
V.V. Das, E. Ariwa, and S.B. Rahayu (Eds.): SPIT 2011, LNICST 62, pp. 143–150, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Implementation and Performance of Threshold
Cryptography for Multiple Escrow Agents in VoIP

Abdullah Azfar

Department of Computer Science and Information Technology (CIT),
Islamic University of Technology (IUT), Board Bazar, Gazipur 1704, Bangladesh

azfar@iut-dhaka.edu

Abstract. This paper focuses on improving the accessibility and security of
multiple escrow agents by dividing the session master key into M chunks and
escrowing the chunks with M escrow agents. Using threshold cryptography the
key can be regenerated by gathering any N-out-of-M chunks. This N-out-of-M
approach increases the security of the session master key as at least N chunks of
the session key are needed to regenerate the session key. Disclosure of less than
N chunks does not threat the security of the session key. On the other hand,
failure of a single escrow agent does not affect the availability of the session
key as long as N escrow agents are working. For a highly sophisticated session,
the user might define a higher value for M and N. For a less confidential or less
important session, the value of M and N might be smaller.

Keywords: Key escrow, VoIP, Escrow Agents, Threshold Cryptography,
Shamir’s Secret Sharing.

1 Introduction

An escrow agent is a trusted third party (TTP) with whom users store their session
master key. The term key escrow refers to storing the cryptographic key with a TTP
or escrow agent [1]. Using a Key escrow agent in conjunction with Voice over IP
(VoIP) communication ensures that law enforcements agencies (LEAs) can retrieve
the session key used to encrypt data between two users in a VoIP session. However,
the use of a single escrow agent has some drawbacks. A fraudulent request by an evil
employee from the LEA can lead to improper disclosure of a session key. The
problem with a single escrow agent becomes even more critical as a failure of the
escrow agent can delay or even make it impossible to reveal the session key.With
threshold cryptography [2] approach, the session key is divided into several parts and
each part is stored in different escrow agents. For (N, M) threshold cryptography,
there will be M escrow agents with each escrow agent stores their own secret part. If
at least N escrow agents reveal their secret parts, then the session key can be
generated. The secret shares in threshold cryptography do not have any explicit
relation with each other. If one escrow agent is compromised by an attacker, only the
secret portion stored by that escrow agent is revealed. The complete key can be

144 A. Azfar

generated only if N escrow agents’ keys are compromised. Additionally, if one or
more escrow agents are not functioning, the key can still be generated as long as N
escrow agents are functioning. This gives extra reliability for key retrieval.In this
paper, we have split the session key of a VoIP session into five chunks and escrowed
them to five escrow agents. The threshold value is set to three as the session key can
be regenerated by combining any of the three chunks out of the five chunks. This is
the first approach of threshold cryptography in the context of the escrowing of VoIP
session key.The rest of the paper is organized as follows: related works are reviewed
in section 2. The design and implementation issues of splitting the session key are
discussed in section 3. The performance measurements and discussion are done in
section 4. Finally, some conclusions are drawn in section 5.

2 Related Works

RomanidisEvripidis at the Royal Institute of Technology (KTH) addressed the issues
of key escrow [3]. The escrow agent stores the session key and some related data. The
LEA is assumed to have recorded a communication session between two users. The
escrow agent reveals the key to the LEA upon a legal request from the LEA. He
pointed out that there is a problem when using a single escrow agent as any evil
person either in the LEA or in the escrow agent can reveal the session key.The
problem of forgery by a single escrow agent can be overcome by signing the hashes
of the data with the user’s private key and storing the final hash with the escrow
agent. This proposed solution has been implemented by Md. SakhawatHossen at the
Royal Institute of Technology (KTH) [4]. Md. SarwarJahanMorshed addressed the
issues of a LEA when retrieving a session key and performing decryption of a
captured session [5].

3 Design and Implementation Issues

As we are interested in splitting the key into M chunks and then retrieve the key from
N-out-f-M chunks, a suitable algorithm for this would be Shamir’s Secret Sharing
Algorithm [7][7]. Shamir’s secret sharing is an N-out-of-M threshold scheme based
on polynomial interpolation. At least N participants must provide their shares in order
to decrypt the secret. Shamir’s Secret Sharing algorithm is scalable because the
number of chunks can be changed. As a result, it is possible to increase or decrease
the value of M or N for an implementation.We have used Minisip [8] as our user
agent. Minisip is an open source Voice over Internet Protocol (VoIP) user agent (UA).
It is based on the Session Initiation Protocol (SIP) [9] and special security features are
included in it. The user agent is responsible for splitting the keys. The escrow agents
will only store the escrowed information. The splitting operation is performed in
the user agent and the user agent stores the values in files. Upon successful
connection with the escrow agent, the user agent escrows the split values. This is
shown in Fig. 1.

 Implementation and Performance of Threshold Cryptography 145

Fig. 1. General architecture of M Escrow agents

According to the thesis of Hossen [4] and Morshed [5], they have escrowed the
session master key, i.e., the Traffic Encryption Key (TEK) Generation Key (TGK)
along with the pseudo-random number (Rand), last signed hash and Crypto Session
Bundle (CSB) ID value. This key is exchanged by the key agreement protocol
MIKEY [10]. This TGK along with some security parameters are used to generate the
session keys for encryption and integrity protection.In our case, we have extended
the escrow operation from one escrow agent to multiple escrow agents. Thus, the
parameters being escrowed remained the same. But question arises which parameters
should be split and then escrowed. The reason behind splitting the key is to enhance
security and availability of the key. Splitting the Rand, last signed hash and CSB ID
value enhances the security, but it is not really necessary to do so. If we rather only
split the TGK and replicate the Rand, last signed hash and CSB ID value to M escrow
agents, then our purpose is served. As this implementation is an N-out-of-M system,
no one can retrieve the TGK value without having at least N chunks. This increases
the security and confidentiality. Again, the availability increases as even if few
escrow agents are not working, the key is retrievable from N escrow agents.

3.1 Implementation of Split Operation

The procedure of splitting the key into chunks and escrowing them can be depicted by
a general algorithm. The algorithm works according to the following steps:

Step 1: Create five files for temporarily storing the key chunks.
Step 2: Divide the TGK into two parts.
Step 3: Invoke the split function for each of the parts.
Step 4: Each part is split into five subparts. Store each of these split parts into the

files created in step 1. The five subparts created from the first part will be the first
entries in the five files. Five subparts created from the second part will be the next
entry in the files. Separate them with a separator “%”.

Step 5: Create a temporary string with the Rand, signed hash, CSB ID value and
the names of the escrow agents. Separate them with “%” symbol.

146 A. Azfar

Step 6: Read the contents of the first file created in step 1 into a string.
Step 7: Form a string with the IP address of the escrow agent.
Step 8: Append the user id, password and strings created in steps 5 and 6 to the

string created in step 7.
Step 9: Escrow the parameters by creating a curl object with the string formed in

step 8.
Step 10: Repeat steps 6 to 9 four times, read values from different files each time

in step 6.

There are 256 bytes in the base 64 value of the TGK. These 256 bytes are divided into
2 equal (128 bytes each) parts. The split function is called for each of these parts and
each part is divided into 5 chunks by the split function according to Shamir's Secret
Share algorithm. Each of these 5 parts is written into the 5 files. At the end of the split
operation, we get 5 files. Each of the files contains 2 subparts of the TGK. These 2
parts are separated by a “%” symbol.An URL is formed with the IP address of the
first escrow agent, user name and password of the user appended by the contents of
the first file. The signed hash value, rand value, CSB ID values are appended into the
URL separated by a “%” symbol without any modification. We have used secure
HTTP (HTTPS) to escrow the session master key. The key is transferred along with
the URL of the escrow agent by appending a key value pair in addition to the key
value pairs used to provide the user name and password for authentication to the
escrow agent. To escrow the session master key with the escrow agent from the user
agent we have used libcurl [11]. We have used third party code written by B.
Poettering [12] for splitting the key licensed under the GNU General Public License
[13]. We have modified the code according to our need to integrate with Minisip.

3.2 Implementation of Combine Operation

This subsection discusses about the general approach of how we have designed our
system to retrieve the key chunks from the escrow agents and combine them in order
to get the TGK. The general algorithm is as follows:

Step 1: Login to the escrow agent by providing user id and password by a web
based form.

Step 2: Provide the target user id, start time and end time of target session for
which the session key has to be retrieved.

Step 3: For authenticated user, read the first escrow agent database and fetch the
two parts of the split TGK, Rand, CSB ID value, last signed hash value and names of
the escrow agents.

Step 4: Write the values read in step 3 into a temporary file. Separate the values
by a “%” symbol.

Step 5: Repeat step 3 and 4 for four other escrow agents. For each escrow agent,
write the retrieved values in separate files.

Step 6: Read any three files until the first separator “%” is found.
Step 7: Invoke the combining function with the values fetched in step 6. At theend

of this step we get the first half of the TGK.

 Implementation and Performance of Threshold Cryptography 147

Step 8: Read the same three files read in step 6 starting after the first “%” symbol
until the next “%” symbol is found.
Step 9: Invoke the combining function with the values fetched in step 8. At the

end of this step we get the second half of the TGK.
Step 10: Merge the two halves of the TGK to get the session key.
A php script has been written in order to fetch the information from the escrow

agents. The php script runs five times and invokes the escrow agents one after
another. Upon successful invocation on the escrow agents the script fetches the two
split parts of the TGK, Rand, CSB ID, the signed hash value and the names of the
escrow agents and writes them into files separated by a “%” symbol. After invoking
five escrow agents, the LEA is provided with five text files. This text files are stored
and are inputs to the combining function.

4 Performance Measurements and Discussion

For the purpose of measuring the performance of the escrow operations we used the
experimental setup as shown in fig. 2.

Fig. 2. Experimental setup for escrow operations

We have used one machine as SIP user agent and another machine as the SIP
proxy server and other user agent. We have used a third machine configured as
escrow agents along with escrow databases. The escrow agents machine was
connected to the user agent via SSL tunnel. The escrow agents machine had five
databases and five escrow agents defined in it. We have used SuSE version10.3 of
Linux,on DellT7570with Intel® Pentium® D CPU processor clocked at 2.80GHz and
configured with2048MB of memory as the SIP user agents and proxy server.The base
64 TGK value consists of 256 bytes. We have divided this value into two equal
halves. Then we executed the split function ten times for each of the halves and each
time the split function was executed hundred times. In a normal execution, the split
function is called twice, once for the first half of the TGK, and again for the
remaining half of the TGK value. In our experiment, we executed the split function
one hundred times for the same TGK value. The procedure was repeated ten times
with ten different TGK values. As a result we have ten measurements for each of
these hundred calls.Fig. 3 shows a box plot of the measured execution time of the split
function for the first half of the base 64 TGK value. The reason for this large number
of outliers in round 2 is unknown. But we can make some assumptions based on the

148 A. Azfar

following facts: The time to compute the split is data dependent - i.e., for different
values of a key it takes different amounts of time, the computer is multitasking - thus
the CPU is being allocated to other processes, and the computer is also servicing
interrupts from various devices.

Fig. 3. Execution time for split function applied to the first 128 bytes of the TGK

Fig. 4 shows the box plot for the execution time of the split function for the second
half of the TGK value encoded in base 64 (i.e., the last 128 bytes). The scale for this
figure is quite different for the previous figure, due to the one extreme outlier at 0.1
seconds in round 10.

Fig. 4. Execution time for split function applied to the last 128 bytes of the TGK

Table 1 shows the statistical data found from the time required to split the first 128
bytes and last 128 bytes of the base 64 TGK value using 1,000 calls of the split
function. Here, the unit of time is seconds.

Some observations can be made from table 1. First, the mean time to execute the
split function for the first half of TGK encoded in base 64 is 0.0039 seconds and the
mean time to execute the split function for the second half of the TGK encoded in
base 64 is 0.004 seconds. So, the mean time to execute the split function for
escrowing the TGK encoded in base 64 is the sum of these two values i.e. 0.0079

 Implementation and Performance of Threshold Cryptography 149

Table 1. Statistical data to split two halves of TGK encoded in base 64

First 128 bytes Last 128 bytes
Count 1000 1000
Mean 0.0039 0.004
Median 0.0039 0.0039
Mode 0.0038 0.0038
Standard Deviation 0.00019 0.003
Sample Variance 3.72056E-08 9.38E-06
Minimum 0.0038 0.0038
Maximum 0.0063 0.1
Confidence Level (95.0%) 3.82489E-07 6.07E-06

seconds or 7.9 milliseconds. The next observation is that the median values are
identical in both experiments. The third and final observation is that the minimum
time required to execute the split operation is same for both experiments. This means
that the time to split the original 256 byte based 64 encoded TGK is 2 * 0.0038
seconds or 7.6 milliseconds.

5 Conclusions

This paper focused on a proposal, implementation, and evaluation of a multiple key
escrow agent model that allows escrowing the session keys into M escrow agents.
Shamir’s secret sharing algorithm was used to implement threshold cryptography.
This is the first approach of using Shamir’s secret sharing algorithm for dividing the
session key of a VoIP session. The session key was divided into M chunks and each
of the chunks was escrowed to the M escrow agents. An N-out-of-M key retrieval
mechanism was implemented. This allowed to retrieve the key by retrieving at least N
chunks out of M chunks where the value of N is always less than or equal to the value
of M. Practically, the system was implemented with 5 escrow agents with a threshold
value of 3. This increased the security as if an LEA officer wants to retrieve the key
chunks for a session, he or she has to convince at least 3 escrow agents. In case of
fraudulent request, it is difficult to convince all those 3 escrow agents with a
fraudulent notice. On the other hand, the reliability of the key being retrieved properly
increased as if any of the 2 escrow agents are unavailable for some reason, the
remaining 3 escrow agents can provide the key chunks.

Acknowledgments. This work was a part of a Master thesis project in the Department
of Communication Systems (CoS) in the Royal Institute of Technology (KTH),
Sweden. We would like to thank Professor Gerald Q. Maguire Jr. for his continuous
support and guidance throughout the project.

150 A. Azfar

References

1. Abelson, H., Anderson, R., Bellovin, S.M., Benaloh, J., Blaze, M., Diffie, W., Gilmore, J.,
Neumann, P.G., Rivest, R.L., Schiller, J.I., Schneier, B.: The Risks of Key Recovery, Key
Escrow, and Trusted Third-Party Encryption (1997),
http://www.schneier.com/paper-key-escrow.pdf

2. Zhou, H., Mutka, M.W., Ni, L.M.: Multiple-key cryptography-based distributed certificate
authority in mobile ad-hoc networks. In: Global Telecommunications Conference,
GLOBECOM 2005, vol. 3. IEEE, St. Louis (2005)

3. Evripidis, R.: Lawful Interception and Countermeasures: In the era of Internet Telephony,
School of Information and Communication Technology (COS/CCS), 2008-20, Royal
Institute of Technology (KTH), Stockholm (2008),
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/
080922-Romanidis_Evripidis-with-cover.pdf

4. Hossen, M.S.: A Session Initiation Protocol User Agent with Key Escrow: Providing
authenticity for recordings of secure sessions, Department of Communication Systems
(CoS), Royal Institute of Technology (KTH), TRITA-ICT-EX-2010:1, Stockholm (2010),
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/
100118-Md._Sakhawat_Hossen-with-cover.pdf

5. Morshed, M.S.J.: VoIP Lawful Intercept: Good Cop/Bad Cop, Department of
Communication Systems (CoS), Royal Institute of Technology (KTH), TRITA-ICT-EX-
2010:28, Stockholm (2010), http://web.it.kth.se/~maguire/DEGREE-
PROJECT-REPORTS/100221-Muhammad_Sarwar_Jahan_Morshed-with-
cover.pdf

6. Shamir, A.: How to share a secret. Communications of the ACM 22(11) (1979)
7. RSA Laboratories, http://www.rsa.com/RSALABS/node.asp?id=2259
8. MiniSIP homepage, http://www.minisip.org
9. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R.,

Handley, M., Schooler, E.: SIP: Session Initiation Protocol, IETF RFC 3261, IETF
Network Working Group (2002)

10. Arkko, J., Carrara, E., Lindholm, F., Naslund, M., Norrman, K.: MIKEY: Multimedia
Internet KEYing, IETF RFC 3830, IETF Network Working Group (2004)

11. Libcurl-the Multiprotocol File Transfer Library, http://curl.haxx.se/libcurl/
12. Shamir’s Secret Sharing Scheme, http://point-at-infinity.org/ssss/
13. GNU General Public License, http://www.gnu.org/licenses/gpl.html

	Implementation and Performance of Threshold Cryptography for Multiple Escrow Agents in VoIP
	Introduction
	Related Works
	Design and Implementation Issues
	Implementation of Split Operation
	Implementation of Combine Operation

	Performance Measurements and Discussion
	Conclusions
	References

