentile. It is computed as the ratio
of expected throughput over workload. The expected throughput is calculated
as A(t)/tservice where A(t) denotes the total number of agents running in the
network and tservice denotes the time that an agent is expected to spend to pro-
cess a single user request. If agent availability is over or under 100%, the number
of agents is excess or insufficient, respectively, to process a given workload. The
agent availability of 100% indicates that the number of agents perfectly fits with
the current workload. Similar to Figure [, Figure [0 demonstrates that agents
adapt their availability faster with coalitions enabled. With coalitions enabled,
agent availability stays at 100% during 88% of the total simulation time, while
73% with coalitions disabled.

— 400
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| 200 |
'§ _Jr ..l LW.W
100 + e, T % T e —_ ; 3 o
é f 'V s Y. e ot /""""' ‘
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Fig.10. Agent Availability (%)

Table 2 shows how soon agents yield 100% availability upon workload spikes
and drops. Agents consistently accelerate their availability adaptation by lever-
aging the notion of coalitions. The average speedup is 144%.
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Table 2. Adaptation Speed in Agent Availability (Minutes)

Workload Spike/Drop at 0:00 3:00 6:00 9:00 12:00 15:00 18:00
Without coalitions 32 42 62 50 56 68 34

With coalitions 20 30 46 28 50 54 22
Speedup 160% 140% 135% 179% 112% 126% 155%
Conclusion

This paper proposes and evaluates an evolutionary game theoretic framework,
iNet-EGT/C, which aids building adaptive, cooperative and stable network ap-
plications. Both theoretical and simulation studies demonstrate that iNet-EGT/C
allows network applications to seek to operate at evolutionarily stable equilibria
and adapt to dynamic network conditions. The notion of agent coalitions in pay-
off computation allows agents to yield the speedup of up to 178% in adaptation
to dynamic network conditions.
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