
Self Tolerance by Tuning T-Cell Activation:
An Artificial Immune System

for Anomaly Detection

Mário J. Antunes1,3 and Manuel E. Correia2,3

1 School of Technology and Management, Polytechnic Institute of Leiria,
Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal

mario.antunes@ipleiria.pt
2 Department of Computer Science, Faculty of Science, University of Porto,

Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
mcc@dcc.fc.up.pt

3 Center for Research in Advanced Computing Systems (CRACS), Portugal

Abstract. The Artificial Immune Systems (AIS) constitute an emerg-
ing and very promising area of research that historically have been falling
within two main theoretical immunological schools of thought: those
based on Negative selection (NS) or those inspired on Danger theory
(DT). Despite their inherent strengths and well known promising re-
sults, both deployed AIS have documented difficulties on dealing with
gradual dynamic changes of self behavior through time.

In this paper we propose and describe the development of an AIS
framework for anomaly detection based on a rather different immuno-
logical theory, which is the Grossman’s Tunable Activation Thresholds
(TAT) theory for the behaviour of T-cells. The overall framework has
been tested with artificially generated stochastic data sets based on a
real world phenomena and the results thus obtained have been com-
pared with a non-evolutionary Support Vector Machine (SVM) classifier,
thus demonstrating TAT’s performance and competitiveness for anomaly
detection.

Keywords: Artificial Immune Systems, Tunable Activation Thresholds,
Pattern Recognition, Signal Processing, Support Vector Machine.

1 Introduction

The Vertebrate Immune System (IS) is a complex biological system, conceptually
structured into two main functional layers: innate and adaptive. The anomaly
detection embodied by the IS has to cope with a highly dynamic environment
where the body is constantly being exposed to external agents (pathogens). Thus,
this interaction with the environment results in a distinction between what is
benign or belong to the organism’s own healthy cells and tissues (self ) from what
is harmful and may provoke harm or even motivate a disease (non-self ). In the
majority of cases, pathogens presented to the body correspond to unseen flavours
of normal activity that do not represent any serious danger or are benign [1].
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In the late 19th century, Ehrlich’s started by postulating that the IS “clas-
sifies” pathogens as normal body antigenic components (self antigens) or as
foreign abnormal chemical structures present in microorganisms (non-self anti-
gens). After all these years, immunology continues to be a very vibrant and
active open research area where no one has a definitive answer on how the IS is
able to accomplish its goals in such an efficient and effective way.

One of the mainstream theories for several years, Negative Selection (NS) [2],
assumes that cell activation thresholds have evolved to optimal values and con-
stitute an intrinsic feature of each species. In the early 90’s Matzinger described
her controversial “Danger Theory” immunological theory, which states that the
immune system is activated upon the receipt of molecular signals (danger sig-
nals) which indicate damage or stress to the host, rather than by a self-non-self
distinction as previously postulated by NS [3, 4].

The IS provides a very appealing metaphor for the development of innovative
anomaly detection systems in the form of an Artificial Immune Systems (AIS) [5].
The research in this area is based in principles, mechanisms, models and ob-
served functions of the IS behavior, together with engineering best practices and
methodologies. The most relevant AIS developed so far for anomaly detection
have been based on the NS approach [6] and on the Danger Theory (DT) [4, 7].
In spite of the results achieved, the deployment of AIS based on both theories
to solve real world problems [6, 8] did not yet met the expectations raised by
such appealing metaphors [9] [7]. Firstly, the NS approaches proved to be inap-
propriate for large data sets and have shown to have scaling problems [9, 10].
Secondly, DT approaches have not intrinsic self-tuning mechanisms and require
a great deal of expert knowledge beforehand [7, 8].

The well known best of breed AIS are all based on well reasoned immunolog-
ical metaphors. However, the lack of research into their real biological foun-
dations has led to well known criticism for biologically-inspired engineering
approaches [11,12]. As an example, consider an ideal anomaly detector. It should
be ready to act on a continuous changing environment and it should adapt it-
self throughout time to tolerate unseen and untrained forms of normal behavior,
thus discriminating ongoing not yet seen anomalies. Such immune-inspired prop-
erties that mimic this self-non-self discrimination behavior are essential for the
deployment of bio-inspired anomaly detectors within dynamic environments.

In this paper we present a generic AIS framework for anomaly detection, based
on a simplified Tunable Activation Threshold (TAT) model, strongly inspired on
Grossman’s hypothesis [13]. TAT assumes that immune cells (like T-cells) tune
their activation thresholds by dynamically updating the levels of two particular
enzymes (Kynase and Phosphatase), whose values reflect the recent temporal
history of signaling they have been receiving from the environment.

We start by defining a TAT model for T-cells (Section 2) and proceed into Sec-
tion 3 by presenting the framework and its main building blocks. This is followed
by showing and discussing the results obtained with stochastically generated,
but real world based, data sets. A comparison is made with the non-evolutionary
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classifier Support Vector Machine (SVM) (Sections 4 and 5). Finally, in Section 6
we delineate some conclusions for our work.

2 The TAT Model Adopted

The Grossman’s TAT conceptual framework hypothesizes that immune cell ac-
tivation depends on a dynamically adjusted threshold, which corresponds to the
balance between excitation and de-excitation signalling pathways [14]. The acti-
vation process is controlled by the activity of two specific enzymes that respond
to antigenic signals (S): Kinase (K) phosphorilates molecules that “excite“ the
cell and Phosphatase (P ) that dephosphorilates them, returning the cell to a
de-excitation state. The signals are delivered by a particular immune cell named
Antigen Presenting Cell (APC).

It is also assumed that T-cell activation is a switch-type response that requires
that K supersedes P , at least transiently. At each point in time, T-lymphocytes
(T-cells) interact with the peptides presented by APC and receive a stimulus that
depends on the affinity between its receptor and the peptide ligand, causing the
cell to adapt by increasing or decreasing its activation threshold. Also, the de-
excitation level is assumed to be intrinsically slow, thus allowing the outcome of
a stimulus to depend mainly on the excitation index. Thus, foreign antigens will
cause a very fast increase in the cells excitation level, whereas tissue-specific self-
ligands will induce a much slower increase excitation level. Accordingly, since the
de-excitation levels are kept above the excitation ones, it is possible to maintain
tolerance to self for extended periods of time [15]. Within this model, different
cells with different antigen-specificity end up having different activation thresh-
olds as they are exposed to different stimuli.

2.1 TAT Dynamics

We have adopted a minimal mathematical model of TAT for T-cells [16], which
is also derived from Grossman’s hypothesis. Keeping the original Grossman’s
fundamental thoughts about self regulation and cellular activation, we made the
following simplifications:

• both K and P are exposed to the same stimulus S;
• P ’s basal value (P0) is higher than K’s (K0);
• S0 is the initial value for S;
• K’s turnover rate (τK) is lower than P ’s (τP);
• K’s slope (φK) is higher than φP ’s;
• the IS’s speed of response is given by a constant value (t);

We also derived the following values:

• K0 = S0 · τK and P0 = S0 · τP;
• τK = τ · τP , with τ = τK

τP ;
• φP = φ · φK, with φ = φP

φK ;
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Fig. 1. TAT dynamics of two individual T-cells in the AIS repertoire. 1(a): the cell is
exposed to a recurrent stimuli, like tissue-specific self ligands.1(b): the cell receives an
intermittent and strong signal which leads to repeated events of activation.

Figure 1 depicts the TAT activity of two T-cells. S corresponds to a linear
increase of both K and P activities until the turnover rate is reached. T-cell
activation only occurs if K is higher than P . For a recurrent signal S, K will
be transiently higher than P and, if the signal persists P will exceed K and the
cell will become inactive. Similarly, on signaling absence, K returns to the initial
level at a faster rate than P .

2.2 Signaling Model

In such a model, at each given moment in time, the stimulation history of a T-cell
is reflected in the activity of K and P . The signal S sent by the APC to a T-cell
is a function of the affinity between the corresponding T-cell Receptor (TCR)
and the ligand times the concentration of that peptide in the APC. To give
strength to the temporal meaning of the TAT dynamics, S is calculated in a per
APC in the lifespan (LS) basis, as shown in Algorithm 1.

The values of K and P of each cell repertoire are updated linearly based
on the combined signal of all the ligands presented by each APC, as described
in Algorithm 2. The use of a linear update of such values gave simplicity to
the model, being at the same time in accordance with the Grossman’s derived
model depicted in [16]. In short, in the presence of a signal (S > 0), K and P
increase till reach its corresponding maximum values (τK and τP ). Otherwise,
they decrease gradually till the basal values (K0 = S0 · τK and P0 = S0 · τP ).
The growth and decline rates are different for both K and P , which leads to
episodes of cell activation when K becomes higher that P .

Grossman also postulated that an immunological response to an APC is usu-
ally not initiated by an individual activated cell, being instead initiated by a
population clones of activated cells. Thus, on an APC processing, an immune
response is initiated if the ratio of the population size of activated cells and
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Algorithm 1. Signalling model adopted
Input: Lpep = List of peptides presented by an APC
Input: Ltcell = T-cell Repertoire
Output: S = signal sent for each t-cell in the repertoire

1 forall the tcell in Ltcell do

2 forall the peptide in APC’s Lifespan (including those in Lpep) do
3 a = distance(peptide, tcell)
4 c = occurrences of peptide in the APC lifespan
5 S+ = Σ(c · a)
6 end

7 end

Algorithm 2. Update of K and P for a T-cell, based on a received signal
Input: S = Stimuli received by a T-cell (calculated in Algorithm 1)
Input: t = Real value corresponding to the speed of response of the system
Output: Updated values for K and P

1 if (S + S0) · τK) > K then
2 K ←MIN((S + S0) · τK,K+ = φK · t)
3 end
4 else
5 K ←MAX((S + S0) · τK,K− = φK · t)
6 end

7 if (S + S0) ∗ τP ) > P then
8 P ←MIN((S + S0) · τP, P+ = φP · t)
9 end

10 else
11 P ←MAX((S + S0) · τP, P− = φP · t)
12 end

those that were bound exceeds a threshold. This thus implies that an immune
response depends always on the decision of a group of cells (committee), instead
of an individual one [16].

3 The TAT Based Framework

A generic AIS framework can be divided into three main functional layers [5]:
a data representation (Section 3.2), an affinity measure distance between the
immune cells receptors and the peptide ligand (Section 3.2) and, finally, an
immune-inspired algorithm that maps the system components with the relevant
biological IS counterparts (Section 3.4). In what follows we describe in some
detail the core building blocks of the TAT-AIS framework, depicted in Figure 2.



6 M.J. Antunes and M.E. Correia

Training
Datasets

LHC
Sampling

Parameters
sets

Create
PEPTIDES

Create
 APC

Generate
events

Dataset generator

Testing
Datasets

Optimised
Parameters

set

T-cell
Repertoire

1

2

3

4

5

TRAINING
PHASE

TESTING
PHASE

PERFORMANCE
ANALYSIS

Fig. 2. Building blocks of the TAT-based AIS

Our system is composed by the following three main components: an artifi-
cial data set generator, a parameter set sensitivity analysis module and a TAT
simulator that implements the TAT model previously described, for processing
both training and testing data sets.

The adopted methodology is described as follows. Firstly, using the data set
generator we produce the training and testing data sets according to the pro-
cedure described in Section 3.2. Then we obtain a set of parameters using an
Latin Hypercube (LHC) based sampling method [17] (Section 3.3). Each one of
these parameter set is then evaluated against the training data sets in order to
obtain an optimised parameters set and a list of trained detectors (T-cells) that
are finally confronted with a group of testing data sets, in order to analyse their
behaviour and its performance compared with other competing classifiers.

3.1 The TAT Operation

The TAT simulator requires training, which is comprised by two different steps.
Firstly, we have split the training data set into two sub-data sets: one that is
used for training TAT with normal examples and the other containing a mixture
of randomly interleaved known normal and abnormal examples. We then run
the TAT simulator with the normal examples to obtain a list of self T-cells
that converge to a “P higher than K“ state. Finally we load the obtained T-cell
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repertoire and process the second sub-set. During this phase TAT creates the T-
cells responsible for the detection of abnormal patterns. The resulting repertoire
is then loaded into the system for further processing the testing data set .

3.2 Data Representation

The most relevant immunological players involved in the TAT model and suit-
able to be represented in the artificial framework are peptide ligand, TCR and
APC. Generally speaking, from a machine learning point of view, both peptide
ligand and TCR are patterns and can be represented by strings that bound to
each other by some affinity measure. APC can thus be seen as a list of char-
acters (peptides) representing a behavior (normal or abnormal). Also, APC are
ordered sequentially and tagged into two distinct classes (“Normal” or “Alert”)
for evaluation purposes.

The reason behind the development and deployment of an artificial data set
generator was two-fold. Firstly, we intended to generate simple and easy to un-
derstand artificial data sets with which we could test the model and compare the
results with other classifiers. Secondly, although being simple, we would like the
data sets to be based, as much as possible, on real world phenomena for anomaly
detection purposes. We have thus decided to use the spam Enron data sets [18]
and identify some of its main characteristics and use them for artificial data set
generation. The Enron preprocessed data sets have six personal mailboxes made
public after the Enron scandal. The ham mailboxes belong to six employees and
combinations of five spam data sets were added to the ham data, coming from
different sources [18, 19]. Table 1 describes the distribution of ham and spam
words (average values), considering all the spam and ham messages available for
each mailbox and an identical size for training and testing data sets.

Table 1. Analysis of Enron spam data sets

Data set Words Occurrences Messages Words/Msg. Weight
Ham Training 954 74497 920 78.09 1.81
Ham Testing 140 6906 1838 49.22 1.14

Spam Training 164 7098 954 43.24 1
Spam Testing 117 6114 1907 53.34 1.21

From the Table 1 it is possible to identify the average amount of words in each
example of the listed data sets (column Words/Msg), as well as the proportional
relation of each data set with the data set that has the lowest ratio of words
per message (column Weight). For instance, the ham training data set has 954
different words that appears 74497 times in the 920 messages. Thus, the average
of words per message in the ham training data set is about 78. Comparing to
the data set with the lowest ratio (spam training), the proportional relation is
1.81. To generate the artificial data sets we defined a symbol set of length 8
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for the spam training data set (the one with the lowest ratio) and built the
three remaining data sets according to these proportional weights. Thus, the
symbols sets lengths are 14 (corresponding approximately to 8 times 1.81), 9 (8
times 1.14) and 10 (8 times 1.21), respectively for ham training, ham testing and
spam testing. The Table 2 depicts the symbols sets used to generate the artificial
data sets, based on the analysis described previously.

Table 2. Alphabet used to create the peptides

Symbols Data sets Tag
a b c d e f g h i j k l m n Training,Testing Normal
A B C D E F G H I Testing Normal
1 2 3 4 5 6 7 8 Training,Testing Alert
+ - . _ : ; ? ! = $ Testing Alert

In the data sets described above, both peptide ligand and TCR are represented
by one character and an APC corresponds to a list of characters. The affinity
metric adopted to measure the distance between both peptide ligand and TCR
is the character match (one if equal and zero otherwise). This strategy seemed
appropriate to calculate the affinity between strings of just one character, which
in some way represents words of the email messages. Also, an APC tagged as
normal has all the peptides produced with symbols picked randomly from the
“Normal” alphabets symbols. On the other hand, an APC is labelled as alert if
it has at least one peptide belonging to an “Alert” alphabet symbol.

The data sets generation took into count two crucial parameters: the number
of peptide ligand (characters) per APC, which varies along the data set and the
number and time of occurrence of events for each class (“Normal” and “Alert”).
The values for these two parameters were also randomly generated for each
data set. The following main features could then be observed in the artificially
generated data sets:

• patterns representative of normal behavior appear recurrently, while abnor-
mal ones appear sporadically;

• in the testing phase new unseen patterns representative of normal behavior
start appearing recurrently;

• also in the testing phase, new unseen patterns representative of abnormal
behavior appears sporadically;

• finally, new unseen anomalies are propagated by the conjunction of both
known and unknown patterns, representative of abnormal behavior.

An example of normal and alert APC looks like the following:

apc:38:NORMAL: o d n j i m d h p k c k f l b i c l n k i a a k

apc:39:ALERT: m c 3 3 6 i g n n 6 2 h 6 b e g o j 2 8 f 1 i d 7 p h 2
7 b m a
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For the experiments detailed in Section 4 we generated APC with a maximum
of 200 peptides. The training data set is composed by 2000 APC sequentially
ordered, being the first 75% representative of normal behavior and the remaining
related to known abnormal examples. The testing data set is twice the size of
the training (4000 APC).

3.3 Parameters set Optimisation

The T-cells’ TAT dynamics is based on the parameters described on Table 3.

Table 3. Parameters set

Parameter Range Description Type
τ [0; 1] K and P turnover rate, τP

τK
Optimised

φ [0; 1] K and P slopes rate, φK
φP

Optimised

t [10; 100] Speed of adaptation and response for the IS Optimised
LS [10; 100] Number of APC in the lifespan Optimised
CS [10; 100] T-cell maximum clonal size Optimised
Ct [0.00001, 0.8] Committee threshold. Run time
i update factor to increase/decrease the T-cell CS Fixed=2

S0 Initial signal Fixed=2
CS0 Initial clonal size Fixed=2

a Affinity distance between T-cells and peptides Fixed=1

We used a hybrid approach to choose a sufficiently good performant parameter
set. Firstly, we have listed all the parameters related to the TAT dynamics
(Section 3.5) and its corresponding ranges. Then, we generated an LHC sampling
for the following parameters: τ , φ, t, LS and CS. LHC sampling is a statistical
method developed to generate a distribution of collections of parameter values
from a multidimensional distribution [17]. For our case we sampled the five
parameters into 40 equally probable intervals.

Our model is also evolutionary. So, we defined that Ct will be updated in the
testing phase by using a feedback mechanism described in Section 3.6. Ct starts
with a fixed value (Ct = 0.1) and, as long as the system is having a too high
or too low rate of alerts, this parameter increases or decreases accordingly in a
gradual way.

Finally, using the combinations calculated by the LHC sampling method and
the defined fixed parameters, we run a 10-fold training data set and then cal-
culate the average of the F1-Measure thus obtained. This measure is a score of
accuracy that considers both the precision p and the recall r, being calculated by
F1 = 2 · precision·recall

precision+recall [20].



10 M.J. Antunes and M.E. Correia

At the end of the 10-fold training process we obtain a good LHC’s candidate
multidimensional “square”, that corresponds to the parameters set with which
we obtained the best performance thus far. Depending on the accuracy level, the
sampling process can be recursively repeated with an even more strict hypercube,
to try to obtain an even more refined parameter set of values that can produce
better results.

3.4 General Algorithm

The algorithm 3 describes the TAT processing of each APC. It receives a list of
peptides (Lpep) and the up to date list of T-cells (Ltcell) with its corresponding
K and P values.

At each given moment, each T-cell will be stimulated with a signal that corre-
sponds to the sum of signals sent by each affinity-specific peptide. If there is not
a T-cell that bounds with a peptide, then a new one is created with the TCR
being the string representative of the peptide ligand. After processing all the
peptides of the APC, the system calculates the amount of clonal size for both
bound and active T-cell. If the ratio between both values is above a threshold
(Ct), then the system raise an alarm and increases the clonal size of all the
activated cells. Otherwise, the clonal size is decreased (Section 3.5).

3.5 Clonal Size Update Procedure

In our model the clonal size (CS) of each cell corresponds to an integer that
varies between an initial value (CS0) and a maximum (CSmax). The clonal
size update procedure in each processing phase is depicted in Table 4. We also
introduced the meaning of committee as being the clones population of cells that
bound with a certain specificity the peptides ligand presented by an APC.

In each processing phase, the decision rule is thus based on the ratio between
the cells of the committee that are activated and those that simply bond with
the peptide ligand but remains quiescent. In the training phase, the learning
procedure is supervised and the clonal size of activated T-cells (K > P ) in-
creases if the committee decided in favor to trigger a response. Otherwise, the
CS decreases. The testing phase is unsupervised and the clonal size update is
based on the APC classification made by the system in each moment. In general,
this CS update mechanism allow that sporadically activated T-cells converge to
a maximum value (CSmax) and the recurrently stimulated (but not activated)
ones may have a clonal size near CS0. For the sake of simplicity the following
assumptions was made: the increment factor is fixed, i = 2 and CS update is
made linearly (CS ± = i)

3.6 Feedback Control Mechanism

The evolutionary tuning of committee threshold is as follow: Ct starts with a
predefined value (Table 3). Then, in each APC processing, if the number of
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Algorithm 3. General TAT algorithm
Input: Ltcell = T-cell Repertoire
Input: Lpep = List of peptides presented by an APC
Input: At = Affinity Threshold
Input: Ct= Committee Threshold
Output: Classification of the artificial APC: Normal or Alert

1 Tbind = ()
2 Tactive = ()
3 CSbind = 0
4 CSactive = 0

5 forall the tcell in Ltcell do
6 S = 0
7 forall the UNIQUE(peptide) in Lpep do
8 a = distance(peptide, tcell)
9 c = occurrence of peptide ligand in the APC lifespan

10 if a >= At then
11 S+ = Σ(c · a)
12 ADD(Tbind, tcell)

13 end
14 end
15 UpdateTCell(t,S) (according to Algorithm 2)
16 end

17 forall the tcell in Tbind do
18 if K >= P then
19 ADD(Tactive, tcell)
20 end
21 end

22 CSactive = ΣClonalSize(Tactive)
23 CSbind = ΣClonalSize(Tbind)

24 Status = Normal
25 if CSactive/(CSbind+CSactive) >= Ct then
26 Status = Anomaly
27 end
28 ReportStatus()
29 UpdateClonalSize(Status) according to the procedure described on Section 3.5

triggers observed so far exceeds a preliminary threshold, then the value for Ct
is incremented. Otherwise, if there is no trigger during a long period, the Ct
decreases. The number of acceptable triggers and the values used to increase or
decrease the parameter Ct should be domain-dependent. In the experiments we
defined 10% as being an acceptable value for the alerts. We imposed that Ct
should vary between 0.00001 and 0.8 and its value depends on the observations
made to the system in run time.
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Table 4. Clonal size update process

Normal Known Alerts Testing
K>P P>K K>P P>K K>P P>K

Supervised
Tag=”NORMAL“ ↗ ↘ ↘ ↘
Tag=”ALERT“ ↗ ↘
Unsupervised
Trigger an alert ↗ ↘
Silent mode ↘ ↘

4 Experimental Evaluation and Results

Our working hypothesis is that the deployed TAT based model can be able to
recognise new unseen patterns and also to further distinguish between those that
are considered self from others included in APC related to abnormal activities
and should be identified as non-self. In order to validate our model we compared
the results obtained with a non-evolutionary SVM classifier.

For both TAT and SVM algorithms we used the following methodology. Firstly,
we trained the system with a 10-fold training data set. Then we manage to
process the testing phase with ten different data-sets. Finally we evaluate the
performance obtained by each detection algorithm.

4.1 TAT Parameters

We run the parameters optimisation methodology described in Section 3.3 and
obtained the parameters set listed on Table 5. The table shows the performance
obtained during the training phase (average of the 10-fold training processing)
considering the affinity as being the full match of each TCR with each peptide
ligand presented in the APC.

Table 5. The parameters set with the best performance during the training phase

τ φ T LS CS Ct Accuracy Precision Recall F1
0.78758 0.25646 25 99 24 0.1 0.98 1.00 0.92 0.96

4.2 Results

Table 6 depicts the results obtained with both TAT and SVM implementations.
The table clearly shows the performance obtained for accuracy, precision, recall
and F1 score for both TAT and SVM processing.
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Table 6. Results obtained with TAT and SVM processing

TAT SVM
Dataset Precision Recall F1 Precision Recall F1

1 0.98 0.75 0.85 1.0 0.72 0.84
2 0.98 0.67 0.8 1.0 0.73 0.84
3 0.99 0.75 0.85 1.0 0.75 0.85
4 0.98 0.76 0.86 1.0 0.71 0.83
5 0.99 0.78 0.87 1.0 0.73 0.85
6 0.97 0.76 0.86 1.0 0.74 0.85
7 0.96 0.85 0.9 1.0 0.72 0.84
8 1.00 0.70 0.82 1.0 0.71 0.83
9 0.98 0.72 0.83 1.0 0.67 0.80
10 0.97 0.77 0.86 1.0 0.76 0.86

Mean 0.98 0.75 0.850 1.0 0.72 0.839

5 Discussion

We have observed that TAT-AIS has interesting properties for anomaly detec-
tion, provided the following basic generic requirements are true: normal behavior
is frequent and abnormal behavior is sporadic in time. By frequent we mean a
pattern that repeatedly stimulates a set of T-Cells that through time, by the
TAT dynamics, stabilizes its enzymatic values (P > K). On the other hand, by
sporadic we mean a pattern that stimulates intermittently a set of T-Cells with
such a signal that implies its activation (K > P ).

Our aim was to validate the appropriateness of using TAT to detect new
previously unseen patterns and also to distinguish them between those that cor-
respond to unseen “normal” and “abnormal” behaviors. We have also compared
the results obtained with a non-evolutionary SVM classifier. The results show the
competitiveness of TAT when comparing it with SVM. The F1-measure varies
between 80% and 90% in TAT. In SVM the results are in the range of 80%
and 86%. In general SVM has no false positives (Precision=100%) but not all
the new alerts are correctly identified. On the other hand, TAT has some false
positives (mean of Precision is 98%) but the recall is slightly higher than the
SVM.

The performance advantage obtained with TAT-AIS is very tiny, when com-
pared with the non-evolutionary SVM classifier. However, based on these em-
pirical results, we believe that our model can compete with other approaches on
the self-non-self distinction for dynamic environments that tend to change grad-
ually throughout time their normality behavior profile. In this paper we were
not aware with the performance of the speed of classification. However, in these
experiments we observed similar execution times with both models.
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6 Conclusions

In this paper we have presented a generic TAT-based AIS framework for anomaly
detection and described its main architectural components. We have also pre-
sented some results obtained with artificially generated data sets of predefined
patterns resulting from normal and abnormal behaviors. Also, we have compared
the TAT performance with a non-evolutionary SVM classifier.

The results thus obtained with the AIS are very satisfactory, achieving a high
rate of detection and a low level of false positives on the stochastic data sets we
have produced.

We are well aware that these stochastic data sets were artificially generated
and are most certainly not completely representative of real world phenomenons
like the data sets we could obtain with email spam collections. We have however
already obtained some preliminary good results with this TAT-based framework,
applied both to more complex stochastically generated data sets [21], as well as
to network intrusions detection with real network traffic [22]. The research done
so far give us confidence on the use of TAT based AIS framework to imple-
ment behavior based anomaly detection systems, where the temporal meaning
of events is relevant, like spam and intrusion detection. The ongoing research
is now on using the model and the framework presented to process the original
Enron spam data sets and to compare its performance with the SVM classifier.
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