
Interdroid Versioned Databases:

Decentralized Collaborative Authoring
of Arbitrary Relational Data

for Android Powered Mobile Devices

Emilian Miron, Nicholas Palmer, Roelof Kemp, Thilo Kielmann, and Henri Bal

VU University Amsterdam, The Netherlands
emilian.miron@gmail.com, {palmer,rkemp,kielmann,bal}@cs.vu.nl

Abstract. Complex interactions in software development have led to
the creation of version control systems to manage source code. These
systems have become increasingly flexible and support disconnected and
decentralized operations.

However the authoring of other types of data has remained behind and
often relies on centralized and online solutions. This is a big problem in
the mobile market where applications are encouraged to use relational
databases to store their information but little help is offered to allow
synchronization and collaboration with peers.

The Interdroid Versioned Databases (IVDb) framework is an in-
tegrated solution for collaboratively editing and sharing of arbitrary
relational data on the Android mobile platform. It is a reusable
framework that addresses the storage, versioning and synchronization
needs of applications, freeing developers of considerable design and
programming effort.

1 Introduction

People today may own and use several computing devices including personal
desktop computers, laptops, netbooks, tablets, and smartphones. Such devices
are paving the way for what pervasive and ubiquitous computing advocates have
long described[9]. It is certain that the way we communicate and collaborate
today has significantly changed to include and take advantage of these devices.

In particular digital collaborative authoring of many forms has become
popular. The most familiar examples of such collaborations include collaborative
web applications such as Wikipedia or Google Docs, but businesses are also
increasingly using collaborative workflows to design presentations, prepare
documents, create software models and author source code. One can think of even
more common things that are managed digitally and shared between members
of a family or community including shopping and todo lists, personal financial
accounting, and even medical records.

One would like to bring these kinds of collaborative applications to mobile
devices. However, due to frequently changing connectivity status on these

J.Y. Zhang et al. (Eds.): MobiCASE 2011, LNICST 95, pp. 349–354, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



350 E. Miron et al.

devices, it is important for applications to offer disconnected and decentralized
operation. Unfortunately, writing a system which supports these modes of oper-
ation requires a large development effort for the application’s data storage and
synchronization layer. Because of the difficulties of distributed synchronization,
applications often settle for centralized and online solutions which do not meet
the needs of mobile users and introduce single points of failure.

The system presented in this paper addresses these problems by leveraging the
power of version control systems to bring decentralized collaborative editing of
relational databases to the mobile platform. This system is based on the popular
Git version control system and the Android[1] mobile platform. The end result
of this work is the Interdroid Versioned Databases (IVDb) framework which
provides a platform for distributed authoring of relational data.

The IVDb framework is an integrated solution for collaboratively editing and
sharing of arbitrary relational databases on Android. It is a reusable framework
that addresses the general storage, versioning and synchronization needs of
applications which require data storage, freeing developers of considerable design
and programming effort.

The API of this system was designed for the Android platform and with
developer familiarity in mind. Versioning blends naturally with the existing data
access mechanisms built into the platform. The framework also includes most
tools needed to bootstrap a collaborative editing application in the form of user
interface activities that deal with versioning related tasks and can easily interface
with pluggable data editing components written by the application developer.

The unique set of features offered by this system unlocks the door for
collaborative applications using structured data stores on mobile devices.

2 Background

Git is fundamentally a content oriented filing system with version tracking. Git
has the ability to track the state of a filing system based entirely on the hash
of the content of the filing system. Git is also able to track multiple branches
of a given history, and provides access to the history of commits as well as to
individual commits in a given branch. With this structure, and feature set, Git
is able to solve a portion of the problems we face when building a distributed
collaborative editing system for structured data.

Android[1] is an open source software stack designed for mobile phones.
Developers can write custom applications in the Java programming language
by using the same platform features that the core applications use. The Android
application framework provides several abstractions specifically designed for the
platform. Of primary importance for this paper is an integration with the existing
content provider interface.

Content providers are an abstraction of the Android application framework
used for storage and retrieval of data across applications. Android uses it to
expose platform data such as contacts and media information, while applications
can use existing content providers or write new ones. The content providers
differ from relational databases in how the tables are named. Instead of the flat



Interdroid Versioned Databases: Decentralized Collaborative Authoring 351

names and the notion of cross product joins, the tables of content providers are
presented within a URI scheme of content://. Each content provider corresponds
to an authority, while the path represents either a table or a table + row
identifier. In addition to the relational database operation the content provider
interface also associates a MIME type for each content URI. These MIME types
are used in conjunction with the intent system, in order to allow the Android
framework to select viewing and editing activities for specific URIs.

3 Design

The design of the system is driven by the vision of enabling collaborative editing
of structured data stores. We thus require the system to enable applications to
perform the following activities: provide access to read and modify data, save and
access historical versions, branch and merge, and share data with others. Finally,
we require the system to integrate well with the Android platform, provide tools
for easily transitioning existing applications, work well on resource constrained
platforms, and operate in a complete decentralized fashion.

The collaboration and versioning features are an extension to the Android
content provider data abstraction interface. Our solution keeps track of versioning
information alongside the existing non-versioned data abstraction. For instance,
the branch or commitwe are accessing can be embedded in either theURI passed to
the content provider or via the parameters of the operation.We have chosen for the
former because it is more natural to think of a particular row in a particular version
as a given resource rather than as an aspect of the operations on the resource.
Furthermore, this decision also reduces the effort to migrate existing applications
because most often content URIs are generated using a fixed prefix and thus the
system allows application programmers to alter that prefix in a single place rather
than having to alter every operation. Thus, the framework makes use of a URI
scheme which embeds the versioning information inside the URIs.

All URIs begin with a “content” scheme. They then specify the “authority”
for the given data, which can be thought of as a namespace, and then follow
with a path for the given data item or items. In the case of IVDb all repositories
are served using the same authority. The first path component is therefore the

content://authority/

Normal content
provider URI

Repositories

Additions
for

versioning

Local branches

Remote branches

Commits

Tables

Rows

Fig. 1. Versioned Content Provider URIs



352 E. Miron et al.

Fig. 2. Screen Shots: On the left is a shot of our Version Browser, and on the right the
IVDb Sharing Manager

repository. Following this is the branch type identifier, and then the actual branch
identifier. When migrating a legacy application the URI prefix can be easily
changed from the content schema and authority to the default local master
branch in the framework provider. Finally, the remaining path identifies the
table and optional row identifier. This design is pictured in Figure 1.

4 User Interface Components

IVDb includes several reusable user interface components (activities and views)
which can be used for bootstrapping a new or existing application with the
versioning related user interface. With these components, application developers
can focus on writing application specific data visualization user interface
components. (See Figure 2.)

The activities in the framework handle the following tasks: (a) Version
browser: manage local branches (add, delete), view list of versions (local
branches, remote branches and historical versions), commit changes as well as (b)
Sharing manager: manage remote peers, synchronize with others. The activities
launch related activities based on Intents with URIs from the uniform versioned
Content Provider URI scheme.

The custom application components and the activities from the framework
can easily interface with each other by using Android’s intent mechanism.



Interdroid Versioned Databases: Decentralized Collaborative Authoring 353

5 Evaluation

In order to evaluate the framework the Notepad Content Provider sample from
the Android platform development kit was modified to use the framework while
keeping the same data model.

The utility of the API can be quantified in lines of code saved when providing
the same features using the framework versus when not using the framework.
The ease of use is correlated with the utility but is more difficult to quantify as it
involves how well the framework integrates with the platform and how familiar
the interfaces are to developers. In general we found the modification to be
extremely easy to perform. We add 55 lines of code to the user interface code in
order to deal with viewing read only data which the original application did not
support. However, the content provider implementation was reduced from 204
lines of code to just 70, a significant savings for this application. We anticipate
applications with more complicated data types to have a higher percentage of
savings in the content provider.

We feel that a small addition in lines of code to the UI in order to add
explicit commit, branching, synchronization and viewing of historical versions is
a very small price to pay, particularly when offset by the significant reduction in
complexity of the content provider implementation. In total the codebase for the
versioned application was smaller than the original application while providing
more features. This shows that the framework has powerful abstractions that
lower development effort while at the same time providing additional versioning
features developers would otherwise not write.

6 Related Work

A great deal of work has been done on both synchronization and collaborative
editing on mobile devices.

The closest system to ours with regards to data format is Bayou[6]. It is
a replicated mobile database that provides eventual consistency over relational
data, however, the requirement to have deterministic conflict resolution programs
is admittedly very hard or even impossible without user intervention.

Byong et al[3] advocate that many collaborative writing scenarios require
asynchronous disconnected operations. They developed a synchronization system
for XML documents, which limits the applicability of their solution.

In Syxaw[5] the authors give a general synchronization system for files based
on merging of XML data. However, their work mainly deals with optimizing
bandwidth usage because of their focus on file system synchronization. Closest
to IVDb is their sample collaborative XML editor called Captio which aids users
by providing better merging alignment and visualization.

DocX2Go[7] makes use of optimistic replication just as IVDb does, and can
work in a fully decentralized way with support. However, the XML focus of
the platform, as with other related work can make it inappropriate for many
applications.



354 E. Miron et al.

Several authors emphasize the importance of differencing for themergeproblem.
Ronnau et al.[8] devise an algorithmthat differentiatesXMLdocuments generated
by the OpenOffice application in a way that notices structural differences as
opposed to variability of the format. They also advocate the use of history aware
merging such as the one we provide. In [4] Tancred proposes a theoretical model to
XML document merging from which he devises a three-way merge algorithm.

In the Disco[2] framework the authors explore how applications can handle
operation of collaborative systems in the face of disconnections. This system
focuses more on handling disconnection in synchronous systems and not on data
representation and versioning.

7 Conclusions

This paper presented IVDb, a framework for the development of collaborative
editing applications using structured data for mobile devices. It offers developers
of collaborative applications a simple way to structure and build their applica-
tion, which can be used to significantly reduce development overhead, while also
offering versioning features that would otherwise be very demanding to develop.

References

1. Android-Developers-Guide: What is android?,
http://developer.android.com/guide/basics/what-is-android.html

2. Gutwin, C., Graham, T.N., Wolfe, C., Wong, N., de Alwis, B.: Gone but not
forgotten: designing for disconnection in synchronous groupware. In: CSCW 2010:
Proceedings of the 2010 ACM Conference on Computer Supported Cooperative
Work, pp. 179–188. ACM, New York (2010)

3. Lee, B.G., Chang, K.H., Narayanan, N.H.: An integrated approach to version
control management in computer supported collaborative writing. In: ACM-SE 36:
Proceedings of the 36th Annual Southeast Regional Conference, pp. 34–43. ACM,
New York (1998)

4. Lindholm, T.: A three-way merge for xml documents. In: DocEng 2004: Proceedings
of the 2004 ACM Symposium on Document Engineering, pp. 1–10. ACM, New York
(2004)

5. Lindholm, T., Kangasharju, J., Tarkoma, S.: Syxaw: Data synchronization
middleware for the mobile web. Mob. Netw. Appl. 14(5), 661–676 (2009)

6. Petersen, K., Spreitzer, M., Terry, D., Theimer, M.: Bayou: Replicated database
services for world-wide applications. In: Proceedings of the 7th SIGOPS European
Workshop, pp. 275–280. ACM (1996)

7. Puttaswamy, K.P., Marshall, C.C., Ramasubramanian, V., Stuedi, P., Terry, D.B.,
Wobber, T.: Docx2go: collaborative editing of fidelity reduced documents on mobile
devices. In: MobiSys 2010: Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, pp. 345–356. ACM, New York (2010)

8. Rönnau, S., Scheffczyk, J., Borghoff, U.M.: Towards xml version control of office
documents. In: DocEng 2005: Proceedings of the 2005 ACM Symposium on
Document Engineering, pp. 10–19. ACM, New York (2005)

9. Satyanarayanan, M.: Pervasive computing: Vision and challenges. IEEE [see also
IEEE Wireless Communications] Personal Communications 8(4), 10–17 (2001)

http://developer.android.com/guide/basics/what-is-android.html

	Interdroid Versioned Databases: Decentralized Collaborative Authoring of Arbitrary Relational Datafor Android Powered Mobile Devices
	Introduction
	Background
	Design
	User Interface Components
	Evaluation
	Related Work
	Conclusions
	References




