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Abstract. Grammatical Evolution is related to the idea of genetic programming 
in that the objective is to find an executable program or function. GE offers a 
solution by evolving solutions according to a user specified grammar (Backus-
Naur Form). In this paper GE is used to construct a classifier for some well 
known datasets. and curve fitting problems without the need to assume the 
equation shape.  
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1 Introduction 

Grammatical Evolution (GE) is an extension of genetic programming in that it is an 
algorithm for evolving complete programs in an arbitrary language. Classification is 
one of the most researched questions in machine learning and data mining. The 
learning process in classification consists of predicting the value of the outputs from 
the value of the inputs as a supervised technique [12]. The goal of the classification 
algorithm is to find relationships between the values of the predictors and the values 
of the target. Different classification algorithms are employed whereas all of them 
represent the problem as a model, which can then be applied to different input sets in 
which the class assignments are unknown. The goal of regression is to find the line or 
curve that best predicts the values of dependent value of (Y) from the value of 
independent values of (X). Regression does this by finding the line or curve that 
minimizes the sum of the squares of the vertical distances of the points from the line 
or curve. Although regression technique has no understanding of the scientific context 
of the experiment that brings the data but it is useful in some situations when a 
smooth curve is required, without the need for a model. In regression techniques, the 
curve's equation has to be predefined to find the equation's parameters, [3]. Least-
Squares is a well-known curve fitting method for a long time. The Least Squares 
method minimizes the square of the error between the original data and the values 
predicted by the equation. While this technique may not be the most statistically 
robust method of fitting a function to a data set, it has the advantage of being 
relatively simple and of being well understood. The major weakness of the Least 
Square method is its sensitivity to outliers in the data. For this reason, the data should 
always be examined for reasonableness before fitting, [5, 11]. The method of least 
squares assumes that the best-fit curve of a given type is the curve that has the 
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minimal sum of the deviations squared (least square error) from a given set of data 
[5]. Suppose that the data points are (x1, y1), (x2, y2) … (xn, yn) where x is the 
independent variable and y is the dependent variable. The fitting curve f(x) has the 
deviation (error) d from each data point, d1 = y1 – f(x1), d2 = y2 – f(x2)…dn = yn– 
f(xn). According to the least squares method, best fitting curve has the property that:  

 

The goal of this paper is to use Grammatical Evolution to develop models of 
equations for curve fitting and classification. In Section 2 we introduced Grammatical 
Evolution and its methodology. In section 3 we presented solution of some curve 
fitting problems using Grammatical Evolution. Section 4 presents a solution for 
classification using GE, and finally in section 5 conclusions and some future work. 

2 Grammatical Evolution 

By utilizing a Backus Naur Form (B.N.F) grammar the advantages of defining the 
problem is achieved as well as a separation of genotype and phenotype, [9, 10].In 
Grammatical Evolution a Backus Naur Form (B.N.F) grammar is used to map the 
genotype to the phenotype. A separation of genotype and phenotype allows the 
implementation of various operators (for instance by crossover and mutation).  
The genotype in Grammatical Evolution is a sequence of bits, [9]. Grammatical 
Evolution presents a unique way of using grammar in the process of automatic 
programming, [7]. Variable length binary string genomes are used with each codon 
presenting an integer value where codons are consecutive groups of 8-bits. The 
integer values are used in a mapping function to select an appropriate production rule 
from the B.N.F. definition, the numbers generated always representing one of the 
rules that can be used at that time, [4, 7, 8]. To solve any problem using GE, a suitable 
B.N.F. definition must first be developed, [7, 8]. 

A Backus Naur Form (B.N.F) Grammar 

B.N.F is a notation for expressing the grammar of a language in the form of 
production rules, [1, 4, 7]. A grammar can be represented by the tuple {N,T,P,S}, 
where N is the set of non-terminals, T the set of terminals , P is a set of production 
rules that maps the elements of N to T, and S is a start symbol that is a member of N. 
In a production rule, when there is a number of productions that can be applied to one 
particular N, the choice is delimited with the '|' symbol.  In GE, the B.N.F. definition 
is used to describe the output language that is to be produced by the system, i.e. the 
compilable code produced will consist of elements of the terminal set T. The B.N.F. is 
a plug in component of the system, it means that GE can produce code in any 
language there by giving the system a unique flexibility, [7]. 

B Grammatical Evolution Methodology 

GE is an automatic programming system similar to genetic programming (GP), in that 
it uses an evolutionary process to automatically generate computer programs. GE uses 
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a population of linear genotypic binary strings, which are transformed into functional 
phenotypic programs, through a genotype-to-phenotype mapping process. This 
transformation is governed through the use of a B.N.F. grammar [6]. GE methodology 
consists of two important parts. The first part is mapping process and the second part 
is evolution algorithm that is described in the following two subsections. In the GE 
mapping process the genotype maps the start symbol onto terminals by reading codon 
of 8 bits to generate a corresponding integer from which an appropriate production 
rule is selected by using the following mapping function, [1, 4, 6, 7, 8, 9]. Rule = 
(codon integer value) MOD (number of rules for the current non-terminal). The 
evolutionary algorithm evolves over the population  that comprises a simple binary 
strings. We do not have to employ any special crossover or mutation operators and an 
unconstrained search is performed on these strings due to the genotype-to-phenotype 
mapping process that will generate syntactically correct individuals. The Evolutionary 
Algorithm (EA) adopted in this case is a variable-length genetic algorithm. Individual 
initialization is achieved by randomly generating variable-length binary strings within 
a pre-specified range of codons, [7]. 

3 Curve Fitting and Grammatical Evolution 

B.N.F. for curve fitting problem is   
<prog> ::= <expr> 
<expr> ::= ( <expr> <op> <expr> )  | <protected-op> | <pre-op>|<digit> | <var> 
<op> ::= -| + | *        <protected-op> ::= div( <expr>, <expr>) 
<pre-op> ::= sin | cos | log | exp      <var> ::= x 
<digit> :: = -1 | -2 | -3 | -4 | -5 | -6 | -7 | -8 | -9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |7 |8 | 9 

Example 1 

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
y 0 0.3 0.4 0.55 0.63 0.71 0.77 0.84 0.89 0.95 1 

Figure 1. show the graphical drawing of the curves in every generation and figure 2. 
show the graphical drawing of the best curve of best function that produced from GE. 

 
 

 

Fig. 1. Graphical drawing of curves in 
generations 

Fig. 2. Graphical drawing of the best curve 
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Example 2 

x -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 
y 0 0 0 0.05 0.3 0.57 0.3 0.05 0 0 0 

 

Figure 3. is a graphical representation of the curves in every generation and figure 4. 
presents the best curve of the best function that is produced from GE.  
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Fig. 3. Graphical drawing of curves in 
generation 

Fig. 4. Graphical drawing of the best curve 

4 Classification with GE 

The goal of classification is to take an input vector X and assigns it to one of K discrete classes 
Ck where k=1, 2, 3,…, K, [3, 8]. In our methodology we try to find a mathematical formula that 
defines a classifier for a problem. Suppose that we need to convert a class name or label to class 
value. For example, if the problem contains three classes (A, B, and C) we replace them with 
(1, 2, and 3) to use in the mathematical function. In the next step, we will define each record in 
the data set by real number, like (2.002) the integer value (2) refers to a class number and the 
fractional number (002) refers to the record number representing this class. By this method we 
can convert the class labels to class values.  

x1 x2 x3 Class name Class value 
0 2 3 A 1.001 
1 1 1 A 1.002 
0 3 2 B 2.001 
2 4 5 B 2.002 

 
The following B.N.F. grammar is used for extracting the mathematical function. 
 <prog> ::= <expr> 
 <expr> ::= (<expr><op><expr>) | <protected-op> | <pre-op>|<digit> | <var> 
 <op> ::= -| + | *   <protected-op> ::= div( <expr>, <expr>) 
 <pre-op> ::= sin | cos | log | exp <var> ::= x1|x2|x3 
 <digit> :: = -1 | -2 | -3 | -4 | -5 | -6 | -7 | -8 | -9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
Note; <var> defined by the attributes from classification problem. 

Table 1. Comparing the proposed algorithm with other well known classification algorithms 

Datasets Proposed  Simple BaysNB Logitboost NB Bayesian Net 
Iris 78.70% 95.53% 94.87% 93.20% 

Monk1 100.00% 73.38% 85.33% 73.46% 
Monk2 70.60% 56.83% 59.92% 56.78% 
Monk3 80.56% 93.45% 91.87% 93.45% 

Haberman 72.88% 75.06% 71.48% 71.57% 
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The results shows that GE achieved higher accuracy in Monk1 and Monk2 and the 
other algorithms achieved higher in Monk3, Iris, and Haberman because they have a 
large number of attributes and thus the training process takes time. Also, The data in 
Monk3 is not filtered, whereas, Monk1 is filtered so that the accuracy reached 100 

5 Conclusion and Future Work 

In this paper we used Grammatical Evolution (GE) to solve curve fitting problems. 
Grammatical Evolution successes in solving curve fitting problems. Moreover, this 
paper proposed a method for the classification problem. We used grammatical 
evolution (GE) to extract a mathematical formula to define a classifier. This method 
succeeds in many problems but it takes long time in the training process when the 
problem contains a large number of attributes. In future work we would try to 
decrease the training time by using a parallel technique. In future we can benefit from 
this idea to solve different problems by Grammatical Evolution.  
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