
V.V. Das, E. Ariwa, and S.B. Rahayu (Eds.): SPIT 2011, LNICST 62, pp. 29–33, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Solving Classification and Curve Fitting Problems
Using Grammatical Evolution

Passent M. El-Kafrawy

Department of Mathematics, Faculty of Science, Menoufia University, Egypt
passentmk@gmail.com

Abstract. Grammatical Evolution is related to the idea of genetic programming
in that the objective is to find an executable program or function. GE offers a
solution by evolving solutions according to a user specified grammar (Backus-
Naur Form). In this paper GE is used to construct a classifier for some well
known datasets. and curve fitting problems without the need to assume the
equation shape.

Keywords: Classification, Curve fitting, Grammatical Evolution, Computational
methods, Least Squares error, Backus-Naur Form.

1 Introduction

Grammatical Evolution (GE) is an extension of genetic programming in that it is an
algorithm for evolving complete programs in an arbitrary language. Classification is
one of the most researched questions in machine learning and data mining. The
learning process in classification consists of predicting the value of the outputs from
the value of the inputs as a supervised technique [12]. The goal of the classification
algorithm is to find relationships between the values of the predictors and the values
of the target. Different classification algorithms are employed whereas all of them
represent the problem as a model, which can then be applied to different input sets in
which the class assignments are unknown. The goal of regression is to find the line or
curve that best predicts the values of dependent value of (Y) from the value of
independent values of (X). Regression does this by finding the line or curve that
minimizes the sum of the squares of the vertical distances of the points from the line
or curve. Although regression technique has no understanding of the scientific context
of the experiment that brings the data but it is useful in some situations when a
smooth curve is required, without the need for a model. In regression techniques, the
curve's equation has to be predefined to find the equation's parameters, [3]. Least-
Squares is a well-known curve fitting method for a long time. The Least Squares
method minimizes the square of the error between the original data and the values
predicted by the equation. While this technique may not be the most statistically
robust method of fitting a function to a data set, it has the advantage of being
relatively simple and of being well understood. The major weakness of the Least
Square method is its sensitivity to outliers in the data. For this reason, the data should
always be examined for reasonableness before fitting, [5, 11]. The method of least
squares assumes that the best-fit curve of a given type is the curve that has the

30 P.M. El-Kafrawy

minimal sum of the deviations squared (least square error) from a given set of data
[5]. Suppose that the data points are (x1, y1), (x2, y2) … (xn, yn) where x is the
independent variable and y is the dependent variable. The fitting curve f(x) has the
deviation (error) d from each data point, d1 = y1 – f(x1), d2 = y2 – f(x2)…dn = yn–
f(xn). According to the least squares method, best fitting curve has the property that:

The goal of this paper is to use Grammatical Evolution to develop models of
equations for curve fitting and classification. In Section 2 we introduced Grammatical
Evolution and its methodology. In section 3 we presented solution of some curve
fitting problems using Grammatical Evolution. Section 4 presents a solution for
classification using GE, and finally in section 5 conclusions and some future work.

2 Grammatical Evolution

By utilizing a Backus Naur Form (B.N.F) grammar the advantages of defining the
problem is achieved as well as a separation of genotype and phenotype, [9, 10].In
Grammatical Evolution a Backus Naur Form (B.N.F) grammar is used to map the
genotype to the phenotype. A separation of genotype and phenotype allows the
implementation of various operators (for instance by crossover and mutation).
The genotype in Grammatical Evolution is a sequence of bits, [9]. Grammatical
Evolution presents a unique way of using grammar in the process of automatic
programming, [7]. Variable length binary string genomes are used with each codon
presenting an integer value where codons are consecutive groups of 8-bits. The
integer values are used in a mapping function to select an appropriate production rule
from the B.N.F. definition, the numbers generated always representing one of the
rules that can be used at that time, [4, 7, 8]. To solve any problem using GE, a suitable
B.N.F. definition must first be developed, [7, 8].

A Backus Naur Form (B.N.F) Grammar

B.N.F is a notation for expressing the grammar of a language in the form of
production rules, [1, 4, 7]. A grammar can be represented by the tuple {N,T,P,S},
where N is the set of non-terminals, T the set of terminals , P is a set of production
rules that maps the elements of N to T, and S is a start symbol that is a member of N.
In a production rule, when there is a number of productions that can be applied to one
particular N, the choice is delimited with the '|' symbol. In GE, the B.N.F. definition
is used to describe the output language that is to be produced by the system, i.e. the
compilable code produced will consist of elements of the terminal set T. The B.N.F. is
a plug in component of the system, it means that GE can produce code in any
language there by giving the system a unique flexibility, [7].

B Grammatical Evolution Methodology

GE is an automatic programming system similar to genetic programming (GP), in that
it uses an evolutionary process to automatically generate computer programs. GE uses

 Solving Classification and Curve Fitting Problems 31

a population of linear genotypic binary strings, which are transformed into functional
phenotypic programs, through a genotype-to-phenotype mapping process. This
transformation is governed through the use of a B.N.F. grammar [6]. GE methodology
consists of two important parts. The first part is mapping process and the second part
is evolution algorithm that is described in the following two subsections. In the GE
mapping process the genotype maps the start symbol onto terminals by reading codon
of 8 bits to generate a corresponding integer from which an appropriate production
rule is selected by using the following mapping function, [1, 4, 6, 7, 8, 9]. Rule =
(codon integer value) MOD (number of rules for the current non-terminal). The
evolutionary algorithm evolves over the population that comprises a simple binary
strings. We do not have to employ any special crossover or mutation operators and an
unconstrained search is performed on these strings due to the genotype-to-phenotype
mapping process that will generate syntactically correct individuals. The Evolutionary
Algorithm (EA) adopted in this case is a variable-length genetic algorithm. Individual
initialization is achieved by randomly generating variable-length binary strings within
a pre-specified range of codons, [7].

3 Curve Fitting and Grammatical Evolution

B.N.F. for curve fitting problem is
<prog> ::= <expr>
<expr> ::= (<expr> <op> <expr>) | <protected-op> | <pre-op>|<digit> | <var>
<op> ::= -| + | * <protected-op> ::= div(<expr>, <expr>)
<pre-op> ::= sin | cos | log | exp <var> ::= x
<digit> :: = -1 | -2 | -3 | -4 | -5 | -6 | -7 | -8 | -9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |7 |8 | 9

Example 1

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y 0 0.3 0.4 0.55 0.63 0.71 0.77 0.84 0.89 0.95 1

Figure 1. show the graphical drawing of the curves in every generation and figure 2.
show the graphical drawing of the best curve of best function that produced from GE.

Fig. 1. Graphical drawing of curves in
generations

Fig. 2. Graphical drawing of the best curve

32 P.M. El-Kafrawy

Example 2

x -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2
y 0 0 0 0.05 0.3 0.57 0.3 0.05 0 0 0

Figure 3. is a graphical representation of the curves in every generation and figure 4.
presents the best curve of the best function that is produced from GE.

 -0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-3 -2 -1 0 1 2 3

y

Result

Fig. 3. Graphical drawing of curves in
generation

Fig. 4. Graphical drawing of the best curve

4 Classification with GE

The goal of classification is to take an input vector X and assigns it to one of K discrete classes
Ck where k=1, 2, 3,…, K, [3, 8]. In our methodology we try to find a mathematical formula that
defines a classifier for a problem. Suppose that we need to convert a class name or label to class
value. For example, if the problem contains three classes (A, B, and C) we replace them with
(1, 2, and 3) to use in the mathematical function. In the next step, we will define each record in
the data set by real number, like (2.002) the integer value (2) refers to a class number and the
fractional number (002) refers to the record number representing this class. By this method we
can convert the class labels to class values.

x1 x2 x3 Class name Class value
0 2 3 A 1.001
1 1 1 A 1.002
0 3 2 B 2.001
2 4 5 B 2.002

The following B.N.F. grammar is used for extracting the mathematical function.
 <prog> ::= <expr>
 <expr> ::= (<expr><op><expr>) | <protected-op> | <pre-op>|<digit> | <var>
 <op> ::= -| + | * <protected-op> ::= div(<expr>, <expr>)
 <pre-op> ::= sin | cos | log | exp <var> ::= x1|x2|x3
 <digit> :: = -1 | -2 | -3 | -4 | -5 | -6 | -7 | -8 | -9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Note; <var> defined by the attributes from classification problem.

Table 1. Comparing the proposed algorithm with other well known classification algorithms

Datasets Proposed Simple BaysNB Logitboost NB Bayesian Net
Iris 78.70% 95.53% 94.87% 93.20%

Monk1 100.00% 73.38% 85.33% 73.46%
Monk2 70.60% 56.83% 59.92% 56.78%
Monk3 80.56% 93.45% 91.87% 93.45%

Haberman 72.88% 75.06% 71.48% 71.57%

 Solving Classification and Curve Fitting Problems 33

The results shows that GE achieved higher accuracy in Monk1 and Monk2 and the
other algorithms achieved higher in Monk3, Iris, and Haberman because they have a
large number of attributes and thus the training process takes time. Also, The data in
Monk3 is not filtered, whereas, Monk1 is filtered so that the accuracy reached 100

5 Conclusion and Future Work

In this paper we used Grammatical Evolution (GE) to solve curve fitting problems.
Grammatical Evolution successes in solving curve fitting problems. Moreover, this
paper proposed a method for the classification problem. We used grammatical
evolution (GE) to extract a mathematical formula to define a classifier. This method
succeeds in many problems but it takes long time in the training process when the
problem contains a large number of attributes. In future work we would try to
decrease the training time by using a parallel technique. In future we can benefit from
this idea to solve different problems by Grammatical Evolution.

References

1. Cetinkaya, A.: Regular Expression Generation through Grammatical Evolution. In:
GECCO 2007, London, England, United Kingdom, July 7-11, pp. 2643–2646 (2007)

2. Elseth, G., Baumgardner, K.: Principles of Modern Genetics. West, St. Paul (1995)
3. Kamal, H.A., Eassa, M.H.: Solving Curve Fitting problems using Genetic Programming.

In: IEEE MELECON 2002, Cairo, Egypt, May 7-9, pp. 316–321 (2002)
4. Dempsey, I., O’Neill, M., Brabazon, A.: Foundations in Grammatical Evolution for

Dynamic Environments. Springer, Heidelberg (2009)
5. Wolberg, J.: Data Analysis Using the Method of Least Squares. Springer (2006)
6. Nicolau, M., Dempsey, I.: Introducing Grammar Based Extensions for Grammatical

Evolution. In: 2006 IEEE Congress on Evolutionary Computation Sheraton Vancouver
Wall Centre Hotel, Vancouver, BC, Canada, July 16-21, pp. 648–655 (2006)

7. O’Neill, M., Ryan, C.: Grammatical Evolution. IEEE Transactions on Evolutionary
Computation 5(4), 349–358 (2001)

8. O’Neill, M., Ryan, C.: Under the hood of Grammatical Evolution. In: Banzhaf, W., Daida,
J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of
the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, July13-17,
vol. 2, pp. 1143–1148. Morgan Kaufmann (1999)

9. Harper, R., Blair, A.: Dynamically Defined Functions In Grammatical Evolution. In: 2006
IEEE Congress on Evolutionary Computation Sheraton Vancouver Wall Centre Hotel,
Vancouver, BC, Canada, July 16-21, pp. 2638–2645 (2006)

10. Matousek, R.: Grammatical Evolution: STE criterion in Symbolic Regression Task. In:
Proceedings of the World Congress on Engineering and Computer Science, WCECS 2009,
San Francisco, USA, October 20-22, vol. II (2009)

11. Kolb, W.M.: Curve Fitting for programmable Calculators. IMTEC in Bowie, Md. (1983)
12. Espejo, P.G., Ventura, S., Herrera, F.: A Survey on the Application of Genetic Programming

to Classification. IEEE Transactions on Systems, Man, and Cybernetics—Part C:
Applications and Reviews 40(2), 121–144 (2010)

	Solving Classification and Curve Fitting Problems Using Grammatical Evolution
	Introduction
	Grammatical Evolution
	Curve Fitting and Grammatical Evolution
	Classification with GE
	Conclusion and Future Work
	References

