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Abstract. The evolution of cooperation has been gathering increasing attention 
during the last decades. Most of the times, cooperative behavior involves more 
than two individuals, and the N-person Prisoner’s Dilemma, which is the most 
studied generalized social dilemma in this context, not always manages to 
capture those situations that often occur to humans. In such cases, the N-person 
Snowdrift Game (NSG) often provides an adequate alternative. Here we show, 
making use of the NSG, how spatial populations affect the average levels of 
cooperation, when compared with the results obtained under conventional 
evolutionary game theory, that is, for well-mixed populations.  
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1 Introduction 

Cooperation is on the basis of some of the major transitions in evolution [1]. Genes 
cooperate to form cells, which in turn cooperate to form multi-cellular organisms; 
individuals cooperate to form groups and societies, and human culture is a 
cooperative process. To understand how cooperative behavior emerges and evolves is 
therefore a quest which has received growing attention during the last decades, and to 
which Evolutionary Game Theory (EGT) [2, 3] has been able to provide fundamental 
insights [2-15]. One-shot, symmetric 2-person games are the traditional approach 
adopted to investigate the emergence and evolution of cooperation; however, one 
cannot ignore that many real-life situations are actually associated with collective 
action based on joint decisions made by groups involving more than 2 individuals. 
There are many examples, in our everyday life and throughout our history, where 
instances of N-person games are, or have been, at stake. The effort to protect the 
Earth’s environment, on which every single “player” has to make a choice whether to 
adopt a more conscious behavior or not; the sharing of common resources among 
different countries; the participation in open source projects; the payment of taxes and  
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social welfare; etc…, the examples abound. Furthermore, and very commonly, 
performing a given task which is beneficial to an entire group requires the cooperation 
of several individuals of that group, who often share the workload required to perform 
that task. In this case, the N-person generalization of the so-called Snowdrift Game 
provides suitable description [16]. 

In its 2-person version, two individuals are driving on a road which gets blocked 
by a snowdrift. To proceed with their journey home, the snow must be removed, and 
this removal may or may not be done: if no one shovels, no one gets home; if the two 
drivers cooperate and shovel, both get home, each one sharing the workload of 
shovelling the snow. If only one driver decides to shovel, both get home despite one 
driver incurring the entire cost of snow shovelling. If we define the benefit of getting 
home as b and the cost of removing the snow as c, then if both drivers cooperate and 
shovel, each gets b – c/2. If both defect, no one gets anything (or goes home) – 0. If 
one cooperates and the other defects, the Cooperator (C) gets b – c whereas the 
Defector (D) gets b. Assuming, as usual, that the benefit is greater than the cost (i.e., 
b>c) , we get a payoff ranking characteristic of a chicken, hawk-dove or snowdrift 
dilemma [2, 17, 18]. The N-person generalization of this dilemma is immediate. In 
keeping with the previous example, we can imagine that the snowdrift occurs at a 
cross-road where N drivers meet. Again, all want to go home (getting all the same 
benefit b), but perhaps not all are willing to shovel. If all shovel, then each gets b – 
c/N. But if only k > 0 individuals cooperate, each gets b – c/k while those who defect 
get home without shoveling (and hence get b). 

Our goal on this paper is to understand the impact of the structure of the population 
on the outcome of cooperation on a simple model of the N-person Snowdrift Game. In 
the framework of EGT, populations are conventionally modelled as infinite and well-
mixed (each and every individual is equally likely to interact with everyone else). We 
will explore the consequences of each of these assumptions, and ultimately show how 
structured populations generally lead to higher levels of cooperation at low costs, 
inhibiting cooperation at high costs, raising new and exciting questions.  

This work is organized as follows: on sections 2 and 3 we explain in further detail the 
model at study and some background on this topic regarding well-mixed populations, 
respectively; and on section 4 we present the results obtained for structured populations. 
Finally on section 5 we discuss the results obtained and highlight some future lines of 
study. 

2 The Model 

As referred to above, two types of strategies are considered: Cooperators (C, 
individuals that are willing to pay a certain cost so that the benefit is obtained) and 
Defectors (D, who do not contribute at all). The payoffs are as follows [19]: 
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where k is the number of cooperators  in the group of N individuals including the one 
concerned, c is the cost, and b is the benefit obtained by each individual of the group, 
regardless of her strategy, when the task is performed, with b>c (throughout the 
manuscript, we take b = 1). From this definition one concludes that a single cooperator 
is able to afford the benefit. This is the simplest case, on which we will be focusing on 
this work; interesting results also arise when more than one cooperator is necessary to 
be able to attain the benefit - that is, a higher threshold is introduced [16]. 

3 Background on Well-Mixed Populations 

Well-mixed populations (the so-called mean-field approximation in Physics) 
constitute the simplest approach possible to this problem, for which analytical results 
can be obtained. The individual fitness of an individual is the result of averaging over 
all possible groups of size N; as a consequence, all cooperators have the same fitness, 
the same happening with all defectors. Evolution is implemented by means of the 
replicator equation [3], 

 

. ))()()(1( xfxfxxx DC −−=  (2) 

 
where x stands for the fraction of Cs on the population, and fC(x) and fD(x) correspond 
to the average fitness of Cs and Ds for that x, respectively. Strategies’ evolution 
follows the gradient of natural selection determined by the relative fitness difference.  

At this point, a distinction has to be made, between infinite and finite populations. 
In infinite populations the sampling is binomial, and consequently the average fitness 
of cooperators and defectors in the population is, respectively, given by 
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Solving (2) for the steady state 0=x  on the N-person Snowdrift Game, one obtains 
[19] 
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which can be solved numerically for arbitrary N, leading to the results shown in 
Figure 1. It shows us that smaller groups are more advantageous for cooperation, 
since the equilibrium abundance of cooperators decreases with increasing group size 
N and decreasing benefit-cost ratio c/b. 

 

Fig. 1. Fraction of cooperators x* at the stable equilibrium, as a function of c/b, for different 
group sizes, in infinite well-mixed populations. One observes that the bigger the group, the 
smaller the equilibrium fraction of cooperators, for the same ratio c/b. 

However, the infinite assumption is one that certainly is not compatible with the 
real world. EGT on a finite population (of size Z) introduces some modifications: the 
fraction of cooperators is no longer a continuous variable, but varying in steps of 1/Z; 
and sampling of individuals is no longer binomial, following now a hypergeometric 
distribution: 
 

 
 

(5) 

Following the conventional approach, we compute the fraction of cooperators in the 
population after a transient period of evolutionary dynamics of the population. The 
fitness of individual i is given by the accumulated payoff resulting from all the games 
in which she participates. Strategy evolution is implemented via the pairwise 
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comparison rule [20-22]: in each time-step, an individual (A) is selected at random 
from the population to revise her strategy, comparing her accumulated payoff with 
one of her neighbors (B) also randomly chosen. Individual A adopts the strategy of B 
with a probability given by the ubiquitous Fermi expression from statistical physics 
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where fA and fB are the fitness of individuals A and B respectively, and β , which in 

physics corresponds to an inverse temperature, denotes here the intensity of selection. 
For 1<<β  selection is weak, and in the limit on infinite populations (that is, ∞→Z ), 

one recovers the replicator equation. Increasing β  increases the intensity of selection, 

reaching pure imitation dynamics whenever 1>>β .   

When one performs evolutions on large yet finite well-mixed populations, the 
agreement is, as expected, almost perfect. Only small discrepancies can be observed 
for the higher and lower values of c/b, due to the finiteness of the population. This 
effect disappears once sufficiently big populations are considered (on this type of 
processes, for Z = 104 convergence to the infinite population case is excellent). 

One can also define the probability to increase and to decrease the number k of 
cooperators in the population by one, at each time-step:       
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The first term relates to the probability of selecting a cooperator, the second one to the 
probability of selecting a defector, and the last to the take-over probability, taking into 
account the average payoffs of cooperators and defectors for that specific k. For 
arbitrary β , the quantity corresponding to the right hand side of the replicator 

equation, which specifies the gradient of selection, is given by 
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The right-hand side of g(k) is similar to the replicator equation, only that the pairwise 
comparison leads to the appearance of the hyperbolic tangent of the fitness difference, 
instead of the fitness difference. This has implications in the characteristic 
evolutionary times, which now depend on β , but not in what concerns the roots of 

g(k). Also, adoption of this specific social learning hypothesis, combined with the 
finite population size, means that internal equilibria are no longer possible: the 
evolutionary dynamics will only stop whenever the system reaches one of the two 
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absorbing states, full cooperation or full defection. Hence, the sign of g(k), which 
indicates the direction of selection, is important in that it may strongly influence the 
evolutionary time required to reach any of the absorbing states. 

For well-mixed populations, calculating g(k) is generally straightforward, as every 
C will have the same fitness, the same happening with every D. In structured 
populations this property no longer holds, and the task of computing g(k) becomes 
considerably harder. Here we shall compute T+(k) and T-(k) at a mean-field level, that 
is, we compute the average frequency of transitions increasing (and decreasing) the 
number of cooperators for each random configuration with k cooperators.  

4 NSG on Structured Populations 

Real world populations have yet additional degrees of complexity. For instance, 
individuals do not potentially interact with everyone else in the population, but only 
with a limited number of neighbors. Graph theory constitutes a natural and very 
convenient framework to describe population structure: individuals are placed on the 
vertices of a graph, whose edges define the existence of interaction between them. 

In network structured populations, each individual has z social ties, which means 
her payoff is determined by the z + 1 games she participates in: the one centered on 
herself, and also those centered on her neighbors [14], as depicted on Figure 2.  

 

Fig. 2. In this example, the focal individual (largest sphere) has z = 3 social ties, and therefore 
her payoff is determined by the participation on the game centered on herself (grey dashed line) 
and the games centered on her neighbors (grey shaded shapes), in a total of 4 games 
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On this work we will focus on homogeneous networks, and particularly on regular 
ones. On the other hand, a regular network can be understood as some form of spatial 
organization, leading to a process known as “spatial reciprocity”.  

Figure 3 shows the gradient of selection defined in equation (8) for some values of 
the ratio c/b, as well as the comparison between the coexistence points obtained in 
this way and those corresponding to infinite, well-mixed populations.  

 

Fig. 3. A. Gradients of selection g(k) for NSG on a regular network for some values of the ratio 
c/b. B. Comparison of the coexistence points (full circles) obtained in A (depicted by full 
squares) with those associated with well-mixed populations (dashed line). Parameters: 
Z=1000, z=4, b=1.0, 0.1=β  
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Unlike what happens in the infinite population case, now the mean-field gradients 
show the occurrence of internal coexistence-like points up to c/b = 0.3. One observes 
that these points differ significantly from the analytical results previously obtained, 
suggesting that the evolutionary dynamics of the NSG under spatial reciprocity differs 
significantly from that in infinite, well-mixed populations. For c/b > 0.3, the gradient 
is always negative, showing that, at a mean-field level, cooperators do not stand a 
chance. 

The fact that the calculations of the gradients are mean-field in nature points to the 
qualitative nature of these results. Therefore, one might expect that, qualitatively, 
cooperators will stand a chance for c/b < 0.3, whereas beyond this regime defectors 
will win the evolutionary race.  

Figure 4 shows the evolution of cooperation under spatial reciprocity for the NSG.  

 

Fig. 4. Average level of cooperation, as a function of c/b, under spatial reciprocity for NSG, for 
group size N = 5 (depicted by solid circles), compared with the correspondent result for well-
mixed populations. One observes that cooperation in favored for low values of the cost, being 
inhibited for large values. Parameters: Z=1000, z=4, b=1.0, 0.1=β  

Similar to what has been obtained for the 2-person SG [18] cooperation is favoured 
for low values of the cost while it is inhibited for large values. The solid circles were 
obtained by averaging over 2000 generations, after a transient period of 105 
generations, and each circle corresponds to an average over 103 runs.  These results, 
in turn, are qualitatively similar to those one obtains by plotting the fraction of times 
the population converges to full cooperation for a given value of the cost-to-benefit 
ratio (not shown).  

In order to understand better the origin of this result, we focus on a particular value 
of c/b < 0.30, and follow the time evolution of the fraction of cooperators, starting 
from two different initial conditions – above and below the coexistence point xcoexistence 
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obtained for the same value of c/b in the infinite, well-mixed case (dashed line in 
Figure 3b). 

In Figure 5 we start from a population of 1% and 70% of cooperators respectively, 
randomly distributed in the network, and allow the system to evolve 105 time-steps. In 
all our simulations we adopted asynchronous update in populations of size 103 and 
connectivity z = 4; each dot corresponds to an average over 1000 runs (as stated, we 
set b = 1 in all simulations, such that the only game parameter is the ratio c/b).  

 

Fig. 5. A. Fraction of cooperators (x) as a function of time steps, starting above xcoexistence (70% 
of cooperators) and below it (1% of cooperators). B. 

DDCCx φφ  , ,  and 
CDφ as a function of time, 

starting from 70% of cooperators, for regular networks. Parameters: Z=1000, z=4, b=1.0, 
c=0.15, 0.1=β  

Figure 5A shows that, although the final outcome is the same (the population is 
heading to the absorbing state of full cooperation), the dynamic behavior observed 
throughout evolution is quite different. While for x < xcoexistence the fraction of 
cooperators increases right from the start, for x > xcoexistence it starts by first decreasing, 
increasing only after a considerable amount of generations. What is the mechanism 
responsible for the decrease of the number of cooperators? To answer this question, 
let us define the fraction of links between individuals playing strategies i and j as: 
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where 2Zz  is the total number of links of the network and i and j is either C or D. 

Figure 5B shows the average time evolution of these quantities when starting with 
a fraction of cooperators x > xcoexistence, along with the above defined quantities. 
Analysis of these results shows that isolated cooperators are the ones specifically 
being eliminated, i.e., cooperators and defectors on the population organize 
themselves increasingly more in an assorted manner – individuals that adopt a certain 
strategy are not isolated but organized in such a way that have at least one neighbor 
following the same strategy. This is corroborated by the several curves shown: 

CCφ  

increases slightly, accompanied by a sudden decrease of 
CDφ  , representing the self-

organization of cooperators and defectors; the maximum “saturation value” reached 
by 

DDφ  corresponds to the moment in which cooperators are less represented in the 

population. For these values of c/b, regular structures can, therefore, be favorable for 
cooperation under the NSG, potentiating the self-organization of the population 
towards the full cooperation absorbing state. 

As c/b> 0.3, cooperators no longer resist the increased capacity of assortation 
exhibited by defectors, and indeed in the majority of cases the population evolves into 
full defection.   

5 Discussion 

The present study puts in evidence the impact of regular structures on the evolution of 
cooperation making use of a model of collective cooperation based on the N-person 
SG. We have shown that, below a critical cost-to-benefit ratio, regular networks 
facilitate cooperation, by enhancing the self-organization of the population regarding 
the distribution of strategies. This capacity of self-organization of cooperators breaks-
down as one surpasses this critical cost-to-benefit ratio, which we have shown can be 
qualitatively associated with the mean-field value of the gradient of selection 
numerically computed for the structured population.  
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