
J.Y. Zhang et al. (Eds.): MobiCASE 2011, LNICST 95, pp. 338–344, 2012. 
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012 

A Parallel Approach to Mobile Web Browsing 

Kiho Kim, Hoon-Mo Yang, Cheong-Ghil Kim, Shin-Dug Kim 

Yonsei university, Department of Computer Science  
School of Engineering, C532, Shinchon-dong, 134, Seoul 120-749, Republic of Korea 

heavyarms3@gmail.com, {hmyang,sdkim}@yonsei.ac.kr, 
cgkim@nsu.ac.kr 

Abstract. This paper present a parallel approach about mobile web browsing, 
especially layout and paint parts. Web browser is one of the most frequently 
used applications in mobile devices and performance of web browser is an 
important factor affecting mobile device user experience. From our previous 
research, we found that layout and paint takes significant portion of web 
browser execution time and has similar execution characteristics. In this paper, 
we propose parallel render tree traversal algorithm for layout and paint parts in 
web browser: creating thread for sub-tree traversal processing. Moreover, to 
validate proposed Algorithm, we design a simple simulation implementing 
parallel tree traversal with web page render tree. The experiment results show 
that execution time is reduced average 28% in dual-core, 32% in quad-core 
compare to single-thread execution in paint simulation. In layout simulation, 
average 38% in dual-core, 57% in quad-core execution time is reduced.  

 
Keywords: mobile web browser, parallel algorithm, multi-core, tree traversal. 

1 Introduction 

Web browser is a software application for retrieving, presenting, and traversing 
information resources on the World Wide Web. With the wide spread of networking 
infra structures, internet usage increases extremely and web browser becomes one of 
most frequently used applications. Many software companies are struggling to 
achieve more market share in web browser marketplace and web browser 
performance is one of the most important factors on this browser war. Recently, many 
smart-phone makers released new smart-phones or tablet-PCs, installed multi-core 
processor. These smart-phones are designed with dual-core chips now, but as time 
goes by, quad-core and many-core chips will be used in smart-phones same as in 
desktop systems[2]. Thus, with the trend towards the multi-core processors in mobile 
processors, we focus on parallelizing web browser for high performance web 
browsing. To utilize extra cores, we exploit parallelism using multi-thread library. 

In this paper, we propose a parallel render tree traversal algorithm: thread creation 
for sub-tree traversal for mobile web browsing layout and paint functions. To validate 
our proposed algorithm, we design a simple simulation environment that has similar 
processing pattern to layout and paint functions and do experiment. According to our 
simulation results, the execution time is reduced by average 28% in dual-core, 32% in 



 A Parallel Approach to Mobile Web Browsing 339 

quad-core for paint simulation. In layout simulation, execution time is reduced by 
average 38% in dual-core, 57% in quad-core. If we create more threads or sub-tree 
traversal, we can get better performance and the more cores are used, the better 
performance we can achieve. The rest of paper is organized as follows: Section 2 
presents the background work that we’ve done before this research and other related 
works. Section 3 shows our parallel algorithm for mobile web browsing. Section 4 
describes validation of our parallel algorithms. In Section 5, performance analysis of 
this parallel approach is provided. Finally, we conclude in Section 6. 

2 Background 

We choose target web browser engine: WebKit[3], and analyzed it. WebKit is an 
open source web browser engine and used for many desktops and mobile web 
browsers such as Apple Safari and mobile Safari browser[4], Google Chrome 
browser[5], and so on. Android web browser is also based on WebKit. The basic work 
flow of web browser is shown in Figure 1: load HTML, download resources, scan and 
parse documents, generate its corresponding document object model (DOM) tree and 
render tree[6, 7], and layout and paint render tree. After the initial page load, scripts 
respond to events generated by user input and server messages, typically modifying 
DOM, causing page re-layout and re-paint. We also did WebKit performance 
profiling over several hardware platforms and custom benchmarks for web pages. We 
categorized WebKit into several major functions: HTML parsing, CSS parsing, CSS 
style update, Javascript Processing, layout, and paint. Then we measure the execution 
time of each major function in real system using WebKit function and Linux system 
call modifying WebKit source code. Figure 2 shows our profiling results. 

 
 

 

load HTML

set URL

parse
HTML

load CSS 
sheet

load scriptload image

parse
CSS sheet

evaluate
script

HTML
DOM tree

Render tree

RenderStyle

layout

update style

paint

update
events

web page
displayed

Browser 
Launch

trigger to 
other function

6% 7% 10%2% 2%
4%

30%
37%

41%

18%

15%

15%9%
9%

14%

34%
29%

17%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pentium Atom ARM11

Paint

CSS Style Update

Layout

Javascript Processing

CSS parsing

HTML parsing

 

Fig. 1. Basic work flow of web browser Fig. 2. Major function execution time ratio 

 



340 K. Kim et al. 

There are few studies about web browser performance [8], parallel web browser [9], 
[10], and mobile browsers[11]. In [8], author also evaluates performance of web 
browser in various platforms. In [9], author introduces brief idea that how to parallelize 
each part of web browser: front-end, page layout, and scripting. In [10], author 
introduces new algorithms for CSS selector matching, layout solving, and font 
rendering. In [11], author introduces mobile web paradigms, mobile web rendering 
engines, various mobile browsers, and future of mobile web.  

Based on our previous research and other related issue about performance of web 
browser, we propose a new parallel algorithm for layout and paint functions. In the 
following sections, details of algorithm will be described. 

3 Proposed Algorithm 

3.1 Task to Parallelize 

To parallelize web browser, we need to find suitable sub-tasks to parallelize and we 
focus on layout and paint functions. First, the overall execution time to process layout 
and paint functions takes average around 40% of the entire execution time when 
measuring the performance under Pentium Dual Core 1.6GHz processors. Since these 
two functions take a significant portion of execution time, we can get more 
performance improvement when parallelizing these two. Moreover, layout and paint 
functions have similar execution characteristics, as the render tree traversal shown in 
Figure 3. Layout and paint functions recursively visit render tree nodes and perform 
their own tasks at each node. This means layout and paint functions just work for itself 
alone, not interacting with other data structures or functions. In other words, we don’t 
need to worry about typical synchronization problem in multi-thread programming 
within these two functions. 
 

 
Fig. 3. Render tree traversal Fig. 4. Sub tree traversal with created thread 

 
3.2 Structure of Render Tree 

A web page is parsed into a tree of nodes, called the document object model (DOM). 
Document, elements, and text will can be nodes of this tree. Render tree is very similar 
to the DOM, where it is a tree of objects and has style information of elements derived 
from CSS. Web page is composed of a group of boxes and some boxes belong to other 
boxes. Boxes are represented as tags in html document, elements in DOM, and render 
tree nodes in a render tree. Since a big box contains several small boxes, overall 
structure of render tree is formed as unbalanced tree as shown in Figure 5. In this web 



 A Parallel Approach to Mobile Web Browsing 341 

page, selected two big boxes take most of nodes in render tree and these two boxes also 
contain several small boxes. The box positioned in below forms bigger sub-tree than 
the above one since it contains more small boxes than above one. 

 

Fig. 5. Overall structure of render tree 

3.3 How to Parallelize 

We propose a way to create multi-threads for processing sub-tree traversal as shown in 
Figure 4 using POSIX thread library[12]. For example, when web browser paints web 
page on screen, browser will draws one box at a time but if we create threads for sub-
tree processing, we can draw several boxes at a time. However, there is a problem that 
render trees are formed as unbalanced trees as we mentioned above and that will cause 
an unbalanced load balancing problem among threads. To solve this load unbalancing 
problem, the number of nodes in each sub-tree is used. While a thread visits nodes in 
the render tree, if the number of nodes in this sub-tree is greater than factor(named as 
Thread Factor: TF), as another threshold, and has siblings, the thread creates new 
threads and created-threads will handle this sub-tree. 

4 Simulation for Algorithm Validation 

To validate the effect of this algorithm we design a simulator implementing our 
parallel render tree traversal algorithm. When simulator visits each node, it performs 
assigned tasks. For the input of simulation, we use WebKit DumpRenderTree tool to 
get the render tree of real web page. WebKit DumpRenderTree prints render tree of 
web page to the console and we convert it into text file to use it as the input of 
simulation. To make simulation more similar to real web browser, we differentiate 
each node’s task. For example, image sizes of web pages are very various and 
displaying big sized image will need more calculation than small sized image. We 
also found that leaf nodes of render tree are nodes of real images or texts, and inside 
nodes are wrapper box block. Therefore, we assume that leaf nodes will consume 
more processing power than inside nodes when browser does painting. So we use 
each node’s type and size to reflect the characteristics of web browsing, since 
DumpRenderTree gives each node’s type and size also. However, layout function 
doesn’t need task differentiation. Layout function performs decision function of each 
node’s position and size. Therefore, job done at each node is not quite different unlike 



342 K. Kim et al. 

paint function. So, we use same iteration number at each node for layout function 
simulation. The number of iterations is named as Layout Factor (LF). 

For the task that will be performed at each node, we use arbitrary memory 
allocation, integer and string calculations and execute them repetitively. For the 
differentiation of each node’s task, the number of iterations at each node is used. 
Calculation method of iteration number is shown as follows:  

Table 1. Iteration number 

Node type Inside Node Leaf Node 
The number of 

Iterations 
Inner Node Factor (INF) x size*y size*Leaf Node Factor (LNF) 

5 Experiment Result 

We choose 20 web pages to simulate and get Render tree of them. Most of pages have 
1000~1500 render tree nodes. Experiments were performed in Intel i7 2600 processors 
that drop the clock speed to 1.6GHz and 4GB memory, running ubuntu 10.0.4. We use 
gettimeofday() function to get elapsed time of executing program. We measure 
execution time of simulator and compare the single thread version with multi thread 
version. We use dual-core to quad-core, and using Intel Hyper-Threading(HT)[13] 
technique to see the correlation between number of core and performance 
improvement. 

Table 2. Factor for experiment 

Factor high mid Low 
INF 10 10 10 
LNF 4 3 2 
LF 1500 3000 4500 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10, high 10, mid 10, low 30, high 30, mid 30, low 10, high 10, mid 10, low 30, high 30, mid 30, low

Paint Layout

Reduction of execution time

2core

4core

4core, HT

 

Fig. 6. Reduction of execution time in paint simulation 



 A Parallel Approach to Mobile Web Browsing 343 

Figure 6 shows reduction of execution time in paint and layout experiments. On 
average, reduction of execution time is 28% in dual-core, 32% in quad-core in case of 
TF is 10 in paint. As shown in figure, if TF is smaller, execution time reduction is 
bigger. In dual-core, TF 10’s performance is average 7% better than TF 30’s. Same 
trend is shown in quad-core also. Moreover, quad-core’s performance improvement is 
better than dual-core’s performance improvement. When TF is 10, average 13% better 
performance improvement we can get in quad-core compare to dual-core. However, 
HT doesn’t give impact because we use just integer calculation, string calculation and 
memory allocation in this experiment, there is not enough functional units to allocate. 
In addition, INF and LNF don’t give significant impact to performance. Execution 
time reduction of high, mid, and low is almost similar. On average, reduction of 
execution time is 38% in dual-core, 57% in quad-core in case of TF is 10 in layout. 
Compare with paint experiment, we can get better performance in layout experiment. 
Since layout experiment’s per node iteration is same, so load balancing among threads 
is much better than paint. Except that, overall trend of experiment result is similar to 
paint simulation. LF also doesn’t give significant impact to performance. 

6 Conclusion 

In this paper, we proposed a parallel approach about mobile web browsing, especially 
layout and paint parts. We parallelized layout and paint parts by implementing 
parallel render tree traversal algorithm. Moreover, to validate this algorithm, we 
design a simple simulation environment that has similar processing pattern to layout 
and paint functions. The experiment results show that execution time is reduced 
average 28% in dual-core, 32% in quad-core for paint simulation. In layout 
simulation, execution time is reduced average 38% in dual-core, 57% in quad-core. 
By using this parallel algorithm, we can utilize multi-core processor in mobile devices 
for most frequently used application and offer better user experience.  

Acknowledgments. This research is was supported by the MKE(The Ministry of 
Knowledge Economy), Korea and Microsoft Research, under IT/SW Creative 
research program supervised by the NIPA(National IT Industry Promotion Agency) 
(NIPA-2010-C1810-1002-0023 

References 

1. Gartner Press Releases, 
http://www.garthner.com/it/page.jsp?id=1689814 

2. Strategy Analytics Press Releases, 
http://www.strategyanalytics.com/default.aspx?mod=pressrele
aseviewer&a0=4998  

3. The WebKit Open Source Project, http://webkit.org 
4. APPLE Safari, http://www.apple.com/safari/ 
5. Google Chrome, 

http://www.google.com/chrome/intl/en/make/features.html 



344 K. Kim et al. 

6. W3C Document Object Model, http://www.w3.org/DOM/ 
7. WebCore Rendering 1-The Basics, 

http://www.webkit.org/blog/114/webcore-rendering-i-the-
basics/ 

8. Meyerovich, L.: Rethinking Browser Performance. Login 34(4), 14–20 (2009) 
9. Jones, C.G., Liu, R., Meyerovich, L., Asanovic, K., Bodik, R.: Parallelizing the Web 

Browser. In: HotPar 2009 Proceedings of the First USENIX Conference on Hot Topics in 
Parallelism (2009) 

10. Meyerovich, L., Bodik, R.: Fast and Parallel Webpage layout. In: WWW 2010 
Proceedings of the 19th International Conference on World Wide Web (2010) 

11. Hernadez, E.A.: War of the Mobile Browsers. IEEE Pervasive Computing 8, 82–85 
(2009) 

12. POSIX Threads Programming, 
http://computing.llnl.gov/tutorials/pthreads 

13. Intel® Hyper-Threading Technology, 
http://www.intel.com/technology/platform-technology/hyper-
threading/index.htm 

 


	A Parallel Approach to Mobile Web Browsing
	Introduction
	Background
	Proposed Algorithm
	Task to Parallelize
	Structure of Render Tree
	How to Parallelize

	Simulation for Algorithm Validation
	Experiment Result
	Conclusion
	References




