
Internet as a Dataflow Computer

Hiroyuki Ohsaki1, Hideaki Suzuki2, and Hidefumi Sawai2

1 Graduate School of Information Science and Technology, Osaka University, Japan
oosaki@ist.osaka-u.ac.jp

2 Kobe Advanced ICT Research Center (KARC), National Institute of Information and
Communications Technology (NICT), Japan

{suzuki,sawai}@nict.go.jp

Abstract. This paper proposes a novel dataflow architecture called DFNET
(DataFlow architecture on the interNET), which realizes a scalable dynamic
dataflow computer on a packet switching network. A vast amount of research on
dataflow computers has been extensively performed during, in particular, 1970s
and 1980s as a promising approach for realizing very high-speed computers.
In spite of the large amount of expectations, success of dataflow computer re-
searches is quite limited. The objective of this paper is to present the concept of
a scalable and extensible dataflow architecture on a packet switching network,
which utilizes the abundant resources of a large-scale computer network. In this
paper, we introduce the concept of DFNET (DataFlow architecture on the in-
terNET). DFNET is composed of configuration and control methodologies of
routers in a packet switching network. The key of DFNET is that a packet switch-
ing network is utilized not for end-to-end communication but for dataflow com-
puting. Because of desirable properties of a packet switching network, DFNET
has high scalability in terms of the dataflow program size and high robustness
against failures.

1 Introduction

Dataflow computer is computer architecture, which is significantly different from the
conventional von Neumann architecture. In dataflow computers, computing is driven
not by the program counter but by data themselves [1,2]. Dataflow computer is expected
to solve the performance bottleneck of the von Neumann architecture with massively
parallel program execution. A vast amount of research on dataflow computers has been
extensively performed during, in particular, 1970s and 1980s as a promising approach
for realizing very high-speed computers [1,2]. In von Neumann computers, which are
also referred as control flow systems, every instruction pointed by the program counter
is sequentially fetched by a processor for execution. On the contrary, dataflow comput-
ers have no program counter. In dataflow computers, operations are fired immediately
when all required data (i.e., operands) are available.

In what follows, a classical data-driven dataflow model proposed by Dennis et al. [3]
is briefly explained. In dataflow computers, a program to be executed is represented as
a directed graph (dataflow program), which is composed of nodes (i.e., data and func-
tions) and arcs (i.e., data flows) (Fig. 1). Several tokens, each of which holds datum to
be processed, are transferred on arcs connecting nodes. Data in those tokens are updated

J. Suzuki and T. Nakano (Eds.): BIONETICS 2010, LNICST 87, pp. 102–110, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



Internet as a Dataflow Computer 103

at every node. A node without input arcs generates a datum; i.e., a token containing the
datum is created and it is then transferred to the downstream node. A node with one or
more input arcs receives tokens from upstream nodes. Once all tokens are received, the
node performs a predefined operation for data contained in tokens. A token containing
the result is created and it is then transferred to the downstream node. There are two
types of arcs: data arc and control arc. The data arc carries tokens with arbitrary datum
whereas the control arc does token with a Boolean value.

source node
(generates data value n)

function node
(applies function f to inputs)

n f

data arc
(allows for multiple copies

of data values)

control arc
(allows for multiple copies

of boolean values)

Fig. 1. Primitive nodes in Dennis’s notation [3]

In 1970s and 1980s, the main concern of dataflow computer researches was pri-
marily to build a much faster computer than the conventional von Neumann comput-
ers. A number of dataflow architectures and prototype systems have been published
(see [1] and references therein). The key for realizing a very fast dataflow computer is
in efficient parallel processing of program execution. In the literature, there exist sev-
eral approaches for accelerating parallel processing of program execution. The classical
dataflow architecture proposed by Dennis et al. is classified as static dataflow architec-
ture or equivalently single-token-per-arc architecture [1,2]. In static dataflow architec-
ture, only a single token can be transferred through an arc. Static dataflow architecture
therefore limits the parallelism of program execution; i.e., loops and recursions must
be performed sequentially. Inefficient parallelism of static dataflow architecture results
in significantly slow program execution. Dynamic dataflow architecture extends static
dataflow architecture to allow multiple tokens on an arc by, for example, adding a tag to
every token or replicating a subgraph of the dataflow program [1,2]. Dynamic dataflow
architecture therefore enables simultaneous execution of loops and recursions, which
significantly accelerates the program execution. Several dynamic dataflow systems have



104 H. Ohsaki, H. Suzuki, and H. Sawai

been proposed and studied in the literature [1,2], in which either the tag format or the
replication method of a dataflow subgraph is different.

In spite of the large amount of expectations, success of dataflow computer researches
is quite limited. Dataflow computers were originally expected as a new computer ar-
chitecture, which hopefully excelled the limitation of the conventional von Neumann
architecture. The von Neumann architecture, however, has been continuously improved
with several technological innovations such as the advancement and enhancement of
semiconductor technologies. Researches on the von Neumann architecture have suc-
cessfully caught up with the growing demand of computing resources. On the other
hand, researches on dataflow computers have faced a difficulty. For instance, software
development environment for dataflow programs has not been fully matured. Program-
ming languages for dataflow programs are generally designed based on a single static
assignment paradigm, which considerably limits the freedom of software development.
Also parallel compilers for dataflow programs is not easy to develop, so that users of
dataflow computers are little benefited from massively parallel program execution.

In this paper, we propose a novel dataflow architecture called DFNET (DataFlow
architecture on the interNET), which realizes a scalable dynamic dataflow computer on
a packet switching network. Note that the objective of this paper is not to present yet
another architecture for realizing a high-speed dataflow computer. Instead, this paper
aims to present the concept of a scalable and extensible dataflow architecture on a
very large-scale packet switching network. A packet switching networks such as the
Internet is best-effort. Namely, QoS (Quality of Service) such as the speed and the
delay of data transfer is not guaranteed. Conversely, packet switching network achieves
efficient utilization of networking resources by scarifying the communication quality.
It is therefore not desirable to build a dataflow computer on a packet switching network
if one needs a very high-speed dataflow computer. We believe that a packet switching
network such as the Internet, which has been exponentially expanding both in speed
and size, should be a viable platform for realizing a (not so fast but) very large-scale
dataflow computer.

DFNET is composed of configuration and control methodologies of routers in a
packet switching network. A packet switching network has high scalability in terms
of the network size (i.e., the number of routers and links) as well as high robustness
against router and/or link failures. The key of DFNET is that a packet switching net-
work is utilized not for end-to-end communication but for dataflow computing. Because
of desirable properties of a packet switching network, DFNET has high scalability in
terms of the dataflow program size and high robustness against failures. Also, utiliza-
tion of the dynamic routing mechanism and network virtualization technologies realize
a highly flexible and extensible dataflow computer.

Note that this paper only covers the concept and high-level view on building blocks
of DFNET. In other words, several practical issues such as implementation, deploy-
ment, security, and software development environment are not covered. The core of
DFNET assumptions is that the underlying network is a packet switching network. Al-
though detailed discussion on DFNET implementation is beyond the scope of this pa-
per, it should be worth considering possible DFNET implementations. DFNET might be



Internet as a Dataflow Computer 105

implemented, for instance, either as an extension to IP routers [4], an application-level
overlay network [5], or an application for active networking architecture [6].

The organization of this paper is as follows. Section 2 presents the overview of
DFNET (DataFlow architecture on the interNET). We also explain four building blocks
of DFNET: token communication mechanism, token synchronization mechanism, data
processing mechanism, and token routing mechanism. Finally, Section 3 concludes this
paper and discusses future works.

2 DFNET (DataFlow architecture on the interNET)

2.1 Overview

We first introduce the overview of DFNET (DataFlow architecture on the interNET),
which is a novel architecture for realizing a scalable and dynamic dataflow computer
on a packet switching network.

DFNET is essentially one of token-based dynamic dataflow architectures. DFNET
builds a dataflow computer on a packet switching network, which is composed of sev-
eral routers and links.

4

2

3

+
*

router

virtual link

node

arc

token

data = 3
tag = X

data = 6
tag = X

data = 6
flow ID = 17

data = 3
flow ID = 17

data = 6
tag = Y

data = 3
tag = Y

data = 4
flow ID = 33

data = 2
flow ID = 33

A

B

C

D

F

E

send 4
to router C

send 2
to router C

add two
inputs &

send result 
to router E

send 3
to router E

multiply two
inputs &

send result
to router F

packet

Fig. 2. DFNET (DataFlow architecture on the interNET) overview; in DFNET, a dataflow pro-
gram is directly mapped to a packet switching network

In DFNET, a dataflow program is directly mapped to a packet switching network.
Tokens, nodes, and arcs in a dataflow program are mapped to packets, routers, and
virtual links in a packet switching network. A set of nodes in a dataflow program are
assigned to a router in a packet switching network. A token in a dataflow program is



106 H. Ohsaki, H. Suzuki, and H. Sawai

encapsulated in a packet, and packets containing tokens are transferred between routers.
The key of DFNET is that a packet switching network is utilized not for end-to-end
communication but for dataflow computing.

In conventional dataflow architecture, such as MIT’s Dynamic Architecture [7] and
Manchester Architecture [8], separate PEs (Processing Elements) are in charge of data
processing. Multiple PEs are therefore interconnected through a communication net-
work. On the contrary, routers in DFNET performs both data processing and com-
munication. In other words, PEs of a dataflow computer are embedded in the router.
Integration of data processing and communication in a router greatly simplifies the ar-
chitecture. It also enables direct mapping of a dataflow program onto a packet switching
network. In DFNET, a dataflow program to be executed is split into multiple subgraphs,
each of which is assigned to a router. In the followings, we will explain the case of one-
to-one mapping of a node in the dataflow program to a router in the packet switching
network. The case of many-to-one mapping can be easily realized by utilizing loopback
interfaces in a router (i.e., by transferring a token within the router).

DFNET has four building blocks: token communication mechanism, token synchro-
nization mechanism, data processing mechanism, and token routing mechanism.

2.2 Token Communication Mechanism

In DFNET, token communication from an upstream node to a downstream node in a
dataflow program is realized by encapsulating a token in a packet and transferring the
token between routers (see Fig. 3). Specifically, the address of a router, to which the
downstream node is assigned, is written in the destination address field of the packet
header. Also the token containing datum and tag is stored in the payload of the packet.

In a packet switching network, the destination address field of the packet header
usually stores the address of a destination host for realizing end-to-end communication.
On the contrary, DFNET stores the address of the next router in the destination address
filed of the packet header. Namely, the packet switching network is utilized not for
end-to-end communication between hosts but for hop-by-hop communication among
routers.

I1

virtual link
(arc)

src = ...
dst = I2 header

payload
(token)

data = ...
flow ID = ...

packet

router
(node)

router
(node)

interface

I2

I3

Fig. 3. DFNET token communication mechanism; token communication from an upstream node
to a downstream node in a dataflow program is realized by encapsulating a token in a packet and
transferring the token between routers



Internet as a Dataflow Computer 107

2.3 Token Synchronization Mechanism

In dataflow computers, a node is fired immediately when tokens from all input arcs are
available. DFNET uses a flow table at a router for token synchronization (see Fig. 4);
i.e., every token is assigned a globally unique identifier called flow ID, and a router
maintains availability of tokens by updating records corresponding to their flow ID’s.

For token synchronization at a router, every token is assigned a unique flow ID. A
record of the flow table corresponding to the flow ID represents token count (i.e., the
number of tokens received) and firing condition (i.e., the number of token required for
firing). The flow ID, token count, and firing condition are determined from the dataflow
program.

When a router receives a packet, the router searches the flow table for the flow ID
specified in the payload of the packet. The router then increments the token count of the
record in the flow table. If the token count is equal to the firing condition of the record,
the router is fired; i.e., the data processing mechanism is invoked and the token count is
set to zero.

2.4 Data Processing Mechanism

In DFNET, capability of PEs are embedded in a router; i.e., data processing is performed
at the router. Data processing at the router can be realized either by utilizing internal
computing resource in the router or providing external computing resource outside of
the router (see Fig. 5).

In the case of internal computing resource, an operation for tokens is determined by
the synchronization mechanism. One of internal PEs performs the specified operation,
and the result is sent to the token routing mechanism, which will be explained below.

I1

header

payload
(token)

router
(node)

I2

I3

interface

flow ID
token
count

firing
condition

11 0 3

17 0 2

19 1 3

27 2 2

flow table

operation

+

/

*

AND

src = ...
dst = I3

data = ...
flow ID = 17

src = ...
dst = I1

data = ...
flow ID = 17

packet

Fig. 4. DFNET token synchronization mechanism; every token is assigned a globally unique iden-
tifier called flow ID, and a router maintains availability of tokens by updating records correspond-
ing to their flow ID’s



108 H. Ohsaki, H. Suzuki, and H. Sawai

I1

header

payload
(token)

router
(node)

I2

I3

interface
external PEs

internal PEs

flow
table

8 / 2 4

src = ...
dst = I1

data = 8
flow ID = 17

packet

src = ...
dst = I3

data = 2
flow ID = 17

flow ID
token
count

firing
condition

11 0 3

17 0 2

19 1 3

27 2 2

flow table

operation

+

/

*

AND

Fig. 5. DFNET data processing mechanism; data processing at the router can be realized either
by utilizing internal computing resource (internal PEs) or providing external computing resource
(external PEs)

I1

src = O1
dst = ...

data = ...
flow ID = 17router

(node)

I2

I3

interface

routing table

routing
table

O1

O2

O3

header

payload
(token)

src = ...
dst = I1

data = ...
flow ID = 17

packet

input flow ID output

I1 17 3

I2 any 2

I3 17 3

Fig. 6. DFNET token routing mechanism; DFNET utilizes a routing table in the router for deter-
mining the next-hop router, to which the downstream node in the dataflow program is assigned

Also in the case of external computing resource, an operation for tokens is deter-
mined by the synchronization mechanism. One of external PEs receives data and type
of operations, and the result is sent to the token routing mechanism.

Note that both internal and external PEs can be used according to the type of data
processing. For instance, for simple and/or realtime operations, internal PEs would be
appropriate. On the other hand, for complex and non-realtime operations, external PEs
would be appropriate. Introduction of external PEs slightly complicates the router archi-
tecture while the flexibility and expandability of the dataflow computer can be realized.



Internet as a Dataflow Computer 109

2.5 Token Routing Mechanism

DFNET utilizes a routing table in the router for determining the next-hop router, to
which the downstream node in the dataflow program is assigned (see Fig. 6).

Each record of the routing table is a triplet of input interface, flow ID, and output
interface. Based on the input interface of an arriving token and the flow ID written in
the token, the router determines the output interface from the corresponding record of
the routing table. If multiple output interfaces are found, the router replicates the token,
and sends those tokens through all output interfaces.

Each record of the routing table is directly determined from the dataflow program.
Note that change of the dataflow program during program execution can be easily real-
ized by dynamically modifying the routing table.

3 Conclusion

In this paper, we have proposed a novel dataflow architecture called DFNET (DataFlow
architecture on the interNET), which realized a scalable dynamic dataflow computer on
a packet switching network. The objective of this paper was not to present yet another
architecture for realizing a high-speed dataflow computer. Instead, this paper aimed
to present the concept of a scalable and extensible dataflow architecture on a very
large-scale packet switching network. DFNET is composed of configuration and con-
trol methodologies for routers in a packet switching network. In this paper, we have
explained four building blocks of DFNET: token communication mechanism, token
synchronization mechanism, data processing mechanism, and token routing mecha-
nism. Because of desirable properties of a packet switching network, DFNET has high
scalability in terms of the dataflow program size and high robustness against failures.

Our future work includes architectural comparison of DFNET with other dynamic
dataflow architectures, designing router architecture for DFNET, qualitative and quanti-
tative performance analysis of DFNET, and experiments with prototype implementation
of DFNET.

Moreover, extension of DFNET to support several types of different computing mod-
els than dynamic dataflow architecture would be of great importance. In [9,10,11], we
have proposed ATN (Algorithmically Transitive Network), which is a self-organizing
dynamic dataflow network with a learning mechanism. ATN adopts a BP (Back Prop-
agation) learning mechanism similar to that of neural networks. DFNET has been ini-
tially designed as an execution environment for ATN. We should note, in particular, that
such a BP-based learning mechanism can be easily implemented with the token routing
mechanism in DFNET.

References

1. Sharp, J.A. (ed.): Dataflow computing: theory and practice. Ablex Publishing Corporation
(1992)

2. Silč, J., Robič, B., Ungerer, T.: Processor architecture: from dataflow to superscalar and
beyond. Springer, Heidelberg (1999)



110 H. Ohsaki, H. Suzuki, and H. Sawai

3. Dennis, J.B., Misunas, D.P.: A preliminary architecture for a basic dataflow processor. In:
Proceedings of the 2nd Annual Symposium on Computer Architecture, pp. 126–132 (1975)

4. Baker, F.: Requirements for IP version 4 routers. Request for Comments (RFC) 1812 (June
1995)

5. Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of peer-
to-peer overlay network schemes. IEEE Communications Surveys and Tutorials 7, 72–93
(2005)

6. Bhattacharjee, S., Calvert, K.L., Zegura, E.W.: An architecture for active networking. Tech.
Rep., College of Computing, Georgia Institute of Technology, Atlanta, Georgia (1996)

7. Gostelow, A.K.P., Plouffle, W.: An asynchronous programming language and computing ma-
chine. Tech. Rep. 114a, Department of Information and Computer Science, University of
California, Irvine, CA (1978)

8. Gurd, J.R., Watson, I.: A multilayered dataflow computer architecture. In: Proceedings of 7th
International Conference on Parallel Processing (August 1977)

9. Suzuki, H., Ohsaki, H., Sawai, H.: A Network-Based Computational Model with Learning.
In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds.) UC 2010. LNCS,
vol. 6079, pp. 193–193. Springer, Heidelberg (2010)

10. Suzuki, H., Ohsaki, H., Sawai, H.: Algorithmically Transitive Network: a new computing
model that combines artificial chemistry and information-communication engineering. In:
Proceedings of the 24th Annual Conference of Japanese Society for Artificial Intelligence
(JSAI), pp. 2H1–OS4–5 (2010)

11. Suzuki, H., Ohsaki, H., Sawai, H.: An agent-based neural computational model with learning.
In: Conference Abstract of the 3rd INCF Congress of Neuroinformatics (Neuroinformatics
2010) (2010), doi:10.3389/conf.fnins.2010.13.00021


	Internet as a Dataflow Computer
	Introduction
	DFNET (DataFlow architecture on the interNET)
	Overview
	Token Communication Mechanism
	Token Synchronization Mechanism
	Data Processing Mechanism
	Token Routing Mechanism

	Conclusion
	References




