
Mobile MapReduce: Minimizing Response Time

of Computing Intensive Mobile Applications

Mohammed Anowarul Hassan and Songqing Chen

Department of Computer Science,
George Mason University

{mhassanb,sqchen}@gmu.edu

Abstract. The increasing popularity of mobile devices calls for effective
execution of mobile applications. A lot of research has been conducted
on properly splitting and outsourcing computing intensive tasks to exter-
nal resources (e.g., public clouds) by considering insufficient computing
resources on mobile devices. However, little attention has been paid to
the overall users’ response time, where the network may dominate.

In this study, we set to investigate how to effectively minimize users’
response time for mobile applications. We consider both the impact of
the network and the computing itself. We first show that outsourcing
to nearby residential computers may be more advantageous than pub-
lic clouds for mobile applications due to network impact. Furthermore,
to speed up computing, we leverage parallel processing techniques. Ac-
cordingly, we propose to build Mobile MapReduce (MMR) to effectively
execute outsource computing intensive mobile applications. Based on
the original MapReduce framework, a new scheduling model is built in
MMR that can always leverage the best computing resources to conduct
computation with appropriate parallel processing. To demonstrate the
performance of MMR, we run several real-world applications, such as
text searching, face detection, and image processing, on the prototype.
The results show great potentials of MMR in minimizing the response
time of the outsourced mobile applications.

1 Introduction

Mobile devices are getting more and more popular. According to International
Data Corporation, the total number of smartphones sold in 2010 is 305millions [5],
which is a 76% increase from the previous year, and there are already over 4.6 bil-
lion mobile subscribers in the world and the number is still growing [6].

Different from traditional mobile devices (e.g., cellphones) that are mainly
used for voice communication, mobile devices today are typically equipped with
much more powerful processor and more sensors. Such increasing power of mobile
devices has enabled fast development of mobile applications, such as picture
editing, gaming, document processing, financial tracking [8]. Recently, Amazon
released SDK for Android users [1] to develop mobile applications using Amazon
cloud such as uploading images and videos to the Amazon cloud storage, and
sharing game, movies, and other data among users.

J.Y. Zhang et al. (Eds.): MobiCASE 2011, LNICST 95, pp. 41–59, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



42 M.A. Hassan and S. Chen

However, constrained by the size and weight, mobile devices’s processing
power is still significantly lagging behind that of their desktop counterpart.
Thus, many desktop applications, if running on mobile devices, can result in
poor performance. For example, an OpenGL application on an Android phone
can refresh slowly on the screen and drive the user away quickly. On the other
hand, mobile devices are ultimately constrained by the limited battery supply
and a computing-intensive application can quickly exhaust the limited battery
power. Such a situation is worsened by the industrial trend to equip more sen-
sors on mobile devices for a wider scope of non-traditional applications, such as
environment monitoring [17], health monitoring [4,7], social applications [23,22],
which are often more computing intensive.

From the resource perspective, a lots of research have considered to outsource
computing intensive tasks to external resources [10,18,26]. For example, the vir-
tual machine-based cloning approach [12] has been explored to clone the entire
mobile environment to the cloud without worrying about modifying the appli-
cation or dividing the job. Similarly, Zap takes a full process migration [25]
approach with resource and process consistency. On the other hand, a number
of job partitioning strategies have been proposed [28,14] to simplify the parti-
tioning of the existing applications between the mobile device and the external
computing resources.

While many existing schemes have focused on how to split the computing-
intensive tasks and outsource to external resources, the impact of the network
latency on outsourced applications has not been well investigated, which may
be a dominant factor in the total response time to mobile users. For mobile
applications, a minimal response time is not only critical to the users’ expe-
rience, but also important for preserving the limited battery power supply on
mobile devices. This is particularly true for delay sensitive and interactive mo-
bile applications. When partial tasks of such applications are outsourced, it is
critical to reduce the total response time to the user in order to maintain the
QoS of the application. In this paper, we aim to minimize the response time
of mobile applications from the users’ perspective. Since outsourcing often in-
volves both network transferring and computing, we first show that outsourcing
to appropriate resources considering data affinity and network latency could
be more advantageous than public clouds in reducing the overall response time.
Furthermore, to speed up computing, we leverage parallel processing techniques.
Accordingly, we design and implement Mobile MapReduce (MMR) based on the
original MapReduce framework. In MMR, a new scheduling model is built that
can always dynamically leverage the best computing resources, be nearby com-
puters or public clouds, with the most appropriate parallelism considering the
parallelization overhead [19] for any mobile application.

To demonstrate the performance of MMR, we have built a prototype and ex-
perimented MMR with several real-world applications, including text searching,
face detection, and image processing. The results show that MMR not only out-
performs on-device computing by 15 times and 20 times in terms of response time
and the battery power consumption, respectively, but also outperforms public



Mobile MapReduce: Minimizing Response Time 43

cloud like Amazon EC2 by 3 times and 4 times in terms of response time and
the battery power consumption, respectively.

The remainder of the paper is organized as follows. We present our motiva-
tion of leveraging residential computers and MapReduce in Section 2. We present
the design of MMR in section 3. Section 4 describes mobile MapReduce imple-
mentation. We present some preliminary evaluation results with several typical
applications in Section 5. Some related work is discussed in Section 6, and we
make concluding remarks in Section 7.

2 Background and Motivation

In this section, we present some background and our motivation with more
details.

2.1 Nearby Computers vs. Public Clouds

To study the impact of latency on outsourcing to the public clouds and nearby resi-
dential computers,we have conducted somepreliminary experimentswithAmazon
EC2 and our local computers.We use three approaches for an experiment to find a
string in a text file: 1) LocalExecution inGoogleNexusOnewithAndroid 2.2OS, 1
GHz CPU, and 512 MB RAM, 2) Outsourcing to Amazon EC2 with 5 GHz CPU,
1.7 GB RAM, and 300Kbps link speed and 3) Outsourcing to Residential Com-
puters with 2 GHz CPU, 3.2 GB of RAM, and 10 Mbps LAN. Table 1 shows the
user’s response time when the same program is executed with different approaches
along with the increase of the file size. As shown in the table, although EC2 has a
much fasterCPU, the response time is longer than if the job is outsourced to nearby
residential computers because of the impact of network latency. Correspondingly,
Table 2 shows energy consumed on the mobile device for executing the program
with these approaches based on Power Tutor [9].

These results show that when outsourcing mobile computing tasks, the band-
width consumption has to be taken into consideration and sometimes this may
be a dominant factor. Under such situations, outsourcing to nearby residential
computers may be more beneficial than to public clouds.

Table 1. Response Time (Sec)

File
Size
(KB)

Android
Amazon
EC2

Residential
Computers

10 0.0481 0.0146 0.0459

100 0.425 0.096 0.4245

200 0.424 0.971 1.300

400 0.465 1.600 1.300

750 0.480 3.400 3.300

1000 0.503 4.500 6.600

Table 2. Energy Consumption (J)

File
Size
(KB)

Android
Amazon
EC2

Residential
Computers

10 0.117 0.098 0.122

100 0.332 0.984 1.995

200 0.886 1.815 4.099

400 1.327 3.603 8.235

750 02.467 6.637 15.366

1000 3.092 8.823 20.583



44 M.A. Hassan and S. Chen

On the other hand, if most of the data for the outsourced computing resides on
the user’s home computer, outsourcing to nearby residential computers may not
outperform outsourcing to the user’s home computer even if the home computer
is far away. This is particularly true that today many mobile users synchronize
their files with their home or office computers daily.

To demonstrate this, we experiment with compiling a Latex document with
10 files, each of 1.7 KB. In the experiment, the network speed to the farther
home computer is 300 Kbps on average and to the nearby computer is 10 Mbps.

1 2 3 4 5 10
0

200

400

600

800

1000

Number of Files

T
im

e 
(m

s)

121 ms 100 ms
54 ms

Nearby Residential Computers (10 Mbps)
Farther Home Computers (300 Kbps)

Fig. 1. Nearby Residential Computers vs. Farther Home Computer

Figure 1 shows the total execution time if 1, 2, 3, 4, 5, or 10 files needed to
be transferred to nearby computers or home computers for compiling. The figure
clearly shows that if the same number of files needed to be transferred, outsourcing
to nearby residential computers is faster, but if the home computer only needs
a small portion of the data to be transferred, then it performs better than the
residential computers where the whole portion of the data needs to be sent.

The above preliminary results indicate that when outsourcing mobile appli-
cations, a scheduler should not only consider job types (such as CPU intensive
or network intensive), but also the data affinity in order to minimize the impact
of network.

2.2 MapReduce

As aforementioned, to speed up computing, we aim to leverage parallel process-
ing. Since MapReduce is widely used today, we first briefly introduce the basics
of MapReduce and then discuss why we adopt MapReduce.

MapReduce is a patented software framework introduced by Google to support
distributed computing on large data sets on clusters of computers introduced from
2003 [16]. It is a programmingmodel for processing and generating large data sets.
Under MapReduce, the computation takes a set of input key/value pairs, and pro-
duces a set of output key/value pairs. The user specifies a Map function that takes
an input pair to generate a set of intermediate key/value pairs. All intermediate
values associated with the same intermediate key are grouped together and passed
to the Reduce function. The Reduce function accepts an intermediate key and a



Mobile MapReduce: Minimizing Response Time 45

set of values for that key. It merges together these values to form a possibly smaller
set of values. In such an approach, applications are automatically parallelized and
executed on a large cluster of commodity machines.

MapReduce has gained great popularity in practice. The openness of MapRe-
duce and the simplicity of the interface allow users to develop many applications
in MapReduce. Currently, there are more than 10,000 distinct programs using
MapReduce[15]. MapReduce can partition the task into independent chunks and
process them in parallel. In addition, the MapReduce framework deals with node
failure so that re-execution of a task is minimized in case of failure. MapReduce
has an open source implementation Hadoop, which we leverage in our work.

However, directly applying MapReduce for mobile computation outsourcing
is not proper for a number of reasons. In the original MapReduce framework,
Map and Reduce nodes are connected to each other, which is not always possible
in our mobile computing environment. Furthermore, the HDFS in the original
MapReduce contains the data prior to the job submission and computation,
which is less likely to be practical in our mobile computing environment. That is,
the data required for computing has to be transferred as well. On the other hand,
the data size in our mobile computing is relatively small. It is only computing
intensive relative to the slow CPU on mobile devices. Other than the above
different design features, Hadoop is developed based on JVM, while Dalvik in
our Android smartphone is a different platform that Hadoop is not compatible
with or could be ported directly. Thus we will present later our framework that
we modify from the original MapReduce in order to support our outsourcing.

3 Mobile MapReduce Design

We have shown in the previous section that nearby residential computers could
outperform public clouds for some applications. Thus, from the users’ perspec-
tive, it is necessary to consider all available computing resources for job out-
sourcing, including both residential computers and public clouds. That is, MMR
should run on an architecture as shown in Figure 2.

As shown in this figure, in MMR, there is a resource overlay that a partici-
pating mobile user can leverage for computing in motion. The resource overlay
consists of the normal user’s residential (home) computers and public clouds. A
user can register her home computer in the resource overlay (Step 2) through
the rendezvous points (Step 1).

When a user leaves home, she can register her home computer on the resource
overlay.When the user is on the road and wants to execute some computing inten-
sive application, she starts the job with MMR running on her mobile device. The
MMR client will contact the overlay (Step 3) by visiting a well-known bootstrap-
ping site. Such contact could be done through the cellular connection if WiFi is
not available. In the response to this request, the user is directed to the rendezvous
point (Step 4). Based on the geographical location of the mobile user, a list of
nearby residential computers and public cloud on the overlay are identified by the
rendezvous point. The MMR scheduler running on the rendezvous point further
selects some of these computers based on its scheduling policy.



46 M.A. Hassan and S. Chen

Fig. 2. Architecture of MMR

Once the list of residential and public cloud computers in the connectivity
range is determined, the list of the machines is sent back by the rendezvous
point to the mobile user (Step 4). From now on, all communications are done
through WiFi connections. Based on the list, the mobile user connects to these
computers and can start the execution. Note MMR scheduler may decide to
execute part of the job on the mobile device. MMR then submits the job to
an appropriate set of computers and gets back the result (Step 5). The MMR
returns the final result to the user’s application. Users’ home computers operate
in a P2P fashion with a credit system as proposed in [20].

With such an architecture, the most important component of MMR is the
scheduler to find the most appropriate resources for outsourcing in order to
minimize the response time.

In finding the most appropriate computer nodes to execute a particular task,
the MMR scheduler considers the following:

1. Job Type: When requesting the computation outsourcing, the job type is
determined. Based on both the CPU and the bandwidth demand and the
data locations, nearby residential computers, public cloud or the user’s home
computers can be selected.

2. Node Status: Since MMR mainly targets delay-sensitive applications, the
status of the selected computers may affect the response time. Furthermore,
it is also important for the RP to maintain load balance across different
residential computers on the resource overlay.

3. Network Bandwidth: In searching for the most appropriate residential com-
puters for outsourced computation, the computer with the highest band-
width is always selected first if other conditions are the same.

4. Parallelization Overhead: The execution time does not decrease linearly with
the increase of parallelism. In addition to the Amdahl’s law, work [19] has
shown that further parallelization may degrade the overall performance of
the system, which is true for MapReduce as well [2]. Thus this overhead is
very important in MMR.



Mobile MapReduce: Minimizing Response Time 47

The RP considers these factors and employs a greedy optimization to select the
best strategy.

To develop our algorithm, we start from the ideal case assuming each node has
equal processing power, latency, and bandwidth. Let a be the node discovery and
connection set up overhead, d the time to execute the computation on a single
chunk of data in MMR, and bw the time to transfer one single chunk from the
mobile device to the node which depends on the bandwidth from the mobile
device to all the n nodes. Note that the size of a single chunk may vary from
application to application. So, if the total number of chunks is C, then the total
execution time is:

T = a× n+
C

n
× d+

C

n
× bw, (1)

In Equation 1, we assume these nodes have the same bandwidth with the mobile
device. Here the time for discovering and connecting to neighboring nodes is
linearly proportional to the number of nodes as the threading capability of mobile
device limited by its CPU. Differentiating Equation 1 with respect to n, we get:

d

dn
T = a− C × (d+ bw)

n2
(2)

So we get the optimal degree of parallelism when:

n =

√
C × (d+ bw)

a
(3)

In practice, residential computers may not have the same CPU, latency, and band-
width. So a, d, and bw are not the same for each node. Moreover, some nodes
may have some chunks of the input data in prior. This is similar to Multiproces-
sor Scheduling [13], which is NP-Complete. We propose a greedy approach to find
the optimal number of nodes based on the fact that, the T in equation 1 decreases
first with the increase of parallelism, then starts to increase again [19].

Algorithm 1 shows the pseudo-code of the algorithm. In the MMR Scheduler,
I represents the user’s id, L is the location, which is required to find the nearby
computers available for computation outsourcing. J represents the job. LC is the
list of the available computers, which holds the following information for each
node on the list: 1) ic: computation power available on node i ; 2) il: location of
node i ; 3) ibw: the time to transfer one chunk of data from the mobile device
to the node depending on the channel capacity from the mobile device to the
node i ; 4) ids: chunks of the data stored in prior for a job J in the node i ; 5) C :
total size of the input chunks of the input data; 6) cc: CPU cycle required for
execution of each input chunks. Note that we assume profiling can be used to
obtain these parameters for mobile applications.

Note that we include the mobile device and the home computer of the user
as potential candidates to execute computation, as computation on them may
be economical. As shown in the algorithm MMR Scheduler, in the first step,
MMR finds the set of reachable computers nearby LC based on the location of
the nodes and the mobile device (Line 1). We calculate a and d for each node,



48 M.A. Hassan and S. Chen

Algorithm 1. MMR Scheduler(I,J,L,C,cc)

1: LC ← The set of available computers nearby from I and L

2: for each node i in LC do

3: add i to LC

4: ia ← node connection overheadi
5: id ← cc/ic
6: end for

7: n← ‖LC‖
8: Calculate at, dt, and bwt: the average of ia, id, and ibw of all nodes i in LC

9: op n←
√

C×(bt+bwt)
at

10: for each i in LC do

11: Weighti ← 1

ia+id× C
op n

+ibw× C
op n

12: end for

13: Sort LC in decreasing order according to Weighti
14: aavg ← ia of first node of LC

15: davg ← id of first node of LC

16: bwavg ← ibw of first node of LC

17: totaltime ← aavg + C × davg + C × ibw
18: count← 1

19: for i = 2 to n do

20: aavg ← average of first i nodes’ ia
21: davg ← average of first i nodes’ id
22: bwavg ← average of first i nodes’ ibw

23: temptotaltime ← aavg × i+
(C×davg)

i
+

C×bwavg

i
24: if temptotaltime ≤ totaltime then

25: totaltime ← temptotaltime

26: count← count+ 1

27: end if

28: end for

29: for i = 1 to n do

30: Ci ← Weighti∑
∀i∈LC

Weighti
× C

31: end for

32: Let LCRD be the set of nodes having portion of the input data in prior

33: m← ‖LCRD‖
34: Sort LCRD according to ids in decreasing order

35: j ← 1

36: for i = 1 to m do

37: if j ≤ count then

38: T imei ← ia +
Cj−ids

ibw
+ Cj × id

39: T imej ← ja +
Cj−jds

jbw
+ Cj × jd

40: if T imei < Timej then

41: First remove i from LCRD and then Insert node i in between j and j − 1 in LC

42: else

43: j ← j + 1

44: end if

45: end if

46: end for

47: return first count nodes from LC



Mobile MapReduce: Minimizing Response Time 49

(Line 2-6) and the average of them (Line 8). Then we assign weight to different
node based on the heuristics (Line 10-11).We first assume that we are in the ideal
case where all nodes in LC have the same a, d, and bw : at, dt and bwt namely
which are the average of those values for all nodes in LC. We also assume to
use an optimal number of nodes if all of them have their average a, d, and bw.
So, to process equal number of chunks C

op n , the time taken by each node is

ia+ id× C
op n + ibw× C

op n . where op n is the optimal number of nodes according

to Equation 3 (Line 9). The Weight of each node is the inverse of the time
taken by each node to get and process the C

op n number of chunks. Note that the
more powerful and the shorter the latency a node has, the lower the time and
the higher the Weight.

We sort the LC in decreasing order of weight (Line 13). Then we could find
the minima of the curvature of the T in Equation 1 by adding one by one
node for our computation (Line 19-28). Here we assume the a, d, and bw be the
average of those values of the total nodes considered so far.

We also calculate the potential number of chunks to be executed by each
node here based on the weight heuristic (Line 30). Then we find out the nodes
having some chunks of the data in prior and sort them in decreasing order of
ids(Line 34) in list LCRD and give them priority if they have better performance
considering affinity data (Line 36-46). The key point here is that, we first take
the first node in LCRD and take the first node of sorted LC and compare the
total data transfer and execution time of the two nodes with the associated
number of chunks of the node in LC and local data chunks. If the node from
LCRD takes less time than the node of LC, we move that node of LCRD forward
in the list LC before the current node and deal with the next node of LCRD
in the same way. Otherwise, we compare the node of LCRD with the second
node of LC in the same way until the list LCRD is visited or we have taken
the first count nodes from LC. In this way, we get the first count nodes having
optimal parallelization and performance with respect to latency, computation
power, and data location. The complexity of this algorithm is θ(n) for the first
four loops, θ(n logn) for the sorting, and θ(n + m) or θ(n) as m < n for the
nested loop (Line 36-46). The above algorithm deals with how to select the most
appropriate computing resources for one job. If there are multiple jobs, MMR
follows the original Hadoop fair scheduling policy for the queued jobs and then
the MMR scheduler selects the best nodes for each job.

4 Mobile MapReduce Implementation

A major component of MMR is the modified MapReduce that considers user mo-
bility and unreliability of residential computers. We modify the original MapRe-
duce to incorporate these new functions as follows.

4.1 MMR vs. Hadoop

Our MMR implementation is based on the widely used open source Hadoop.
From the perspective of the framework, MMR differs from the original Hadoop



50 M.A. Hassan and S. Chen

in the following aspects so that we need to modify the original Hadoop to ac-
commodate these.

– Dynamic Mobility Property of MMR: In Hadoop, the master node has the
worker list beforehand. It configures the network first before submitting any
job. The worker nodes are responsible themselves to join the network. But
in MMR we propose the framework for mobile users without persistent con-
nections and the master node does not have any knowledge about the neigh-
boring worker nodes.

– Non-Distributive File System of MMR: In Hadoop, HDFS [27] is used to
store the input file. In MMR, the selected nearby residential computers do
not have a copy of the input file until the file is transferred there. Thus, upon
the response from the RP, the input data is first split and transferred to the
selected worker node before the computation begins.

– Handling Isolated Worker Nodes: In MapReduce, the intermediate
<Key,Value> pairs produced by the Map nodes are periodically written
to local disk. The locations of these buffered key/value pairs on the local
disk are passed to the master who forwards these locations to the Reduce
workers. The Reducers use remote procedure calls to read the buffered data
from the local disks of the map workers.
In our resource overlay network, it is highly possible that the Map/Reduce
nodes are not directly connected. So Reduce nodes cannot execute RPC
to fetch the buffered data. In our framework, the Map node sends the list
of <Key,Value> pairs to the master node who eventually forwards to the
Reducers.

– Node Failure: MMR detects the failure of worker nodes with a timeout mech-
anism. Whenever the master node submits a job to execute to any worker
node, it periodically contacts the worker node. The master node also gets the
result back for small chunks of the job finished in that worker and saves it.
Note that the worker node also gives a backup copy to the resource overlay.
If it is the master node that loses the connection, then the resource overlay
may give the result back to the master node based on the backup copy. If it is
a crash of the worker node, then the mobile node finds another worker if any,
or it executes the job locally (on the mobile device). After finding another
machine (worker or local), it executes the remaining portion of the job. As
the input data is partitioned into small independent chunks, the failure of
any worker causes only re-execution of that portion of data.

– Minimizing Intermediate <Key,Value> Transfer Overhead: To minimize the
transferring overhead, in MMR, the MMR Combiner is run over the <Key,
Value> pairs produced by the Map nodes. For example: suppose we are
searching for a rare string “MMR” in a large file. In the original MapReduce,
the Map will emit <“MMR”, “one”> every time it finds that string in the
file. The Reducers would fetch the intermediate key/value pairs and merge
them. In MMR, to reduce the data communication overhead, we propose
that the MMR Combiner would integrate all the occurrence and finally send
the result when it is finished for a particular split of input. If there are ten



Mobile MapReduce: Minimizing Response Time 51

“MMR” strings in the input split of the file, the node emits one < “MMR”,
“ten”> pair instead of sending ten < “MMR”, “one”> pairs. This change
causes significant improvement for data communication.

In addition, as the result of mobile application is comparatively small, so it is
much faster to keep it in the cache rather than to write in local file system
of the Workers. We also find that the system performs better when there is
no replication factor like original MapReduce as the node failure is common in
MMR. MMR uses a smaller block size, such as 512 KB, which is smaller than
the original Hadoop (64 MB) due to the nature of the jobs on mobile devices. In
practice, the block size can also be determined dynamically based on the input
size, the reliability of nearby computers, the available network bandwidth, etc.

4.2 MMR Workflow

With the above modifications from the original Hadoop, in MMR, the mobile
device works as the master node and the residential computers (including the
home computer of the user in case) works as worker nodes. Each worker node may
work as Map or Reduce. Figure 3 illustrates the similarities and the modification
between MapReduce and MMR.

After exploring neighboring residential computers, the MMR Scheduler sends
the list of the residential computers to the MMR running in mobile device.
(Step 1). MMR establishes connections between the master node running in mo-
bile device and the worker nodes running in the residential computers. The nodes

Fig. 3. MapReduce and MMR



52 M.A. Hassan and S. Chen

may establish authentication and trust for this purpose. The name node and the
job tracker of MapReduce starts on the master node. The name node divides the
whole input data into n small chunks and read input chunks (Step 2). It then
sends the data and the computation to the appropriate data nodes (Step 3). Note
here that some data nodes may have some data in prior. These nodes are referred
by theMMR scheduler so that only the computing programneeds to be sent there,
thus reducing the data transferring overhead. Some data chunks may be executed
in the mobile device itself due to security reason. For all the other nodes, both
computing program and data need to be sent over. The job tracker in the mobile
device keeps track of the the processing progress of the job.

Currently we send the computation in serializable byte code from the master
node to the data nodes. It also defines the output class key/value as well.

With the above interface, application developers can define the class of map,
key/value and the input/output format. Thus the worker nodes do not have to
know about the on-going computations and can offer unlimited types of services
with its simple model without reconfiguring itself.

The data node receives the data portion in desired input data format and the
task tracker starts the computation and sends back the output to the job tracker
(Step 4).

The job tracker saves the intermediate key/value results and marks the entry
for that particular portion of the input data chunk as finished. The name node
sends the next portion of the job to the data node and the task tracker starts
computation for the next portion of the job.

This continues until the job is finished or any data node fails (e.g., a node is
shut down or a node loses the connection from the name node). If any worker
node fails, MMR tries to get the result for that data portion from the resource
overlay or re-execute that portion of the job by exploring another worker node.

After finishing the Map part, the reducer may begin either on the mobile
device or again in the nearby worker node acting as Reducer depending on the
volume of computation. The master node reads the intermediate <Key,Value>
pairs (Step 5) and sends them to the reduce nodes (Step 6). After the com-
putation is finished, reduce node sends the result back (Step 7).

5 Preliminary Evaluation

5.1 Experiment Setup

In the experiments, we emulate a 3 user model and they have identical residential
computers and mobile devices. We use Google Android Nexus One with 1 GHz
CPU and 512 RAM as the mobile device for the local execution. We use 5
lab computers to emulate overlay residential computers that all have a dual-
core CPU with 2GHz and 2 GB RAM for outsourcing and parallelization in
residential computers. The EC2 instances rented are at Northern Virginia Data
Center of Amazon. Each remote EC2 Ubuntu instance has a 5 GHz CPU with
1.7 GB of RAM. We use Power Tutor [9] to measure the power consumed by
the applications running on the smartphone. The WiFi is 10 Mbps and the



Mobile MapReduce: Minimizing Response Time 53

bandwidth from the Android Phone to EC2 instance is around 300 Kpbs on
average. Note that we have also experimented with different network speeds. We
omit their results for brevity.

We have conducted experiments with the following three applications.

– Text Search In this application, the user searches a string in a text file and the
frequency of occurrence of that string is returned to the user. This simple
string counting application takes an input file of 2.6 MB. We use string
matching to find the total number of occurrence of that string in that text
file.

– Face Detection In this application, we take a picture of a human face and try
to match it with all the pictures in a folder previously taken. We use Cross-
Correlation Function [3] to find the correlation between an image pair. Based
upon that, we detect a particular person. We have each image in a different
jpg file. The correlation between the files has been calculated by taking
input from three different streams for 3 RGB values. The resultant size for
the reference images is 575 KB in total and the newly taken image size is
145 KB. So the total size of the data file is 720 KB, and the computation
program is 3 KB.

– Image Sub Pattern Search In this application, we take a picture and try to
find the picture as a part of another large picture in a folder previously taken.
We use Cross-Correlation Function [3] and 2D Logarithmic Search [21] to
find the sub-image. We have each image in a different jpg file. The correlation
between the files has been calculated by taking input from three different
streams for 3 RGB values. The resultant size for the reference image is 1.7
MB, the newly taken image size is 260 KB, and the computation program
is 4 KB.

We profile each application to deduce the average CPU cycle and data transfer
requirement. We fed these profiling results and locations for the MMR Scheduler
to find nearby residential computers to outsource computation. While profiling,
we assumed that either there is no data is stored in prior in the residential
computers or all the data are stored there. Upon this experimental set up we
run each application in the following different environments.

– On-device(OD): We run the application on the mobile device directly here.
– Computation+Data(CD): Both the computation program and the data are

outsourced to the residential computers here. The MMR in the mobile device
gets connected to the resource overlay and the rendezvous point to explore
the neighboring residential computers and outsource the computation with
the data file.

– Computation+Data+Node Failure(CD+F): This is to consider the node fail-
ure in the above environment to study the impact of node failure. When a
node fails, MMR contact the resource overlay and the rendezvous point once
again to find another neighboring residential computer and start the job
from the failed point by outsourcing the data from the failed portion and
the original computation program.



54 M.A. Hassan and S. Chen

To emulate node failure case, we deliberately turn off one computer in
the middle of an on-going computation when the computation is about 50%
completed. Then MMR detects the failure based on timeout and it contacts
resource overlay and rendezvous point to find another nearby residential
computer.

– Computation(C): We emulate the scenario when the selected residential com-
puter is the user’s home computer, which has the data of the task. The mobile
device only needs to transmit the computation for the applications, which is
small in size.

– Computation+Node Failure(C+F): This is to consider the node failure in
the above environment. Note that here for both the failed node and the new
node, we outsource only the computation. We emulate the node failure case
as we have done for CD+F.

– EC2 (EC2): We outsource the computation to the remote amazon EC2 in-
stances. We assume that EC2 is always available and 100% reliable.

In all these experiments, we mainly focus on the response time and the energy
consumption on the mobile device. Since we use homogeneous machines for both
residential computers and Amazon EC2 instances, our scheduler follows Equa-
tion 3. We further test with other parallelism levels in order to compare their
performance.

5.2 Experimental Results

In this section, we describe the performance of the different approaches we have
tested for the three applications. We repeat each experiment five times and
present the average of the results.

Text Search. Figure 4 depicts the response time and the energy consumption
of the text search application when it is executed on the Android and the com-
putation is outsourced with and without parallel processing. In this experiment,
the amount of data transferred is 2.6 MB when both computation and data are
transferred, otherwise it is 1 KB if only the computing program is needed to

OD CD CD+F C C+F EC2
0

10

20

30

40

50

60

T
im

e 
(S

)

Time
Energy

0

10

20

30

40

50

60

E
ne

rg
y 

(J
)

(a) Response Time and Energy
Consumption

1(CD) 2(CD) 3(CD) 4(CD) 1(C) 2(C) 3(C) 4(C)
0

10

20

30

40

50

60

T
im

e
 (

S
)

Residential Computer (Time)
EC2 (Time)
Residential Computer (Energy)
EC2 (Energy)

0

10

20

30

40

50

60

E
n
e
rg

y
 (

J
)

(b) Response Time and Energy Consump-
tion for Parallel Processing

Fig. 4. Text Search



Mobile MapReduce: Minimizing Response Time 55

be outsourced. In outsourcing the data file, it is divided into 512 KB chunks.
So in the cases with node failure (CD+F and C+F), only one chunk is lost, which
minimize the re-execution overhead.

In Figure 4, the left-y axis represents the response time while the right-y axis
represents the corresponding energy consumption. Figure 4(a) clearly shows that
outsourcing to EC2 results in the worst performance in terms of both the re-
sponse time to the user and the amount of energy consumed, even worse than
the on-device execution. Compared to the case when it is executed locally on
the mobile device, outsourcing to the nearby residential computers results in
69% and 59% less response time and energy consumption, respectively, although
outsourcing to nearby residential computers demand some bandwidth for file
transferring. In the node failure cases where residential computers may not be
reliable or the home user can depart a residential computer from MMR at any
time, Figure 4(a) shows that the performance of outsourcing still outperforms
the on-device computing in terms of both the response time and the total en-
ergy consumed on the mobile device, although there is a 47% and 61% increase
compared to if there is no node failure.

When the computation is parallelized among multiple machines, Figure 4(b)
shows the result. Again, the left-y axis represents the response time while the
right one represents the energy consumption. The residential computers are iden-
tical with a 2 GHz CPU and 2 GB RAM. The rented EC2 instances have 5 GHz
CPU and 1.7 GB RAM each. Without parallel processing, the response time
may be well over the average connection time of a mobile user with a roadside
WiFi ranges between 6-12 seconds [24]. This makes it impossible for a mobile
user to get the result in time in the same communication session although EC2
has a faster CPU speed. This would be a critical problem for delay sensitive
mobile applications when a user waits to get the result back. As shown in the
figure, parallelization can clearly improve the performance when the number
of computers is increased from 1 to 2 and 3. However, Figure 4(b) also shows
that the response time and energy consumption first decrease with the increase
of parallelization level, then it increases when the parallelization level increases
(from 3 to 4 nodes). So here it is also important to calculate the the appropriate
degree of parallelism to optimize the performance.

Again, in Figure 4(b), we also observe that the residential computers perform
significantly better than EC2 when both the data and computation (CD) are
outsourced. But when only the computation (C) is outsourced, they have similar
performance.

Face Detection. Figure 5 shows the performance results when the face de-
tection program is executed in different environments. In particular, figure 5(a)
shows that executing on the Android takes the longest time of about 94.5 sec-
onds. Not surprisingly, the corresponding energy consumption is the largest for
the on-device execution.

Figure 5(a) also shows that both the response time and the energy consump-
tion are reduced when the computation is outsourced. When the program is
outsourced to the nearby residential computers, the performance improvement



56 M.A. Hassan and S. Chen

OD CD CD+F C C+F EC2
0

20

40

60

80

100

120
Ti

m
e 

(S
)

Time
Energy

0

20

40

60

80

100

120

E
ne

rg
y 

(J
)

(a) Response Time and Energy
Consumption

1(CD) 2(CD) 3(CD) 1(C) 2(C) 3(C)
0

5

10

15

20

25

30

35

T
im

e 
(S

)

Residential Computer (Time)
EC2 (Time)
Residential Computer (Energy)
EC2 (Energy)

0

5

10

15

20

25

30

35

E
ne

rg
y 

(J
)

(b) Response Time and Energy Consump-
tion for Parallel Processing

Fig. 5. Face Detection

is more pronounced than when the program is outsourced to EC2: on the res-
idential computer, the response time is about 10.25 seconds and 11.90 seconds
without or with the data transferred. Correspondingly, when the computation
is outsourced to the nearby residential computer, the energy consumed is only
about 23% and 36%, respectively, of the total energy consumption when we have
on device execution without or with data transfer.

With the help of parallelization, the performance is better. Figure 5(b) shows
the effect of parallelism on the response time and the energy consumption. How-
ever, as shown in the figure, although using 2 nodes to parallelize the compu-
tation does improve the user response time and the total energy consumption
on the mobile device, the response time and energy consumption of the com-
putation actually increase when the parallelization is further increased (from 2
nodes to 3 nodes). When the computing nodes have the data in prior, the per-
formance is better than when the data need to be actually transferred before
the computation. This indicates outsourcing computation to the nodes where
data resides may be more beneficial than to the nodes with higher computation
power without any data in prior. But again, an appropriate parallelization level
is always desired as more resources may not improve the performance.

Image Sub Pattern Search. For Image Sub Pattern Search, Figure 6(a) shows
that executing on the Android takes the longest time of about 163.9 seconds.

OD CD CD+F C C+F EC2
0

50

100

150

200

T
im

e 
(S

)

Time
Energy

0

50

100

150

200

E
ne

rg
y 

(J
)

(a) Response Time and Energy
Consumption

1(CD) 2(CD) 3(CD) 4(CD) 1(C) 2(C) 3(C) 4(C)
0

10

20

30

40

50

60

T
im

e 
(S

)

Residential Computer (Time)
EC2 (Time)
Residential Computer (Energy)
EC2 (Energy)

0

10

20

30

40

50

60

E
ne

rg
y 

(J
)

(b) Response Time and Energy Consump-
tion for Parallel Processing

Fig. 6. Image Sub Pattern Search



Mobile MapReduce: Minimizing Response Time 57

In all the outsourcing scenarios, the response time is significantly reduced. Cor-
respondingly, the energy consumption is the largest for the on-device execution.
The reduction when the program is outsourced to the nearby residential com-
puters is more pronounced than when the program is outsourced to EC2: on the
residential computer, the response time is about 13.37 seconds and 14.52 seconds
without or with the data transferred. Correspondingly, the energy consumed is
only about 10% and 11% of the On-device (OD) computation, respectively, when
the computation is outsourced to nearby residential computers. The node failure
only causes 54% and 51% increase of the response time and the energy consump-
tion compared to their counterpart without any node failure. These results are
still much better than those when outsourcing to EC2.

Figure 6(b) shows the response time and the energy consumption when the
computation is parallelized. When two and three nodes are used for comput-
ing, both the response time and the energy consumption on the mobile device
decrease. However, when more nodes are used in the computing, performance
degrades due to parallelization overhead. On the other hand without paralleliza-
tion, the response time is more than 10 seconds, but with parallelization, the
user gets the result back in 5 seconds, which is more feasible.

The experimental results show that while computation is outsourced to resi-
dential computers, the overall performance is better than when the computation
is outsourced to EC2, though EC2 is much more powerful than nearby residential
computers in terms of the CPU speed. The performance can be further improved
when the computation is parallelized. The average gain for the response time and
energy consumption is about 1.5 to 2 times compared to its single node compu-
tation on average. However, with parallel processing, appropriate parallelization
is desired. This is because a certain level of parallelization can help reduce the
response time and the total energy consumption on the mobile device, and fur-
ther increasing parallelization level may actually degrade the performance. This
is due to the fact that parallelization involves overhead, which may dominate
under certain circumstances. Thus, in scheduling the execution of outsourced
tasks, this must be taken into consideration as we have done in MMR scheduler.

6 Related Work

Plenty of research has been conducted to outsource computing tasks to exter-
nal computing sources [10,18,26,11]. Typically, these schemes focus on how to
properly split the job and deploy on the external computing sources. For ex-
ample, studies [28,12] demonstrate the ability to partition the application and
associate classes and thus outsourcing them. Rudenko et al. [26] suggest that
if the total energy cost of sending the task else where and receiving the result
back is lower than the cost of running it locally, then remote process execution
can save battery power. Flinn et al. [18] also propose a similar idea, in which
remote execution simultaneously leverages the mobility of mobile devices and
the richer resources of large devices. Balan et al. [10,11] propose to augment the
computation and storage capabilities of mobile devices by exploiting the nearby



58 M.A. Hassan and S. Chen

(surrogate) computers. Recently, MAUI [14] is proposed to partition the program
dynamically and submit it on surrogate computers.

However, existing work has considered little about how to minimize the re-
sponse time of the outsourced application, where the network latency may domi-
nate. Considering network transferring and appropriate parallel processing, MMR
partitions the data into small chunks to keep the re-execution tractable. Com-
pared to MAUI [14] that requires modification of each application, MMR aims
to work transparently with the existing over 10,000 programs developed based
on MapReduce. In addition, compared with the partitioning overhead of exist-
ing approaches [28,14], the simple two methods Map and Reduce inherited from
MapReduce offer an simple interface to be implemented in practice.

7 Conclusion

While mobile devices and mobile applications are getting more and more popu-
lar, effectively and properly executing these mobile applications is challenging.
In this work, we focus on how to minimize the users’ response time of these
applications from the users’s perspective. Considering both the network impact
and the computing itself, we have designed and implemented Mobile MapReduce
based on the original MapReduce framework for this purpose. Experimented on
a prototype, Mobile MapReduce demonstrates that it can effectively minimize
user’s response time.

Acknowledgement. We appreciate constructive comments from anonymous
referees. The work is partially supported by NSF under grants CNS-0746649
and CNS-1117300 and AFOSR under grant FA9550-09-1-0071.

References

1. AWS SDK for Android, http://aws.amazon.com/sdkforandroid/
2. BlastReduce: High Performance Short Read Mapping with MapReduce,

http://www.cbcb.umd.edu/software/blastreduce/

3. Cross Correlation, http://en.wikipedia.org/wiki/Cross-correlation
4. Diamedic. Diabetes Glucose Monitoring Logbook,

http://ziyang.eecs.umich.edu/projects/powertutor/index.html

5. International Data Corporation : Press Release, January 28- February 4 (2010),
http://www.idc.com/

6. International Telecommunication Union : Press Release, June 10 (2009),
www.itu.int

7. iPhone Heart Monitor Tracks Your Heartbeat Unless You Are Dead,
gizmodo.com/5056167/

8. Mint, http://www.mint.com/
9. Power Tutor, http://ziyang.eecs.umich.edu/projects/powertutor/index.html

10. Balan, R., Flinn, J., Satyanarayanan, M., Sinnamohideen, S., Yang, H.-I.: The case
of cyber foraging. In: Proceedings of the 10th ACM SIGOPS European Workshop,
Saint-Emilion, France (July 2002)

http://aws.amazon.com/sdkforandroid/
http://www.cbcb.umd.edu/software/blastreduce/
http://en.wikipedia.org/wiki/Cross-correlation
http://ziyang.eecs.umich.edu/projects/powertutor/index.html
http://www.idc.com/
www.itu.int
gizmodo.com/5056167/
http://www.mint.com/
http://ziyang.eecs.umich.edu/projects/powertutor/index.html


Mobile MapReduce: Minimizing Response Time 59

11. Balan, R.K., Gergle, D., Satyanarayanan, M., Herbsleb, J.: Simplifying cyber for-
aging for mobile devices. In: Proceedings of The 5th International Conference on
Mobile Systems, San Juan, Puerto Rico (June 2007)

12. Chun, B.G., Maniatis, P.: Augmented smartphone applications through clone cloud
execution. In: Proceedings of the 12th Workshop on Hot Topics in Operating Sys-
tems (HotOS), Monte Verit, Switzerland (May 2009)

13. Crescenzi, P., Kann, V.: A compendium of NP optimization problems (1998)
14. Cuervo, E., Balasubramanian, A., ki Cho, D., Wolman, A., Saroiu, S., Chandra, R.,

Bahl, P.: MAUI: Making smartphones last longer with code offload. In: Proceedings
of the 8th International Conference on Mobile Systems, Applications, and Services
(MobiSys), San Francisco, CA, USA (June 2010)

15. Dean, J., Ghemaawat, S.: Mapreduce a flexible data processing tool. Communica-
tion of the ACM (January 2010)

16. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
In: Proceedings of the 6th Symposium on Operating System Design and Imple-
mentation (OSDI), San Francisco, CA (December 2004)

17. Eriksson, J., Girod, L., Hull, B., Newton, R., Madden, S., Balakrishnan, H.: The
pothole patrol: Using a mobile sensor network for road surface monitoring. In:
Proceedings of The 6th International Conference on Mobile Systems, Applications,
and Services (MobiSys), Breckenridge, Colorado (June 2008)

18. Flinn, J., Narayanan, D., Satyanarayanan, M.: Self-tuned remote execution for per-
vasive computing. In: Proceedings of the 8th Workshop on Hot Topics in Operating
Systems (HotOS), Schloss Elmau, Germany (May 2001)

19. Hart, J.M.: Data processing: Parallelism and performance. In: MSDN Magazine
(January 2011)

20. Hassan, M.A., Chen, S.: An investigation of different computing sources for mo-
bile application outsourcing on the road. In: Proceedings of the 4th International
ICST Conference on MOBILe Wireless MiddleWARE, Operating Systems, and
Applications (Mobilware) (June 2011)

21. Jain, J.R., Jain, A.K.: Displacement measurement and its application in interframe
image coding. IEEE Transactions on Communications 29 (December 1981)

22. Kang, S., Lee, J., Jang, H., Lee, H., Lee, Y., Park, S., Park, T., Song, J.: Seemon:
Scalable and energy-efficient context monitoring framework for sensor-rich mobile
environments. In: Proceedings of The 6th International Conference on Mobile Sys-
tems, Applications, and Services (MobiSys), Breckenridge, Colorado (June 2008)

23. Liu, B., Terlecky, P., Bar-Noy, A., Govindan, R., Neely, M.J.: Optimizing informa-
tion credibility in social swarming applications. In: Proceedings of IEEE InfoCom,
2011 Mini-Conference, Shanghai, China (April 2011)

24. Ott, J., Kutscher, D.: Drive-thru internet: IEEE 802.11b for Automobile Users. In:
Proceedings of IEEE InfoCom, Hong Kong (March 2004)

25. Osman, S., Subhraveti, D., Su, G., Nieh, J.: The design and implementation of
zap: A system for migrating computing environments. In: Proceedings of the 5th
Symposium on Operating System Design and Implementation (OSDI), Boston,
MA (December 2002)

26. Rudenko, A., Reiher, P., Popek, G.J., Kuenning, G.H.: Saving portable computer
battery power through remote process execution. In: Proceedings of Mobile Com-
puting and Communication Review, MC2R (1998)

27. White, T.: Hadoop: The definitive guide
28. Nahrstedt, K., Gu, X., Messer, A., Greenberg, I., Milojicic, D.: Adaptive offload-

ing inference for delivering applications in pervasive computing environments.
In: Proceedings of IEEE International Conference on Pervasive Computing and
Communications (PerCom), Dallas-Fort Worth, Texas (March 2003)


	Mobile MapReduce: Minimizing Response Time of Computing Intensive Mobile Applications
	Introduction
	Background and Motivation
	Nearby Computers vs. Public Clouds
	MapReduce

	Mobile MapReduce Design
	Mobile MapReduce Implementation
	MMR vs. Hadoop
	MMR Workflow

	Preliminary Evaluation
	Experiment Setup
	Experimental Results

	Related Work
	Conclusion
	References




