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Abstract. This paper aims at understanding the coevolutionary dy-
namics of game strategies, game structures and network structures of
interactions. As a first approach, we constructed a coevolutionary model
of game strategies and network modification strategies, in which indi-
viduals can evolve the game structure by developing new strategies that
expand the existing payoff properties of Prisoner’s Dilemma (PD) and
Symmetric Coordination (SC). Evolutionary experiments showed that
the dynamically evolving network brought about the emergence of an
adaptive and mutually coordinating network from an isolated and defec-
tive population through a shift from a PD to a SC-type game structure,
which bootstrapped the subsequent occurrence of adaptive coevolution-
ary cycles based mainly on a PD-type game structure.

Keywords: Coevolution, evolutionary game, network structures, Pris-
oner’s Dilemma, Symmetric Coordination, artificial life.

1 Introduction

Dynamics of mutual interactions between network topologies and states of the
nodes are attracting much attention in various scientific and engineering fields
[1, 2]. In evolutionary game theory, the spatial locality of interaction and repro-
duction has been regarded as a key factor for evolution of cooperation [4–6].
The evolution of strategies in evolving network structures is currently being in-
vestigated extensively [3]. This is because cooperative behaviors and network
structures can coevolve by affecting their evolutionary dynamics mutually in
real world situations – both physical and biological. This attention is also due
to the recent interest in complex network structures in social relationships [8,9].

Zimmerman and Eguiluz constructed a model in which the neighboring net-
work structure of an individual can be changed according to the results of games
with neighbors, in addition to the evolution of the Prisoner’s Dilemma (PD)
strategies [10]. They adopted a simple rule that the links between mutually de-
fected individuals were rewired with other randomly selected individuals. They
found that the emergence of the cooperative leader who had the largest pay-
off in the cluster of cooperative agents brought about the global cooperation.
Pacheco et al. assumed a situation termed “active linking processes,” in which
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there are different birth and death rates of links based on a combination of
the strategies [11]. An important finding is that the effect of rapid evolution
of the network structure could be interpreted as a transformation of the payoff
matrix in an existing game. They also discussed it in the context of repeated
games [12]. Tanimoto recently discussed a relationship between assortativity by
degree of the evolved network and emerging cooperation in PD, showing that the
weak (or strong) dilemma makes the assortativity of emerging networks positive
(or negative) [13].

These studies were all based on the strong assumption that while every agent
may have its own strategy for modifying its neighboring network, they all adopt
the same fixed rule for rewiring. From this viewpoint, we constructed an evolu-
tionary model in which each individual not only has a strategy for PD to play
with its neighboring members on the network, but also has its own strategy for
changing its neighboring structure of the network [14]. The behavior of this sys-
tem was complex. We observed coevolutionary cycles of cooperating behaviors
and the network structures, reflecting the dynamic aspect of the emergence and
collapse of cooperative networks in a real world (see [14] for detailed analyses).

In this study, we focus on the evolution of game structures as another essential
property of a real human society. Previous studies mainly discussed the evolution
of strategies in the context of a unique 2 × 2 game such as PD or Snow Drift.
However, in addition to choosing a strategy from the existing ones, it is also
possible to evolve or expand the game structure by developing another new
strategy of which the relationship with the existing ones reflects the existing
game structure or constraint. For example, in a standard PD, agents may devise
new strategies which bring about more beneficial cooperation, but they may
also be exploited more heavily by existing strategies, due to some environmental
constraints.

Our purpose is to clarify the coevolutionary dynamics of game structures and
network structures of interactions. As a first approach, we expanded an evolu-
tionary model of our previous work [14] to a version of a game, in which indi-
viduals can evolve the game structure by developing new strategies that expand
the existing properties of Prisoner’s Dilemma (PD) and Symmetric Coordination
(SC). By starting experiments from the initial population of the minimal set of
strategies, we discuss whether and how game strategies, game structures, and
their network structures can coevolve by comparing the cases with and without
evolution of network structures.

2 Expandable PD/SC Game

We assumed a game, termed an Expandable PD/SC game, in which individuals
can evolve the game structure by developing new strategies that expand the
existing properties of Prisoner’s Dilemma (PD) and Symmetric Coordination
(SC).

In this model, we start the population with a minimal set of strategies. Let us
call them strategy 1 and 2. There is a PD-type game structure between them.
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A new strategy can be developed from its adjacent strategies. For example, a new
strategy, let us call it strategy 3, could be developed from the strategy 2 in the
initial population. This expands the size of the payoff matrix, and another PD-
type structure with expanded payoffs appears between the new strategy 3 and
its adjacent strategy 2. At the same time, a SC-type structure appears between
the new strategy 3 and its distant strategy 0. Similarly, a new PD structure
appears between the strategy x and x+ 1 if a strategy x+ 1 is developed from
existing strategies, and there appear SC structures between these new strategies
and other distant strategies. Through this process, individuals can increase the
size of the matrix indefinitely by developing an indefinite number of integer
strategies. However, for simplicity, we limit its maximum value to M , which is
large enough for discussion.

This situation could be interpreted as a kind of innovative evolution of decision
making processes, technologies and so on, if we regard the difference in the
strategy number also reflects the qualitative difference between such options or
methods. Strategy x + 1 can be interpreted as an improvement of the existing
strategy x, and may have a conflict (PD) with it because they tend to share
some social or physical resources. The succeeding strategy x + 2 is a further
improvement but more different from the strategy x, and tends to have less
conflict (SC) with strategy x. However, it can be exploited by the existing option
x+ 1.

Specifically, let us assume that the maximum strategy value in the cur-
rent population is m. In this case, each individual can take an integer value
(1, 2, · · · ,m). If individuals A and B take strategies sA and sB respectively, the
set of payoff values for these individuals pA and pB are determined by the fol-
lowing equation:

(pA, pB) =

⎧
⎪⎪⎨

⎪⎪⎩

(sA, sA) = (sB, sB) if sA = sB,
(−S × sB, T × sA) if sA − sB = 1,
(T × sA,−S × sB) if sB − sA = 1,

(0, 0) otherwise.

(1)

Table 1 shows an example payoff matrix of Expandable PD/SC game when
T = 1.1, S = 0.3 and M = 5. The properties of this matrix are summarized as
follows:

– There is a structure of the PD game between two adjacent strategies. The
strategy with a higher number can be interpreted as a cooperator, and the
lower one can be interpreted as a defector in the context of a standard two-
person prisoner’s dilemma game. The parameter T determines the relative
benefit of successful defection to that of mutual cooperation that is the same
as the higher strategy value. The parameter S determines the relative cost
of being exploited to the benefit of mutual defection that is the same as the
lower strategy value.

– There is a structure of the SC game between two distant strategies. The
individuals can obtain the payoff that is the same as their own strategy value
only when they have the same strategy. Otherwise, their payoff becomes 0.
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Table 1. An example payoff matrix of Expandable PD/SC game when M=5. Note
that this payoff matrix is a snapshot during evolution of game structure when the
maximum strategy value is 5. This matrix evolves its size gradually according to the
invention of a new strategy.

���������player
opponent

1 2 3 4 5

1 (1, 1) (2.2, −0.3) (0, 0) (0, 0) (0, 0)
2 (−0.3, 2.2) (2, 2) (3.3, −0.6) (0, 0) (0, 0)
3 (0, 0) (−0.6, 3.3) (3, 3) (4.4, −0.9) (0, 0)
4 (0, 0) (0, 0) (−0.9, 4.4) (4, 4) (5.5, −1.2)
5 (0, 0) (0, 0) (0, 0) (−1.2, 5.5) (5, 5)

(player’s score, opponent’s score)

T > 1, S > 0

– It is beneficial for the whole population to share the higher numbered strat-
egy. At the same time, the degree of these payoff properties increases as
the strategy values increase because of the increase in the absolute values of
payoffs.

By using this expandable matrix, we can discuss how the evolution of game
structure can affect the coevolution of game strategies and network structures.

3 Model

We constructed a coevolutionary model of strategies for the Expandable PD/SC
game and network structures described above. This is basically based on our
previous work on coevolution of strategies for Prisoner’s Dilemma and network
structures [14].

A population of N individuals are represented as nodes in the network and
each (non directional) link between the two nodes represents that a mixed game
will be conducted between the two individuals. Each individual has the infor-
mation of four genes: ggs, gna, gns and gnd. ggs(= 1, 2, · · ·M) directly encodes a
strategy for the game. A set of gna, gns and gnd (0 or 1 respectively) represents
the strategy for modifying its neighboring network structure as illustrated in
Table 2.

Each step consists of the three phases defined as follows:

1. Each individual plays Expandable PD/SC games using ggs against all neigh-
boring (directly connected) individuals respectively, and obtains payoffs. At
the same time, for each game, a fixed value σ is subtracted from the ob-
tained payoff. σ is a constant which decides the relative difference in the
payoff between the individual who played a game and the individual who
did not play. The total payoff obtained in all participating games is taken as
the fitness of each individual.
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Table 2. A set of genetic information for network modification

�����gene
value

0 1

gna does nothing creates a new link with a randomly selected
individual

gns does nothing removes all links with the individuals with
the same action

gnd does nothing removes all links with the individuals with
the different action

2. For each individual, if there are any neighboring individuals whose fitness is
higher than that of the individual itself, the genetic information of the focal
individual is replaced by that of the neighboring individual with the highest
fitness. If there are more than one individual whose fitness tie as the highest
among neighbors, an individual is selected randomly from them. Then, for
each gene in all individuals, mutation occur with a small probability. E.g.,
for ggs, a mutation occurs with probability pmg. Such a mutation adds a
randomly selected value from {-1, 1} to the current value of ggs. If a generated
value exceeds its domain, another mutation is operated on the original value
again. As for gna, gns and gnd, a mutation may occur with probability pmn,
and inverts the corresponding genetic value. Note that the strategy of an
isolated individual cannot be replaced by other strategies, but a mutation
can occur. All updates of the genetic information occur at the same time.

3. Each individual modifies its neighboring network structure by using the re-
sults of games in phase 1 and its current network-modifying strategies. If
gns = 1, the individual removes all links with the individuals whose action is
the same as that of the individual itself. If gnd = 1, the individual removes
all links with the individuals whose action is different from that of the indi-
vidual itself. In addition, if gna = 1, the individual creates a new link with a
randomly selected individual who was not connected with itself in phase 1.

This is repeated for G times.

4 Results

We conducted experiments using the following parameters: N = 1000, M = 20,
pmg = pmn = 0.02 andG=5000.We adopted the condition for the payoff T = 1.1,
S = 0.3 and σ = 1.5. The initial population was generated with initial values
of ggs that were randomly decided from 1 and 2; the genetic values of gna, gns
and gnd were randomly assigned from {0, 1}. We adopted this initial condition
to see whether and how dynamic evolutionary process can emerge from a simple
and the least adaptive situation of Prisoner’s Dilemma through the coevolution
of game strategies, game structures and network structures.
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Fig. 1. The evolution of the average value of game strategies during initial 100 steps
on regular networks with the degree D=2, 4, 10, 20 or 50
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Fig. 2. The evolution of the average value of game strategies during initial 100 steps
on random networks with the average degree D=2, 4, 10, 20 or 50

4.1 Experiments with Fixed Network Structures

First, we conducted experiments with fixed network structures. In these cases, we
omitted the phase 2 in each step, so that the network structure was notmodified by
the individuals’ network modification strategies through time steps. We adopted
the following fixed structures: 1) one-dimensional regular networks in which each
individual was connected withD (= 2, 4, 10, 20 or 50) neighboring individuals, 2)
a random network with the average degree D (= 2, 4, 10, 20 or 50).

Fig. 1 shows typical examples of the evolution of the average value of game
strategy through the initial 100 steps in cases of regular networks. The horizontal
axis represents the step, and each line shows the average value of game strategy
with the corresponding value of D. We see from this figure that the average
strategy decreased very quickly from around 1.5, and converged to 1.0 in all
cases. This means that adaptive populations did not emerge from the initial
population of a PD-type game structure on regular networks. This seems to be
due to the relatively high temptation to defect and small “sucker’s payoff”. We
also see that the smaller D was, the slower the game strategy decreased. This
is expected because that the higher spatial locality of small D values tended to
retard the invasion by the defect-like strategy 1.

Random fixed network evolved similar to the cases of regular networks; the
average strategy quickly decreased to 1.0 within 100 steps in the all cases of
random networks, as shown in Fig 2.

As a whole, we can say that the population with fixed networks could not
evolve adaptive relationship at all.
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Fig. 3. An example evolutionary process of the average value of game strategies and
the average degree over 5000 steps
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Fig. 4. An example evolutionary process of the proportion of the game structure

4.2 Experiments with Coevolving Game Strategies and Network
Structures

We conducted experiments with coevolving game strategies and network struc-
tures. We adopted the same parameters as the ones used in the previous section,
and also adopted a random network with the average degree 2 as an initial net-
work. Fig. 3 shows an example evolution of the average value of game strategies
and the average degree over G = 5000 steps. Note that we observed the qualita-
tively similar phenomenon in every trial with this experimental condition. Con-
trary to the previous experiments, the average game strategy sometimes rapidly
increased from around 1.0 and kept high value for several hundred steps, with
a high average degree. Fig. 4 shows the evolution of the proportion of the game
structures played between different game strategies in this experiment. The dis-
tribution of the game structures (PD and SC) between different strategies was
calculated for each step. The value in Fig. 4 shows the proportion of games with
SC structures among all games between different strategies. We see that it was
basically small, which means that the games between different strategies were
basically PD games. At the same time, we can also see that the proportion of SC
games did increased rapidly for several times, together with the rapid increase in
the average strategy shown in Fig. 3. Fig. 5 shows the evolution of the average
values of network modification strategies in the same experiment. Adaptive pop-
ulation was seen to emerge when both network modification strategies and game
strategies could evolve. These results clearly show that the evolution of the game
and network structures contributed to the emergence of adaptive relationships
between individuals.
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Fig. 5. An example evolutionary process of the average values of network modification
strategies

Detailed exploration of one example will help to understand the dynamics of
evolution by focusing on the trajectory of the population on the two indices in
Fig. 3, as is shown in Fig. 6. The cyclic evolutionary process of these indices is
evident; each cycle was traversed basically in a counterclockwise manner. Fig.
7 illustrates a schematic image of evolutionary trajectory, although there were
large fluctuations and exceptional moves in the trajectory. There were 6 evolu-
tionary transitions in each cycle, in which can be summarized as follows:

(i) As observed around the 500th step in Fig. 3, the population sometimes
stayed on the stable state in which both indices kept nearly the smallest. In
this state, the population consisted of a large number of individuals with
genes (ggsgnagnsgnd) = (1110). They removed links with the same game
strategy and connected to a randomly selected individual at each step.
Because most of the individuals shared the same game strategy 1, they
were repeating the rewiring process with randomly selected conspecifics
every step. Thus, the network was sparsely and dynamically connected in
this state. This state was stable in the sense that a mutant individual with
the strategy 2 could not grow their clusters because of the high “sucker’s
payoff” and the high participation cost σ.

(ii) The dynamic property of the network in (i) sometimes created tiny clusters
of individuals such as (3101) or (4101), and enabled them to invade into
the population as observed at around the 650th step. Because their game
strategy 3 or 4 played SC-type games with the game strategy 1, they could
not be exploited by the dominant individuals. In addition, they maintained
their links with the same strategies while removed the links with different
strategies, and they also created a link with a random individual. This
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Fig. 6. An example evolutionary trajectory of the average value of game strategies and
the average degree

network modifying process enabled them to coordinate with each other
and not to be exploited by the existing strategies. As a result, they could
occupy the population quickly due to the mutual benefit of the change in
the game structure and their adaptive network modification.

(iii) After such individuals occupied the population, they continued to increase
their fitness by increasing their degree because of their high benefit of suc-
cessful coordination. This gradually made the whole population highly con-
nected. We also observed that gnd gradually evolved from 1 to 0, which
means that the individuals came to keep the links with different strategies.
It reflects that keeping and increasing the degree was adaptive during this
process. It is interesting that the population could keep both high average
value of game strategies and high average degree, which is beneficial con-
dition for the whole population but never observed in the cases without
network evolution.

(iv) However, the increase in the average degree changed the global property of
population. When the average degree became sufficiently large, the smaller
numbered game strategy than that of the dominant strategy by 1 quickly
occupied the population, as observed at around the 800th step. They did
not change the highly connected network structure, because they could suc-
cessfully exploit the dominant strategy by using PD-type game structures
in a relatively well-mixed population. This process occurred several times
until the most population was occupied by the game strategy 1.
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Fig. 7. A schematic image of evolutionary trajectory. Each arrow with the number
corresponds to each evolutionary transition explained in the text. Each 4-length gene
string (ggsgnagnsgnd) also represents the dominant genetic information at the corre-
sponding state of the population on this graph.

(v) When the most population was occupied by the game strategy 1, it be-
came adaptive not to play a game. This is because that their net payoff
from a game with each other was −0.5 (= 1.0− σ). It is smaller than the
one when there was no game between individuals (0.0). Thus, the indi-
viduals (1110) that removed the links with the same dominant strategy
but kept the ones with the different strategy began to occupy the popula-
tion. This caused the rapid decrease in the average degree, which enabled
the remaining small clusters of the individuals (2101) that killed the links
with different strategies to grow again due to their cooperative benefit of a
PD-type game structure. As a result, the population often repeated cycles
composed of transitions (iii)-(iv)-(v), as observed at the 800-1200th step.
This mechanism was basically similar to the ones observed in [14], but each
cycle occurred in shorter time scale, which seems to be due to the relatively
high mutation rates.

In addition, we sometimes observed the evolution of the higher numbered
game strategy 3 or 4 through this process, as observed at around the 2100th
or 2500th step (v’ in Fig. 7). Although this seems to be due to the sim-
ilar mechanism to the one in the transition (ii), it is interesting that the
cyclic evolution facilitated the occurrence of these adaptive evolutionary
transitions through the shift from a PD-type game structure to SC-types.

Clearly, these cyclic behaviors brought about more adaptive benefit for the
whole population than the one in the least adaptive state observed in cases
of fixed networks.

(vi) However, the whole population was sometimes completely occupied by the
game strategy 1 during (iv) or (v), which made the population converge
to (i).
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As a whole, we can say that an emergence of a mutually coordinating network
from an isolated and defective population through a shift from a PD to a SC-
type game structure brought about the subsequent maintenance of adaptive
coevolutionary cycles mainly based on a PD-type game structure.

5 Conclusion

We discussed whether and how game strategies and structures can coevolve with
their network structures of interactions. As a first step, we conducted evolution-
ary experiments in which individuals can evolve the game structure by devel-
oping new strategies that expand the existing properties of Prisoner’s Dilemma
(PD) and Symmetric Coordination (SC), in addition to be able to modify their
neighboring structure of network.

Evolutionary experiments based on an individual-based model in which the
game strategy and the network modification strategy coevolve clearly showed
that the dynamically evolving network brought about the emergence of an adap-
tive and mutually coordinating network from an isolated and defective popula-
tion through a shift from a PD to a SC-type game structure, which bootstrapped
the subsequent occurrence of adaptive coevolutionary cycles based mainly on a
PD-type game structure. It should be emphasized that this process was not
observed at all in experiments with several fixed networks, which implies that
this kind of complex interactions among game strategies, game structures and
network structures could be an important factor for maintenance of adaptive
behaviors in a real human society.

Future work includes detailed analyses on the effects of parameters on the
behaviors of the population, and experiments based on different kinds of game-
theoretical situations.
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