
J.Y. Zhang et al. (Eds.): MobiCASE 2011, LNICST 95, pp. 387–394, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

A New Key Delivering Platform Based on NFC Enabled
Android Phone and Dual Interfaces EAP-TLS

Contactless Smartcards

Pascal Urien and Christophe Kiennert

Telecom ParisTech, 23 avenue d’Italie Paris 75013, France
EtherTrust, 62b rue Gay Lussac Paris, 75005, France
Pascal.Urien@Telecom-ParisTech.fr,
Christophe.Kiennert@EtherTrust.com

Abstract. This paper introduces a new mobile service, delivering keys for hotel
rooms equipped with RFID locks. It works with Android smartphones offering
NFC facilities. Keys are made with dual interface contactless smartcards
equipped with SSL/TLS stacks and compatible with legacy locks. Keys cards
securely download keys value from dedicated WEB server, thanks to Internet
and NFC connectivity offered by the Android system. We plan to deploy an
experimental platform with industrial partners within the next months.

Keywords: Mobile service, security, NFC, smartcards, SSL/TLS.

1 Introduction

Mobile service is a very attractive topic for the deployment of the emerging always on
society. It is expected [1] that in 2015, about one billion of smartphones, with full
Internet connectivity, will be sold every year. Android is a popular open operating
system for mobiles based on UNIX, whose version 1.0 was commercialized by the
end of 1998. Twelve years later, fall 2010, the 2.3 version (also refereed as
Gingerbread) was released with the support of Near Field Communication (NFC)
standard [2]. This technology appears in the first decade of the 21st century.

Fig. 1. RFID Lock, new mobile service

Mifare Lock NFC Enabled Mobile
Keys

Server

SSL/TLS Secure Channel

RFID
Dual

Interfaces
SSL Stack

Mifare
Key Card

388 P. Urien and C. Kiennert

It is a radio link, working at the 13,56 MHz frequency and integrated in low power
tamper resistant microelectronic chips, usually named contactless smartcards. These
devices, battery free and fed by the electromagnetic field, are widely used in Europe
and Asia for ticketing, access control and banking purposes. According to the NFC
terminology, Gingerbread supports the peer to peer mode (data exchange between two
NFC enabled devices), and the reader mode (feeding and communication with an
NFC device working in the card mode). Despite the fact that the hardware could also
provide the card mode, this feature is not currently supported by Android.

This paper presents an experimental mobile service targeting key delivering for
electronic locks. In the legacy service (see for example [3]) electronic locks are
equipped with RFID readers, and work with RFID cards (frequently including Mifare
[4] components) in spite of magnetic strip cards. A device named the Card Encoder,
belonging to a dedicated information system, writes keys values in RFID cards. Our
new experimental platform (see figure 1) works with dual interfaces RFIDs (whose
structure is detailed by section IV), establishing secure SSL/TLS sessions with a key
server. Internet connectivity and human interface is provided and managed by an
Android phone. The user is identified by the X509 certificate stored in his key card,
and thanks to its smart-phone securely collects a key from the dedicated WEB server.
This paper is constructed according to the following outline. Section 2 introduces the
NFC and Android technologies. Section 3 describes dual interfaces RFIDs. Section 4
presents basic concepts of the EAP-TLS application for contactless smartcard and
gives performances for the prototype platform. Section 5 details the new and secure
key delivering services.

2 About The NFC Technology and Android

The Near Field Communication (NFC) technology is a radio interface working at
13,56 MHz. It supports several data encoding schemes, delivering binary throughput
ranging from 106 to 848 Kbits/s. The two main classes of such modems are referred
as typeA and typeB and are detailed by the ISO 14443 and NFC standards. This
technology is embedded in small electronic chips with low power consumption (less
than 10mW), which are fed by electromagnetic induction. A device equipped with an
antenna and usually named the reader, generates a magnetic field of about 5 A/m,
which according to the Lens laws induces a tension of about 2,2V on a rectangular
loop with an area of 5x8 cm2. The working distance of this system is within 10 cm.
The RFID components are split in two categories,

- small chips (less than 1mm2) designed with cabled logic;
- secure microcontrollers chips (about 25 mm2) equipped with CPU, RAM, Non
Volatile Memory, and cryptographic accelerators units.

A good illustration of the first RFID category is the Mifare 1K [4] (1K meaning one
KBytes of memory) widely deployed for ticketing applications or RFIDs keys [3].
Electronic passports (normalized by the ICAO standards [5]) include RFIDs
belonging to the second category either typeA or typeB.

In this paper we present a highly secure key delivering service dealing with
smartphones and dual interfaces RFIDs. These electronic chips equipped with an

 A New Key Delivering Platform Based on NFC Enabled Android Phone 389

antenna, support both the Mifare 1K and ISO 14443 (typeA) protocols and embed a
secure microcontroller. Today some hotels are already equipped with NFC locks,
including a battery and a reader, which read customers’ RFID cards. The basic idea of
our new service is to get a key from a WEB server thanks to an SSL/TLS stack
running in the RFID secure microcontroller and monitored by Android software. This
data is afterwards transferred in the Mifare emulated card.

Android [6] [7] [8] is an operating system originally created by the company
Android Inc. and supported by the Open Handset Alliance, driven by the Google
company. It uses a Linux kernel and provides a runtime environment based on the
java programming language. Applications are compiled from JAVA modules, then
transformed by the "dx" tool and executed by a particular Virtual Machine called the
Dalvik Virtual Machine (DVM). This virtual machine processes code bytes stored in
Dalvik (.dex) files, whose format is optimized for minimal memory footprint. An
Activity is an application component that manages a screen with which users can
interact in order to do something. It may register to the Android system in order to be
launched by asynchronous messages named Intent. The list of Intent processed by an
application is fixed by an Intent Filter facility. The Android version 2.3, also named
Gingerbread, supports NFC software APIs, building an abstract framework over a
NFC adapter chip.

3 Dual Interfaces RFID

A dual interface RFID is a secure microcontroller whose security is enforced by
physical and logical countermeasures managed by the embedded operating system.
Our experimental platform works with a JCOP41 device.

Secure microcontrollers are electronic chips including CPU, RAM, and non-
volatile memory such as E2PROM or FLASH [9]. Security is enforced by various
physical and logical countermeasures, driven by a dedicated embedded operating
system. According to [10] about 5,5 billions of such devices were manufactured in
2010, mainly as SIM cards (75%) and banking cards (15 %). The format of
information exchanges with these components is detailed by the ISO7816 standard. It
comprises requests and responses whose maximum size is about 256 bytes. Multiple
communication interfaces are supported, including ISO7816 serial port, USB, and
NFC radio link. Most of operating systems implement a Java Virtual Machine,
executing a standardized subset of the JAVA language (see next section). Among
them, JCOP (standing for Java Card OpenPlatform) was designed by an IBM Zurich
research team [11], and since 2007 is supported by the NXP Company.

According to [12] it uses a Philips hardware chip composed of a processing unit,
security components, I/O ports, volatile and non-volatile memories (4608 Bytes
RAM, 160 KBytes ROM, 72 KBytes E2PROM), a random number generator, and
crypto co-processors computing Triple-DES, AES and RSA procedures. This
component also embeds an ISO 14443 contactless radio interface. The JCOP41
operating system (see figure 2) includes a Java Virtual Machine (JVM) implemented
over the physical platform via facilities of a Hardware Abstraction Layer (HAL). A
JVM works with a subset of the java language; it supports a JavaCard Runtime
Execution (JCRE) for Applet processing and is associated with a set of packages

390 P. Urien and C. Kiennert

standardized by the Java Card Forum (JCF). These software libraries provide
cryptographic resources (SHA1, MD5, RSA…), and management of information
transfer over the radio interface.

Fig. 2. The JCOP41 Operating system

An application is a set of Java classes belonging to the same package, executed by
the JCRE. It is downloaded and installed thanks to the Card Manager component,
whose structure is defined by the Global Platform (GP) standard. Our application is
written for such javacards, with a memory footprint of about 20 Kbytes; it manages
TLS sessions with remote WEB server and transfers keys values in the Mifare sectors.

A Classic Mifare 1K device [4] is a chip working with a TypeA radio interface,
which includes a secure 1KBytes E2PROM. This memory (see figure 2, right part) is
organized in 16 sectors with 4 blocks of 16 bytes each. Blocks are identified by an
index ranging from 0 to 63. The fourth block of every sectors (the sector trailer) stores
two 48 bits keys (KeyA and KeyB) ; the remaining four bytes define the access
conditions for the blocks. Read and Write operations may be free or controlled by
authentication procedures dealing with KeyA or KeyB. The block number 0, named
Manufacturer Block, contains a four bytes Unique Identifier (UID) and eleven bytes
of manufacturer data. The authentication process uses a three pass protocol based on
the so-called Crypto-1 stream cipher, and two random numbers produced by the
reader and the Mifare card. A reverse engineering was performed and attacks
published in [13]. In a brute-force attack an attacker records two challenge response
exchanged between the legitimate reader and a card. This attack takes under 50
minutes for trying 248 keys values using a dedicated FPGA chip. Nevertheless, this
device is still widely used for ticketing or keying services. Authentication weakness
impact is reduced when these RFIDs store cryptographic tokens that can be freely
read, such as those written in magnetic stripes for opening locks.

A dual interface RFID supports both Mifare and ISO 14443 radio protocol. It is
often useful for the operating system (i.e javacard applications) to write or read data
in Mifare blocks. A dedicated API performs this task; for security reasons the
knowledge of KeyA or KeyB is not required. Instead of this value, a parameter called
the Mifare Password (MP, [14]) is computed according to the following relation:

MP = h(IV) = DESDKEY1 o DES-1
DKEY2 o DESDKEY1 (IV)

Mifare API Mifare Emulation

 A New Key Delivering Platform Based on NFC Enabled Android Phone 391

Where the parameter IV is an 8 bytes null value, and DKEY1 and DKEY2 are two DES
keys (56 bits each) built from KeyA or KeyB (48 bits) with 8 bits of padding set to
zero. The JCOP operating system includes a Mifare API, which internally performs
Read/Write operations with the knowledge of the MP.

4 EAP-TLS Smartcard

The SSL (or Secure Socket Layer) and its IETF standardized version TLS (Transport
Layer Security) is the de facto standard for the Internet security.

The EAP-TLS protocol [15] was initially designed for authentication purposes over
PPP links. It is today widely used in IEEE 802.1x compliant infrastructures (such as
Wi-Fi networks) and is supported by the IKEv2 protocol for opening IPSEC secure
channels. One of its main benefits is the transport of SSL/TLS messages in EAP
(Extensible Authentication Protocol) packets, according to a datagrams paradigm.
Therefore it enables the deployment of SSL/TLS services without TCP/IP flavors, and
consequently is well suited for secure microcontroller computing platform. The
functionalities of the EAP-TLS embedded application are detailed by an IETF draft
[16]. More details may be found in [17] and [18]. The EAP protocol provides
fragmentation and reassembly services. TLS packets maximum size is about 16384
(214) bytes. The TLS stack is equipped with an X509 certificate and a RSA private
key used for client’s authentication in the TLS full mode, illustrated by figure 3 (left
part).

A session is initially opened according to a four way handshake (the full mode, see
figure 3, left part) in which client and server are mutually authenticated by their
certificates. At the end of this phase (the Phase I according to figure 3) a master key
has been computed, cryptographic algorithms have been negotiated for data privacy
and integrity, and a set of associated ephemeral keys (referred as the keys-block) has
been released. These keys are exported from the smartcard to the Android phone that
afterwards manages the TLS session, and which typically performs HTTP encryption
and decryption operations (referred as Phase II by figure 3).

The TLS resume mode works with a previously computed master secret, according
to a three ways handshake (see figure 3, right part). It is based on symmetric
cryptography, and reduces the computing load on the server side; by default a WEB
server uses a full session only every 10 minutes. A resume session is opened by the
EAP-TLS application, which afterwards transfers the keys-block to the mobile phone
that performs Phase II procedure. It is important to notice that the TLS master secret
is never exported from the smartcard and remains securely stored in the device.

Because RFIDs are low power consumption devices, with small computing
resources, and furthermore are driven by operating systems that manage
countermeasures, computing performance is a critical topic.

The four ways handshake (Phase I) of a full TLS session (with RSA 1024 bits)
costs 11,7s. It requires one encryption with the private key (120 ms) two
computations with public keys (2x 26 ms). About 230 MD5 (230 x 2 ms) and SHA1
(230 x 4ms) calculations (dealing with 64 bytes blocks) are performed. It exchanges
2,500 bytes, whose transfer costs 0,125 x 2500 = 310 ms. The remaining time (9,8s =
11,7-1,9) is burnt by the java code execution.

392 P. Urien and C. Kiennert

The three ways handshake (Phase I) of a resume session consumes 2,6s. It needs
the exchange of 250 bytes (250x 0,125 = 31 ms), and the processing of 75 MD5 and
SHA1 that consumes 450ms. The remaining time (2,1s= 2,6-0,5) is spent in the java
code execution.

Fig. 3. Phase I and Phase II operations during a TLS session, using an EAP-TLS smartcard

These experimental results show that most of is spent in the embedded JVM.
However this is a not a general behavior and other javacards present different figures,
in which most of computing times are consumed by cryptographic resources.

5 The Key Delivering Use Case

The key mobile service architecture is illustrated by figure 4. A subscriber owns an
Android NFC Smartphone and contactless dual interfaces RFID embedding a

Client hello (ClientRandom)

Server Hello (Session-id,
 ServerRandom)

Certificate

CertificateRequest
ServerHelloDone

Certificate

Certificate Verify

ChangeCipherSpec

(Encrypted) Finished
ChangeCipherSpec

(Encrypted) Finished

Client Server

Client hello (Session-id,
 ClientRandom)

Server Hello(Session-id,
 ServerRandom)

ChangeCipherSpec

(Encrypted) Finished

ChangeCipherSpec

(Encrypted) Finished

ClientKeyExchange
{PreMasterSecret}KpubS

Client Server

Record Layer in Ciphered Mode
Encrypted Application Messages

Record Layer in Ciphered Mode
Encrypted Application Messages

PHASE I

PHASE II

A

B

C

D

A

B

C

 A New Key Delivering Platform Based on NFC Enabled Android Phone 393

Javacard application (RA) that performs key downloading. The mobile is equipped
with a dedicated application (MA). All Dalvik applications must be signed, but the
Android operating system allows software downloading from entrusted source, i.e.
which are not available from the Android Market store.

Upon detection of the RFID by the Smartphone, the user is prompted to select and
start the appropriate (MA) application. The TLS stack embedded in the RFID is
activated, the mobile application (MA) opens a TCP socket with the remote server,
and thereafter supervises the TLS handshake Phase I between the RFID and the key
server. Upon success the keys-block computed by the RFID is transferred to the
mobile which fully manages the TLS session Phase II.

Fig. 4. The Key Delivering Service

The mobile application builds an HTTP request transmitted over the TLS session,
i.e. the key repository is identified by an URL such as
https://www.server.com/getkey.php. The requested file is located in a server area for
which mutual TLS authentication is mandatory. Therefore the RFID is identified by
its embedded certificate dynamically recorded (on the key server side) by the PHP
variable $_SERVER['SSL_CLIENT_CERT'].

The getkey.php script uses the well-known OPENSSL facilities in order to extract
the client’s RSA public key. It then builds a data structure that we call the Key
Container (KC), which securely stores a set of data (the lock key, LK) to be written in
one or several Mifare blocks. A container is made of two parts, a header and a trailer.

1. The header is the encrypted value of the key (LK) with the RFID public RSA key,
according to the PKCS #1 standard.

2. The trailer contains a PKCS #1 signature of the header with a private key whose
certificate is trusted by the RFID EAP-TLS application (RA).

The hexadecimal ASCII dump of the container is returned in the body of the HTTP
response, which is collected by the mobile phone. Finally the Key Container is pushed
by the mobile application to the RFID. The latter checks the signature with
signatory’s public Key, and decrypts the LK value with its private keys. It then

MA
APP

RA
APP

KC

Write Key via
the Mifare API

394 P. Urien and C. Kiennert

uses the Mifare API and the associated Mifare Password to write LK in the
appropriate blocks.

6 Conclusion

In this paper we presented a new key delivering platform working with dual interfaces
smartcards and Android mobile. It is a new class of mobile applications in which the
user is equipped with a RFID and a smart-phone. The RFID accesses the Internet via
an application running on the mobile, but manages the security of the service. It is
afterwards autonomously used, which avoids the lack of battery issue.

References

1. http://www.gartner.com/it/page.jsp?id=1622614
2. NFC Forum Specifications, http://www.nfc-forum.org/specs/
3. The Classic RFID VingCard technology,

http://www.vingcard.com/page?id=4380
4. Mifare Standard Card IC MIF1 IC S50, Functional Specification, Revision 5.1, Philips

semiconductors (May 2001)
5. International Civil Aviation Organization. Machine Readable Travel Documents, ICAO

Document 9303, Part 1,2,3
6. What is android, http://developer.android.com/guide/basics/

what-is-android.html
7. Hassan, Z.S.: Ubiquitous computing and android. In: Third International Conference on

Digital Information Management, ICDIM 2008 (2008)
8. Enck, W., Ongtang, M., McDaniel, P.: Understanding Android Security. IEEE Security &

Privacy 7(1) (2009)
9. Jurgensen, T.M., et al.: Smart Cards: The Developer’s Toolkit. Prentice Hall PTR (2002)

ISBN 0130937304
10. http://www.eurosmart.com/
11. Baentsch, M., Buhler, P., Eirich, T., Horing, F., Oestreicher, M.: JavaCard-from hype to

reality. IEEE Concurrency 7(4)
12. Certification Report, BSI-DSZ-CC-0426-2007 for NXP P541G072V0P (JCOP 41 v2.3.1)

from IBM Deutschland Entwicklung GmbH,
http://www.commoncriteriaportal.org

13. Nohl, K., Evans, D., Plotz, S., Plotz, H.: Reverse-Engineering a Cryptographic RFID Tag.
In: Proceeding of USENIX Security Symposium, San Jose (2008)

14. AN02105, Secure Access to Mifare Memory, on Dual Interface Smart Card ICs,
Application Note, Philips semiconductors (January 2002)

15. RFC 2716, PPP EAP TLS Authentication Protocol (October 1999)
16. IETF draft, EAP-Support in Smartcard (August 2011)
17. Urien, P.: Tandem Smart Cards: Enforcing Trust for TLS-Based Network Services. In:

Proceeding of ASWN 2008 (2008)
18. Urien, P.: Collaboration of SSL smart cards within the WEB2 landscape. In: Proceeding of

CTS 2009 (2009)

	A New Key Delivering Platform Based on NFC Enabled Android Phone and Dual Interfaces EAP-TLS Contactless Smartcards
	Introduction
	About The NFC Technology and Android
	Dual Interfaces RFID
	EAP-TLS Smartcard
	The Key Delivering Use Case
	Conclusion
	References

