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Abstract. In assistive technology design, it is indispensible to consider the 
sensory, physical and cognitive level of target users. Cognitive load is an 
important indicator of cognitive feedback during interaction and became the 
critical research issue in designing assistive user interfaces, incorporated with 
smartphone based assistive technology like in the android platform. In this 
paper, we proposed a cognitive load based user interface integrated with 
reconfigured mobile android phone (R-MAP) based on user’s cognitive load 
level. We performed some cognitive tasks within a small group of sighted but 
blindfolded people and blind people or visually impaired using R-MAP. Based 
on task performance and cognitive load levels we manually annotated some 
data of 24 participants and finally applied some machine learning algorithms to 
automate the mobile interface. Based on our novel design and experimental 
finding, we recommended that “cognitive load enabled feedbacks based 
assistive user interface” would be a useful assistive tool for the people who use 
mobile phone for their daily operations. 
 
Keywords: Assistive technology, android phone, cognitive load, virtual sound, 
user interface. 

1 Introduction 

Smart phone as an assistive technology tool became popular to the users who 
are mostly dependent on them. Blind people or visual impaired feel more 
comfortable using feedback enabled user interfaces for day-to-day operations. In 
this study we used Reconfigured Mobile Android Phone (R-MAP), a fully 
integrated standalone system that has an easy-to-use interface to reconfigure an 
Android mobile phone with assistive virtual sound (VS) feedback [1]. The ultimate 
goal of this study is to design an automated feedback enabled mobile phone user 
interface based on cognitive load of the people who use it as an assistive 
technology tool. Along this direction, the very first objective we considered is to 
measure cognitive load. The second objective was to map different task based 
on task-complexity. The third challenge considered was to use machine learning 
algorithms to automate the user interface. Hence, the objective set was to find 
relatively better algorithm based on cognitive load classification performance.  
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Cognitive load [3][4] refers to the amount of working memory load imposed on 
the human cognitive capacity when performing a particular task. Measuring 
cognitive load of people who are blind or visually impaired can be considered 
different, because of their different memory model, their more active phonological 
loop and special sketchpad rather than visuospatial sketchpad [5][6].  

People having problem with any one organs are categorized in assistive group. The 
memory model of assistive technology user is therefore different and their cognitive 
capabilities demand special consideration in designing technology tools using mobile 
phone.  

 
A-Normal load, B, B1-Average Cognitive load, C-Cognitive overload section 

Fig. 1. Human memory system Fig. 2. Working memory capacity and 
cognitive load   

In particular working memory is considered very sensitive to extraneous load. 
When working memory capacity exceeds the available resources for a task, we feel 
cognitively overloaded. The scenario can be explained by a simple graph in Fig. 2. It 
is the job of user interface designer to make the layout and presentation material as 
simple as possible for the user to better understand with few working memory 
resources and to reduce extraneous cognitive load.  

In this study two types of cognitive load measurement are considered. The 
objective method we adopted into R-MAP is the secondary task based performance 
rating with VS feedback. Another method is the subjective rating of formative 
questionnaires representing three types of cognitive load index (intrinsic load, 
extraneous load and germane load) that is administered during post experiment 
interview [8]. 

The rest of the paper is organized as following: Section 2 describes a brief 
literature review on cognitive load, assistive technology tools and relationship of 
human memory model. In Section 3 the design of R-MAP interface is explained. In 
Section 4 the experimental protocol is explained. Finally in section 5 experimental 
results are explained with discussion and possible future improvements.   

2 State of the Art 

Measuring cognitive load in ordinal cognitive load scale is important in designing an 
optimal interaction approach between humans and assistive technology systems in 
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order to produce the highest task performance. These loads deal with mental 
processes of learning, memory and problem solving. Sweller [14] defined the 
Cognitive Load theory. There are three types of cognitive loads [15][16], namely 
intrinsic, extraneous and germane. The cognitive load theory suggests increasing the 
germane load while decreasing intrinsic and extraneous load. In task description, 
decision task involves different form of Boolean or fuzzy based decisions. Memory 
retrieval task involves query and information retrieval from main memory or 
secondary memory. Presentation format is the representation of task materials which 
is organized (with data structure) or unorganized form. 

Recently, Pradipta and Rabinson [13] proposed a novel approach, user interface 
simulator, to designing and evaluating inclusive systems by modeling users’ 
performance with a wide range of abilities. Another method with i-phone touch screen 
based cognitive interfaces is researched by Young et al.[12], expecting the future 
generation of computer based system will need cognitive user interfaces to achieve 
sufficient, robust and intelligent human interaction.  

3 Design of Interface 

In our study we applied a similar approach using assistive technology tool R-MAP 
[1], and our own designed user interface to discover the similarities and differences of 
cognitive performances shown by blindfolded and blind subjects. A mini-shallow 
structure user interface like Fig. 3 in R-MAP is experimented. 

  

Fig. 3. R-MAP mini-shallow structure interface 
Layout 

Fig. 4. Automata of R-MAP operation 
(interface interaction) 

Considering space of the interface operation, only two /three special locations are 
selected for operational execution. In depth of interface operation only two layer of 
information, same locations are used twice for two steps. For example, step 2 and step 
4 works in same location. In addition to these two locations for the secondary task 
purpose a third location ‘a’’ that is basically instructional shifted location of ‘a’ 
(dashed marked box in the figure) is included in this design. Therefore, it is a mixed 
mini-shallow structure layout of interface. An automaton of this interface is shown in 
Fig. 4.  
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and useful operation, we ignored LL and consider only AL and HL as a feature for 
our classification. The four blind people spontaneously participated in all tasks and 
showed good performance with significant load.  Based on their task performance and 
cognitive load level we manually labeled all data of 24 participants and finally applied 
three machine learning algorithm (J48, Random forest and Naïve Bays) from Weka 
toolbox [7].  

4.2 Data 

A sample of data we collected is shown in Table 1 below. The task value -1 indicates 
that participant did not participate in that task. Error value is the cumulative sum of 
number of errors a participant did in three different tasks.  

Table 1. Sample data 
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User-1 29 Asian BF M N 1 E 3 -1 -1 3 3 HL 

User-4 31 American BF F Y 3 E,M,C 0 1 3 4 1.333333 AL 

User-7 30 African BF F Y 2 E,M 0 4 -1 4 2 HL 

User-10 30 American BF M N 2 E,M 0 3 -1 3 1.5 AL 

User-25 42 American BP M Y 3 E,M,C 0 1 2 3 1 AL 

*n- novice user, y- expert user, M- Male, F- Female, BF- Blind-folded, BP- Blind People, 
E- Easy, M-Moderate, C-Complex, CLI – cognitive load index, HL – high load (Overload), AL – Average load. 

5 Results 

We applied Welch's t-test with 95% confidence interval and standard error calculation 
on the preprocessed data before application of machine learning algorithms for 
classification. The result is shown in Table 2a and Table 2b.  

 
Table 2a. Cognitive load score comparison
between Non-expert group and Expert group

 Table 2b. Cognitive Load Score comparison
between blindfolded and visual impaired 
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Table 2a. shows the t values during error calculation and two-tailed p-value for 
significance judgment. As non-expert subjects do not have prior smart phone use 
experience, the result shows that in all case of cognitive load measure, difference 
between non-expert and expert are statistically significant.  For same test on 
blindfolded versus visually impaired people (Table 2b) shows significant differences. 
In case of subjective cognitive load, the difference is considered not quite statistically 
significant and same for the secondary task performance. Box and whisker diagram 
(Fig. 6) are also plotted to see the impression of sample data. 

 

Fig. 6. Cognitive Load assessments between sighted but Blindfolded (BF) and Visual  
Impaired (VI) 

J48, Random Forest and Naïve Bayes classifiers were used with 10 fold cross 
validation. Random Forest shows relatively better performance. The performance 
classification is shown in table 3. 

Table 3. Performance Classification 

Classifier Accuracy (%) Kappa 

J48 72 3.91 
Random Forest 78 4.32 
Naïve Bayes 67 3.56 

6 Conclusion 

This study signifies the difference of blindfolded subjects to act as a blind people 
during cognitive experiment through android phone based assistive interface. It also 
supports the evidence of different cognitive map, sometimes superior performance 
shown by people who are blind or visually impaired based on smart phone use 
experience. As a novel step to automate an assistive interface, the random forest 
algorithm found better to classify cognitive load indices based on the sample data. In 
future we are working with more blind subjects and different methods for load 
measurement and adaptation to improve the existing ststem.  
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