
P2P-Based Scalable Execution Platform
for Algorithmically Transitive Network

Mikio Yoshida1, Hideaki Suzuki2, and Hidefumi Sawai2

1 BBR Inc.
2-1-4-206, Sonezakishinchi, Kita-ku, Osaka, 530-0002, Japan

yos@bbr.jp
2 National Institute of Information and Communications Technology

588-2, Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
{hsuzuki,sawai}@nict.go.jp

Abstract. “Algorithmically Transitive Network” (ATN) is a novel computational
model based on a data-flow network, consisting of the following operations: a
forward propagation propelled with node firing and token creation, a backward
propagation caused by evaluating differential coefficients, and a topological alter-
ation taken place by autonomous agents. In the research of the ATN, a simulation
run on some parallel processing scheme is essential. As a flexible and power-
ful implementation scheme, the paper employs a P2P based distributed platform,
and describes the mechanisms for simulation and P2P deployment of the ATN.
The implemented platform has the following three features: flexible allocation
of ATN nodes to the physical resources, unified description of communication
between nodes, and several methods to realize high parallelism. The proposed
scheme is also helpful to verify applicability of the employed P2P system.

Keywords: peer-to-peer network, framework system, data-flow architecture,
agents, oneway RPC.

1 Introduction

“Algorithmically Transitive Network” (ATN) [1] [2] is a novel computational model
based on the data-flow network [3]. The ATN consists of operations of the bi-directional
propagation of ‘tokens’, a forward propagation (FP) which advances calculation ahead
using ‘firings’ of nodes, and a backward propagation (BP) which evaluates calculation
to the opposite direction of the flow of tokens in the FP.

As in the data-flow network, the ATN’s nodes read the input tokens on their incom-
ing edges, fire, and create the output tokens on their outgoing edges during calcula-
tion. This constructs a ‘fire-token pedigree’ whose nodes (tokens) represent variables
or mathematical expressions, and whose hyper-edges (firings) represent arithmetic/log-
ical operations used to create the tokens. An example of these relationships is shown in
Fig. 1. The BP, which is propelled on the pedigree, finally modifies parameters of the
ATN at some nodes, whose statistical data is used to change the network topology by
functional agents distributed in the network. The aim of the ATN research is in making
the data-flow network itself learn through these operations and explore novel algorithms
automatically.

J. Suzuki and T. Nakano (Eds.): BIONETICS 2010, LNICST 87, pp. 82–91, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



P2P-Based Scalable Execution Platform for Algorithmically Transitive Network 83

Fig. 1. (a) Higher language program of a simple conditional branch, (b) data-flow network (ATN),
and (c) fire-token pedigree produced by the calculation. The variable name s represents the
graph’s input (sensor) signal, and the a represents the graph’s output (answer) value. The pedi-
gree’s top ancestor is the initial fire at the ‘B’ node, and its last descendants are firings at the ‘E’
node or nodes with no outgoing edge. In (b), arithmetic edges are expressed as the solid arrows,
and regulating ones are expressed as the broken arrows.

Of course, an implementation and an experiment of the ATN can be conducted on
a single core computer; however, in order to precisely evaluate the ATN’s ability to
explore algorithms, implementation to parallel computers, such as a PC cluster with
sufficient calculation resources, is essential. Although now in many cases, MPI [4] is
used as a programming tool for a parallel computer, here we propose building the ATN
on a P2P platform system named “PIAX” [5]. There are three advantages for taking
this approach. First, a PIAX’s higher level library provides an efficient programming
environment for software developers as well as the software’s flexibility. Second, the
ATN which uses the data-flow network for the base of calculation has high affinity
with a P2P network, requiring the minimal communication cost between CPU cores.
This will be also enhanced by the trait of the PIAX able to use threads efficiently and
utilize the core resources for the maximum. Third, the P2P library enables the ATN to
be deployed to the open network environment in the world.



84 M. Yoshida, H. Suzuki, and H. Sawai

Fig. 2. Modular structure of ATN-P2P

In the research of the ATN, what kind of agents should be prepared and what kind
of topology changing rules should be made are important research agenda. To inquire
about these issues, we have to try many agent designs with repeating each evaluation
and verification. Moreover, to confirm the ATN’s high parallelism and functionality as
a distributed system, it is also necessary to check about the performance of the ATN
implemented onto an actual P2P network. The P2P-based platform system we have
developed (“ATN-P2P”) not only supports the research of the ATN from these points
of view but also clarifies the outcome of or difficulty in deploying the ATN to a P2P
network. Subsequent chapters describe the design and implementation of ATN-P2P,
focusing on mechanisms for the ATN simulation platform and P2P deployment.

2 Basic Design of ATN-P2P

2.1 Framework and Modularity

The ATN-P2P has a form of a ‘framework system’ so that an ATN researcher can try
and implement an idea freely. The researcher can change, add and delete the following
functions without caring about the system behavior of the topology change of the ATN
and the detailed flows of tokens in the FP and the BP.

– Insertion and deletion of a node, and the change of an operation defined in a node.
– Change of calculation of differential coefficients and teaching signals.
– Insertion and deletion of an agent, and the change in behavior of an agent.

In addition to implementing a new function, it should be checked how the added func-
tion is operating inside and how the variables changes. Although these are the basic
functions of a simulator, change of a request occurs in several phases of research. To
meet this, we took a modular design approach which separates a visualization function,
etc., from the essential computation of the ATN. The modular structure of ATN-P2P is
shown in the Fig. 2.

The central box named ‘ATN framework’ is the framework system, a core module
which executes the ATN computation. The above functions, i.e., the insertion and dele-
tion of a node or the change in behavior of an agent and so on, are implemented on this



P2P-Based Scalable Execution Platform for Algorithmically Transitive Network 85

framework. The left visualizer module is a controller of the ATN framework, which has
the function of visualizing the graphical data returned from the ATN framework. The
ATN framework has an API to control from outside. It is possible to control the ATN
framework from not only visualizer module but also from a script and to make it deploy
as a web server. On the other hand, it has a plug-in structure for gathering such informa-
tion as the output in the gnuplot form of each pass state of the ATN, the variable values
that nodes have for processing statistically, and fine motions in the processes of the FP
and the BP, and the operations of agents. Although the visualizer module was imple-
mented as a controller form, the data for visualization can also be collected using this
plug-in function. This framework design and the modularity enhance the extendibil-
ity of the system and the independency of computation logic in the ATN, helping a
researcher concentrate on the research of the mechanism of the ATN itself.

2.2 Requirement for P2P Deployment

In general, when we apply the P2P framework to some system, we have to consider the
folowing issues which might become primary obstacles to the deployment:

1. Existence of shared resources.
2. Synchronicity over two or more nodes.
3. Consistency between nodes.

The existence of shared resources becomes a factor which disturbs the decentralization
of processing. When a node is decentralized in the ATN, access from all of the nodes is
focused on the shared resources, and there is a bottleneck in the performance.

In a platform including a higher-level manager that looks down at the whole network,
synchronicity over two or more nodes is easily implemented; and yet, this is not the case
in a distributed system. Simulation of the ATN requires repeated operations of the FP,
the BP, and agents as one cycle (called pass), and for this reason, each distributed node
needs to detect the completion of each pass.

The consistency between nodes becomes a problem, for example, when a change
of the topology of the ATN is simultaneously made by two or more agents and the
consistency of topology is no longer guaranteed. It may also happen that the a partial
separation of the network occasionally occurs and the token flows of the data flow
network are stopped.

3 Mechanisms for the P2P Platform Simulating the ATN

3.1 Flexible Resource Allocation

Since, through the repetition of passes, the ATN changes its topology dynamically and
the number of nodes tends to increase with time, we cannot assign one node to one
machine when performing the ATN on the machines of fixed number. To get around this
problem, the ATN-P2P assigns the ATN nodes to the physical resources dynamically by
dividing the node set into some groups and allocating them to the machines. One group
is treated as a process, and the number of processes is taken to be changeable during the



86 M. Yoshida, H. Suzuki, and H. Sawai

Fig. 3. Node allocations and communication patterns in the ATN-P2P

run. Furthermore, communication between processes is performed using IP addresses,
irrelevant of whether it is inside or outside a machine. This makes a process boundary
equivalent to a machine boundary, and assures the flexibile assignment of the processes
to the machines.

Basically, we can choose arbitrarily a way for the grouping of nodes in the ATN into
processes on the equipped distributed machines. For example, when the whole ATN is
assigned to one process without a grouping, the ATN-P2P functions as a single simula-
tor. When nodes are grouped one by one and each process is assigned to a machine, the
ATN-P2P operates as an actual P2P network. The grouping into a process and commu-
nication of nodes are more concretely shown in the Fig. 3.

Since the ATN-P2P is implemented in Java, a process here is a JVM (Java VM)
process. There exists one object called ‘ATNMgr’ on a JVM process. The ATNMgr
manages all the nodes assigned to the process by conducting the following tasks.

– Insertion and deletion of a node and management of topology information including
edges.

– Cooperation with ATNMgr(s) on other processes.
– Communication with external applications and specifying its API.

An ATNPeer is a Java object which represents a node. An outgoing edge from the
node is also assigned to this ATNPeer. Communication between the ATNMgr and AT-
NPeer(s) is performed as follows.

– Communication between ATNPeer(s) within the same process as the ATNMgr is
performed by a normal method call.

– Communication of ATNMgr(s) between different processes uses a remote proce-
dure call (RPC).

– Communication of ATNPeer(s) uses a RPC with no returning value (called ‘Oneway
RPC’).



P2P-Based Scalable Execution Platform for Algorithmically Transitive Network 87

Fig. 4. Relationship of objects in ATNPeer. A 128-bit unique ID is used for the reference to
Node, Edge, and Fire objects which exist in a different ATNPeer. The ATNPeer has the ID same
as the Node has.

As the data-flow network used in the ATN communicate only between an adjacent node
pair, so an ATNPeer exchanges such information as tokens only with its partners (ad-
jacent ATNPeers). Moreover, in communication between ATNPeers, a communication
partner’s ATNPeer does not know whether the sender exists in the same JVM process.
The Oneway RPC, described in the Section 4.2, is a mechanism that enables the one
way message transmission in a RPC form.

The ATNMgr performs the insertion and deletion of nodes within the JVM process.
It is important to decide which process of which machine the newly generated node
should be assigned to. At present, the generated node is assigned to the same process as
that which the parent node belongs to; however, we are able to allow an ATNPeer to mi-
grate to another JVM process to secure good load balance between JVM processes. The
problem for making rearrangement of the ATNPeers is to be solved by the cooperation
of ATNMgr(s).

3.2 Object Assignment in ATNPeer

The internal structure of an ATNPeer is shown in the Fig. 4. The ATNPeer has the
assigned Node object, outgoing Edge objects and Agent objects on each Node or Edge
object, and Fire and Token objects generated at the time of the FP. The information on
the incoming edge is also needed by the ATNPeer, but this information is made available
via the reference to an Edge object which another ATNPeer holds. During the FP, if the
Token objects used as the conditions for firing are prepared in the the queuing elements
in the incoming Edge objects, the node fires, which causes the creation of a Fire object
the ATNPeer.



88 M. Yoshida, H. Suzuki, and H. Sawai

3.3 Unified Description for Message Sending

In order for the ATN nodes to be allocated flexibly to physical resources, it is desirable
that the communication between nodes might be expressed in a program uniformly
regardless of the way of the grouping of the nodes or the assignment of the processes to
the machines. The guiding principle for this unified description is:

– Eliminate a bidirectional communication.
– Always use a remote communication protocol.
– Specify the destination node with the ID.

According to the data flow model which the ATN has, we basically consider one way
message transmission. The scheme of communication is unified into description sup-
posing remote communication for both within-a-process and between-processes com-
munication. In order to improve the performance of local communication, when the
communication locality is detected, a prepared optimization procedure is always con-
ducted. For the references to objects in another ATNPeer, the IDs are used as described
in Section 3.2. This avoids the disturbance of the communication after the rearrange-
ment takes place and the communication address (IP address etc.) of the ATNPeer
changes. The above-mentioned guiding principle is realized by the Oneway RPC de-
scribed in Section 4.2.

3.4 Concurrency Control of ATN

The realization of effective parallelism and concurrency is a central theme in the re-
search of the ATN. In case of the ATN-P2P, the following two step approaches are
taken.

Division of the Processes to Two or More Machines. Higher parallelism is achieved
by dividing a node set into the processes on multi-core machines or processes on dif-
ferent machines.

Event Driven Process. Unit operations in the ATN node are classified into the firing in
the FP, fire extinguishing in the BP, or operations by the agents. Since all these processes
are triggered by external events and none of them use a CPU stably, we do not assign a
thread to a node permanently but assign a thread to the generated event. This achieves
high level concurrency in a simulation.

4 Implementation

4.1 Distinctive Feature of PIAX Transport

In the implementing of ATN-P2P, the function which the transport layer of PIAX has
for the realization of the unified description of communication between nodes and the
concurrency using an event driven model was used.



P2P-Based Scalable Execution Platform for Algorithmically Transitive Network 89

PIAX is a platform system for the mobile agent which operates on a P2P network. It
has a framework for the nodes which constitute a P2P network in order to communicate
not using physical addresses like IP addresses but using global unique IDs. This is called
the ‘ID/Locator separation’ and it is prepared as a communication mechanism for a P2P
network (or an overlay network) in the transport layer of PIAX [6].

Regarding the high level concurrency, PIAX has a mechanism for making nodes of
tens of thousands of scales perform on one JVM. This is because the transport layer of
PIAX is implemented as the event driven model. The feature utilized by ATN-P2P is as
follows.

– Since the thread is not assigned to the node, even if it works, the nodes of tens of
thousands of scales don’t generate consumption of the thread.

– Make concurrent processing generated by event using a thread. Since many threads
are assigned to CPU resources by JVM adaptively, they can utilize a multi-core for
the maximum.

– Avoid the overhead of thread generation by thread pooling. Furthermore, the drain-
ing of thread assignment of the concurrent processing, which takes place explo-
sively by giving thread pool restriction can be prevented by setting an upper limit
on the thread pool.

4.2 Oneway RPC

For the unified description of the communication described in Section 3.3, a RPC for
the one way call, named ‘Oneway RPC’, was implemented using the RPC function of
PIAX. Although the Oneway RPC has the same call form as a RPC, since it is the one
way call, neither a return value nor the exceptions which are thrown at the receiver side
is returned to a caller. And since a caller does not wait for the completion of processing
of the RPC, the Oneway RPC call is completed immediately.

The example of coding of the Oneway RPC is shown in the List 1.1. In this ex-
ample, in an ATNPeer, in order to add outgoing edge newly, the addIncomingEdge
method which adds an incoming edge of the ATNPeer is called. As preparation for
treating the ATNPeer linked as a remote object, the stub of the RPC is generated by
a getOnewayStub method and an addIncomingEdge method is called out as a method
which the stub has. In the usual stub generation, although the IP address of a remote ob-
ject is needed, the mechanism of the ID/Locator separation which PIAX has is utilized
here so that the ID can be specified.

List 1.1. A sample code of Oneway RPC

1 public void addEdge(...) {
2 ...
3 try {
4 ATNPeerIf stub = (ATNPeerIf) getOnewayStub(dstPeerId);
5 stub.addIncomingEdge(incomingIx, getId(), edge.getId());
6 } catch (UndeclaredThrowableException e) {
7 ...
8 }
9 }



90 M. Yoshida, H. Suzuki, and H. Sawai

4.3 Mobility of Agents

An agent mobility is a function which should be supported in the ATN. Through ATN-
P2P, the agent mobility is realized using the Oneway RPC. The internal state of an
Agent object is sent to the ATNPeer on the destination side using the Oneway RPC, an
Agent with the same ID is generated, the internal state of the original Agent is set, and
then the mobility of an agent is realized. The following method is an example which
moves Agent ag to the Node whose ID is dstPeerId.

void moveAgent(PeerId dstPeerId, Agent ag);

5 Conclusion

5.1 Related Work

In the research of the data-flow network, DataRush [8] which is a simulator with the
framework which can be defined by a user, a language called Stella [9] aiming at the
visualization of a data flow model, and so on have been developed. And in the area
studying P2P networks, there is also a system like p2psim [10] for carrying out the
simulation of the operation of many nodes. Thus, tools for carrying out the simulation
of the network by each area of research exist. Like ATN-P2P, a function required for a
simulation can be treated integratively, and as far as the authors know, , a tool deployable
as a distributed system like an actual P2P network does not exist.

Fig. 5. Example screenshot of the visualizer of ATN



P2P-Based Scalable Execution Platform for Algorithmically Transitive Network 91

5.2 Current Status and Future Work

Currently, the basic design of ATN-P2P has been completed and ATN-P2P is in the
stage where the implementation of the foundation of a framework ended, and it cooper-
ates with a visualizer. Fig. 5 shows the screen sample of the visualizer which is actually
in operation.

In the future, a brush up of the framework, fulfillment of the plug-in function, and
research and development on the function which allocates nodes to physical resources
adaptively using cooperation of ATNMgr(s) are subjects to be tackled.

References

1. Suzuki, H., Ohsaki, H., Sawai, H.: An agent-based neural computational model with
learning. In: Frontiers in Neuroscience, Conference Abstract: Neuroinformatics (2010),
doi:10.3389/conf.fnins.2010.13.00021

2. Suzuki, H., Ohsaki, H., Sawai, H.: Algorithmically Transitive Network: A Self-organizing
Data-flow Network with Learning. In: Suzuki, J., Nakano, T. (eds.) BIONETICS 2010.
LNICST, vol. 87, pp. 59–73. Springer, Heidelberg (2012)

3. Sharp, J.A. (ed.): Data flow computing: Theory and practice. Ablex Publishing Corp., Nor-
wood (1992)

4. The Message Passing Interface (MPI) standard,
http://www.mcs.anl.gov/research/projects/mpi/

5. Yoshida, M., Okuda, T., Teranishi, Y., Harumoto, K., Shimojo, S.: PIAX: A P2P Platform
for Integration of Multi-Overlay and Distributed Agent Mechanisms. IPSJ Journal 49(1),
402–413 (2008)

6. Yoshida, M., Teranishi, Y., Shimojo, S.: A Mechanism of ID/Locator Separation in Overlay
Networks. IPSJ Journal 50(9), 2298–2311 (2009)

7. Gnuplot, http://www.gnuplot.info/
8. DataRush, http://www.pervasivedatarush.com/
9. Stella, http://www.iseesystems.com/softwares/

Education/StellaSoftware.aspx
10. p2psim, http://pdos.csail.mit.edu/p2psim/

http://www.mcs.anl.gov/research/projects/mpi/
http://www.gnuplot.info/
http://www.pervasivedatarush.com/
http://www.iseesystems.com/softwares/Education/StellaSoftware.aspx
http://www.iseesystems.com/softwares/Education/StellaSoftware.aspx
http://pdos.csail.mit.edu/p2psim/

	P2P-Based Scalable Execution Platform for Algorithmically Transitive Network
	Introduction
	Basic Design of ATN-P2P
	Framework and Modularity
	Requirement for P2P Deployment

	Mechanisms for the P2P Platform Simulating the ATN
	Flexible Resource Allocation
	Object Assignment in ATNPeer
	Unified Description for Message Sending
	Concurrency Control of ATN

	Implementation
	Distinctive Feature of PIAX Transport
	Oneway RPC
	Mobility of Agents

	Conclusion
	Related Work
	Current Status and Future Work

	References




