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Abstract. With the increasing popularity of smart phones, knowing
the accurate position of users has become critical to many context-aware
applications. In this paper, we introduce a novel Probabilistic Infrastruc-
tureless Navigation (ProbIN) system for GPS-challenging environments.
ProbIN uses inertial and magnetic sensors in mobile phones to derive
users’ current location. Instead of relying on basic laws of physics (e.g.
double integral of acceleration equals to displacement) ProbIN uses a
statistical model for estimating the position of users. This statistical
model is built based on the user’s data by applying machine learning
techniques from the statistical machine translation field. Thus, ProbIN
can capture the user’s specific walking patterns and is, therefore, more
robust against noisy sensor readings. In the evaluation of our approach
we focused on the most common daily scenarios. We conducted experi-
ments with a user walking and carrying the phone in different settings
such as in the hand or in the pocket. The results of the experiments show
that even though the mobile phone was not mounted to the user’s body,
ProbIN outperforms the state-of-the-art dead reckoning approaches.

Keywords: Inertial positioning, low-cost inertial sensors, Dead Reck-
oning, Bayes’ theorem, Expectation Maximization.

1 Introduction

With the increasing popularity of smart phones, knowing the accurate position
of a user has become critical to many context-aware applications. In outdoor en-
vironments, standardized Global Positioning System (GPS) is often used. How-
ever, for indoor environments such as airports, hospitals or shopping malls GPS
signals are usually unavailable or unreliable.

Most of the existing indoor positioning solutions try to address this problem
by utilizing existing infrastructures such as Wi-Fi access points or Bluetooth bea-
cons [12]. In cases when an infrastructure is not available, self-contained systems
provide a more flexible solution. These systems use sensors such as accelerome-
ters, gyroscopes and magnetometers. In order to derive a user’s current location,
the movement of the user is tracked by the continuous logging of sensor readings.
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Since this technique does not reply on an external infrastructure, theoretically
it can be used in any environment. The main drawback of self-contained po-
sitioning approaches is error accumulation. Since the sensors utilized are noisy
by nature, the error of position estimation grows with time and distance trav-
eled. Moreover, the noise portion in sensor measurements is significantly higher
when the phone is held in the hand versus mounting it on certain parts of the
body. Positioning in the hand accelerates the accumulation of error and causes
a substantial decrease of estimation accuracy.

The purpose of our work is to deliver a system providing positioning and
navigation functionality for consumer mobile devices in GPS-challenging envi-
ronments. The main contribution of this paper is to introduce a novel probabilis-
tic approach of self-contained positioning providing a user’s current location. In
order to overcome the problem with noisy sensor readings of consumer mobile
devices, a statistical model well-known in the field of the statistical machine
translation (SMT) is utilized for the positioning purposes.

In our work, the positioning problem is framed as a noisy-channel problem,
where we try to recover the actual user’s position from the distorted sensor
inputs. To recover the user’s position, we use a statistical model to map the
sensor readings directly to the displacement. This is fundamentally different
from state-of-the-art dead reckoning approaches. In these approaches the sensor
readings are interpreted by their actual physical meanings, i.e., the accelerometer
readings are considered as being the actual acceleration of the device. Thus,
theoretically based on the laws of physics the travelled displacement can be
obtained by double integrating the acceleration.

In ProbIN the sensor readings are interpreted as observed “signals” which are
directly mapped to the corresponding displacement based on a statistical model.
The statistical model is trained by using SMT techniques adjusted for positioning
purposes. During the training phase, ProbIN builds statistical models from the
user’s data. These models capture the user’s walking patterns and adapts to the
sensor errors of the mobile device. Thus, although the sensors on the mobile
devices are noisy, ProbIN can still estimate a user’s current position at a much
higher accuracy rate than state-of-the-art dead reckoning approaches.

This paper extends our previous work [13] where there were several limitations
in the way how the phone can be positioned. Since the smart phone used for
the evaluation was not equipped with a gyroscope the pitch and roll angles of
the device were unknown. Therefore, in the previous experiments the phone was
positioned on a moving cart. While lying on the cart the pitch and roll angles
remain constant. Thus, we were able to evaluate the ProbIN approach by using
a phone without a gyroscope.

In this paper, we are focusing on more realistic scenarios. By utilizing iPhone
4 equipped with a gyroscope and by introducing the integration of the gyroscope
readings into ProbIN we were able to achieve promising results even when the
phone was not mounted on users’ body. In order to evaluate the new approach we
conducted experiments with a user walking and carrying the phone in different
settings such as in the hand or in the pocket.
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2 Related Works

Self-contained systems are also called infrastructureless systems, since they can
locate a mobile user without any external infrastructure. These systems can
provide finer-granular position estimation than infrastructure based systems.
Thus, they can be deployed in combination with infrastructure-based systems in
order to achieve higher estimation accuracy.

Infrastructureless positioning is typically based on the dead reckoning princi-
ple that describes an iterative process of position estimation. According to this
principle, a user’s current position is determined based on the previous estimated
position and the current sensor reading. The main drawback of the dead reckon-
ing is the error accumulation. Since sensor readings are noisy by nature, they are
the main source of the error in each positioning step. Due to the dead reckoning
principle error generated in one step is carry out to the next step. Thus, the
accumulated error increases with time and traveled distance.

Many research projects try to minimize the estimation error by employing
high-quality sensors. For example, a ring laser gyroscope [6] or high-quality IMU
[14] can be utilized in order to reduce the error in the measurement of rotation
rate. However, these hardware components are usually very large and expensive.
Therefore, they are not appropriate for daily use.

The noise can be also partially extracted by using a Kalman filter [18] which
estimates true values of the observed sensor measurements based on the param-
eter settings.

In many research projects |6, [2] step-based techniques are applied in order to
estimate user’s position. The idea is based on counting the number of steps and
estimating the length of each step from the accelerometer reading. The heading
information is provided by fusion of magnetometer and gyroscope readings. The
best approaches were able to achieve an accumulated error of about 2% of the
total distance travelled [2]. However, the conducted experiment reveals many
drawbacks of these techniques. As mentioned above the heading is derived from
the magnetometer and gyroscope readings. However, this heading does not al-
ways correspond to the direction of the user’s movement. Let us assume that
the sensors are mounted on a helmet [2]. If the user walks straight forward and
will look straightforward then the estimated trajectory will be correct. How-
ever, when the user starts looking around during the walk, the estimations will
be incorrect, since the heading determines the estimated trajectory direction.
Therefore, in order to achieve the good results the user has to look always into
the direction of the walk. Also, it is very difficult to detect side steps, walking
backwards or walking up/down the stairs.

Since the step-based techniques are not very practical due to the above men-
tioned drawbacks an alternative solution using the basic physics seems to be
more promising [3, [14, I8]. Instead of utilizing the acceleration magnitude the
actual values of the acceleration in all three x-, y- and z-axis can be used. In
theory the integral of acceleration over time equals to velocity. When we calculate
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the integral of the velocity we obtain the displacement. By summing up the cal-
culated displacements during the walk we can estimate a user’s current position.

Due to the noisy sensor readings and the integration process, each estima-
tion of the velocity and displacement will contain some error. Since the current
velocity and position is always calculated based on the previous values, the ac-
cumulated error will grow significantly over time.

By mounting the sensors on a foot, the above-mentioned issue can be partially
addressed. The idea is based on the analysis of the human locomotion. During
one gait cycle, each foot will go through the two basic phases: swinging in the
air and stance on the ground. In the stance phase, the foot velocity is zero. Also
in this phase the most accurate orientation can be calculated from the sensor
readings. Therefore, by identifying the stance phase based on the sensor readings
the Zero Velocity Update (ZUPT) and Zero-Attitude Rate Updates (ZARUs) can
be applied [1]].

Several research projects [14] reported achieving an error rate lower than 1%
by utilizing the physics-based techniques. However, these results seem to be
rather an exception. The average reported error rate was around 3% to 5% of
the travelled distance [14, [8].

Physics-based techniques benefits from the application of ZUPT and ZARU,
which can significantly prevent the accumulation of the estimation error. These
techniques also do not suffer from the drawbacks of the step-based techniques,
since the direction of the movement is extracted not only from magnetometer
and gyroscope but also from the accelerometer, side steps, walking backwards
and walking up/down the stairs can all be detected. On the other hand, all
sensors need to be mounted on the foot, which in many situations is not possible
or practical. When we want to utilize the sensors in mobile device, we cannot
assume that the users will mount their phone on the foot every time they use
the indoor navigation system.

Besides mounting sensors on the foot, sensors can also be mounted to other
parts of the body such as head, waist or shank. However, by selecting these
mounting options the ZUPT and ZARU cannot be applied. Therefore, for these
mounting settings only the step-based techniques can be utilized.

The more loosely mounting options was investigated in [15]. The sensors were
carried in a backpack or mounted on a PDA that was hold in the hand. The ex-
periments showed that the results of the loosely mounting options are significantly
worse than the ones acquired by mounting the sensors on the person’s body.

3 Probabilistic Infrastructureless Navigation

Probabilistic Infrastructureless Navigation (ProbIN) is a system providing the
positioning and navigation functionality for GPS-challenging environment. In
this paper, we will focus on the positioning part of ProbIN, which allows tracking
of a person.
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ProblN is intended for daily applications such as assisting a user in shopping
malls or at airports. Therefore, it needs to fulfill three essential requirements:

1. Scalability: ProbIN delivers positioning functionality even without an exist-
ing external infrastructure.

2. Affordability: ProbIN can be run on consumer mobile devices with relatively
low-quality sensors.

3. Usability: The user should be able to hold the devices in the hand or in a
pocket without degrading delivered functionality.

In order to fulfill the first requirement ProbIN essentially utilizes the inertial
sensors. As such, a self-contained positioning system can be delivered, which
does not rely on any external infrastructure. ProbIN can be also improved by
utilizing a magnetometer and/or digital maps in order to achieve higher posi-
tioning accuracy. The advantage for this case is that the system will remain
self-contained. A viable extension would be the integration of modules utilizing
external infrastructures such as GPS or a Wi-Fi network. These modules would
be activated only when an infrastructure is available. The scope of this paper
is to develop a system providing the positioning based on inertial sensors and
extended by the magnetometer readings.

Due to the second and the third requirements, a novel approach of positioning
needs to developed in order to address high error rates of the sensors. It is
known that when utilizing low-cost sensors the measurements are typically very
inaccurate, especially when the sensors are not mounted to the user’s body. In
this case, the traditional physics-based positioning performs badly, since an error
in the sensor reading causes an error in the estimated displacement. ProbIN
addresses this issue by learning a mapping between the sensor readings and
the actual true displacements based on training data. Thus, when ProblIN is
deployed, even a noisy sensor reading can be mapped to the correct displacement.
The problem of minimizing the error rate is thereby transformed into a machine
learning problem. In this paper, we will present a solution to this problem by
utilizing machine learning techniques well-known to the field of the statistical
machine translation (SMT) [4].

As mentioned above, ProbIN utilizes a machine learning technique that is
divided into training and testing phases. First, the sensor readings with corre-
sponding true displacements are collected in the training phase. The relationship
between the measurements and the displacements are used for creating a sta-
tistical model. Then in the testing phase, the statistical model is employed for
mapping the sensor readings of the tracked person into a trajectory. The result
of the testing phase is typically used for evaluating the approach.

In the following, we will present our approach in a reverse order. First, we will
introduce how a user’s trajectory is estimated based on the statistical model in
order to give an intuition behind ProbIN. Then we will describe the process of
training the statistical model in more detail.
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4 Statistical Dead Reckoning of Mapping Sensor
Readings to Displacements

ProbIN’s positioning is a statistical dead reckoning approach allowing erroneous
sensor readings to be mapped to correct displacements. This is achieved by
framing the problem as a noisy-channel problem [16] where we try to recover the
actual position of a user from the distorted sensor inputs. Noisy-channel models
have been widely used in fields such as Statistical Machine Translation (SMT),
Automatic Speech Recognition or Optical Character Recognition.

The noisy-channel describes the communication process in which a transmitter
sends a message through a noisy channel and the receiver receives a corrupted
or ambiguous message. The aim is to find the original message produced by the
transmitter by analyzing the message observed at the receiver.

In SMT the transmitter produces a sentence in a familiar language, let us say
English. On the other end of the channel the receiver observes a sentence in a
foreign language, let us say German. The aim is to find an English translation
of the German sentence. This issue is addressed by applying Bayes’ theorem,
which utilizes both the likelihood of translating from a foreign language word
to a familiar language (translation model) and also a priori knowledge about
the “properness” of sentences in the familiar language (language model). The
translation model and the language model form together the statistical model
used for finding the translation of the sentence observed by the receiver.

Similarly to SMT, ProbIN uses also a statistical model for finding the most likely
trajectory for the given sequence of sensor readings. The observed sensor readings
correspond to the German sentence in the above example. The aim is to find the
hidden displacements of the trajectory, which correspond to the English sentence.

4.1 Quantizing Sensor Readings and Displacements

Unlike SMT where the vocabulary of a language is limited, the number of possible
sensor measurements and displacements are unlimited. It is possible but too
complicated to train a reliable continuous statistical model to map raw sensor
readings into a displacement in the real value space. Therefore, in ProbIN we first
quantize the sensor readings using the K-means clustering [11] which converts
the real-valued sensor data to discrete values. Each cluster is then labeled with a
motion label m, which will represent all sensor readings belonging to this cluster.
Thus, the vocabulary size of ProbIN is limited to the number of motion labels.
In that case, the statistical model can be efficiently trained for the discrete finite
vocabulary space.

Figure[lshows an example of employing the K-means clustering to quantize sen-
sor readings into motion labels. In ProbIN each sensor reading corresponds to an ac-
celeration and an orientation, which is derived from the gyroscope and magnetome-
ter reading. After the clustering is processed, each sensor reading is represented
by a motion label m. Thus, the sequence of ¢ sensor readings collected during a
user’s movement is represented by a sequence of motion labels M = mq, mo, ..., my
where m; denotes a motion label of the sensor reading at timestamp 7.
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Timestamp 1 2 3
a,=0.2 a,=-0.2
Sensor i s
Reading o o
a,=0.0 a,=0.2

Clustering mz + X
y m>5
Motion
Label m> m2

Fig. 1. Example of using k-means clustering in order to define the motion labels

The continuous space of displacements is also quantized in ProbIN. The dis-
placement label d is assigned to each displacement cluster. Thus, a sequence
of traveled displacements is represented by a sequence of displacement labels
D =dy,ds,..., d;.

After limiting the size of vocabulary by quantizing the sensor reading space
and displacement space, the statistical model can be similarly applied as in SMT.
For a sequence of motion labels M, ProbIN searches for the optimal sequence of
displacement labels D* such that:

D* = argmgxP(D|M) (1)
= argmgxP(M|D) - P(D)

To express the above idea in terms of the noisy-channel model, the receiver
observes a sequence of motion labels, which might be ambiguous or noisy. The
aim is to find the translation in form of a sequence of displacement labels, which
was originally produced by the transmitter.

Mathematically, argmax P(D|M) returns a sequence of displacement labels
D* that maximizes the probability P(D|M). The term P(M|D) is provided by
the translation model and P(D) is provided by the trajectory model, which
corresponds to the language model in SMT. The noise channel model can be
confusing here as conceptually we are trying to “translate” from motion labels
(sensor readings) to displacement labels to estimate a user’s position. Yet by
applying the Bayes rule (to incorporate the a priori knowledge of the trajectory
model, the translation model uses conditional probability of “translating” from
displacement to motion labels.

The statistical model of ProbIN consists of two parts: the translation model
and the trajectory model.
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4.2 Translation Model

The translation model estimates the likelihood of mapping a sequence of motion
label M to a sequence of displacement label D. Assuming the translation of
a displacement label to its corresponding motion label is independent of other

pairs, we can write:
t

P(M|D) = [T P(mld:) (2)

i=1
P(m;|d;) is the likelihood of “translating” a displacement d; back to the motion
label m;. This value is extracted from the training data during the training phase.

4.3 Trajectory Model

The trajectory model in ProbIN works similarly to the language model used in
SMT. A language model estimates how likely a sequence of words is a meaningful
English sentence. For example, the sentence “Tomorrow I will go shopping”
should have higher language model probability than sentence “Morning I will go
shopping”, since the former is more likely to be a correct English sentence.

The intuition of utilizing the trajectory model in ProbIN is also based on the
idea that not all trajectories are meaningful. It is obvious that some trajectories
are physically impossible to achieve. For example, a trajectory with a length of
10 meters after 1 second collected from a person walking with constant speed
is somehow suspicious. Moreover, when a user is walking forward, his trajec-
tory is most likely to be a sequence of forward moving displacements rather
than a sequence of forward-backward-forward-backward. The information about
“meaningfulness” of the trajectories can be extracted from the training data in
advance. The probability of a trajectory D is calculated as:

P(D) =[] Plaildi ) Q)

= P(dy) - P(da|dy) - ...~ P(dildy, ... di_1)
e P(dyldy,da, . diy)

Under the Markov assumption that a displacement label d; only depends on
the immediate n — 1 displacement labels in history, P(d;|dy,...,d;—1) can be
estimated as P(d;|d;—n+1,...,d;—1). This is equivalent to the n-gram language
model approached use in SMT.

4.4 Decoder

Given the input sensor readings, which are now quantized as motion labels, a
so-called decoder applies the translation and trajectory models to search for an
optimal displacement label sequence. In our work the sensor reading sequence is
called source sentence M. First, the translation model generates different trans-
lation options D for the whole source sentence M. These translation options are
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called hypotheses as in SMT. Second, for each hypothesis the values of P(M|D)
and P(D) are calculated based on the information from translation and tra-
jectory models. The hypothesis with the highest probability P(M|D) - P(D) is
selected as the optimal translation for M.

Decoding Process Figure[lillustrates an example of the decoding process. At
each timestamp, one new sensor reading is collected. The decoder generates dif-
ferent hypotheses for the sensor readings observed up to this point. A hypothesis
is represented as a path from the root the leave of the updated decoder tree. To
avoid the explosion of hypothesis due to combinations of different translations,
we prune out hypotheses with lower probabilities. Pruning is likely to termi-
nate some hypotheses prematurely as it is based on the incomplete information
during decoding. Practice in SMT has shown that pruning is necessary and the
degradation on performance is acceptable. By the end of the decoding, the op-
timal hypothesis with the highest probability is output as the user’s estimated
trajectory (shown as the red path in the Figure [).

Timestamp 1 2 3
Motion
Libel m2 m5 m2
ds50 d10
- /
SRR TP >F.._d20
- -~
Displacement|_ .=~ d50 )
Label
de0 =
d20

m — motion label, d — displacement label
¥ - estimated user’s position

Fig. 2. Example of generated hypotheses. The red path corresponds to the hypothesis
being the most probable translation for the given source sentence.

Process Optimizations As it can be observed from the above example, the
complete hypothesis space is exponential to input length N and the number
of translation alternatives. If each motion label can be mapped to r different
displacement labels, the total number of possible trajectories is 7V for an input
sequence of N sensor readings. Let us assume that each word in the sentence
“Morgen gehe ich einkaufen” would have three possible translations. Thus, there
are 81 (= 3%) possible hypotheses such as “Tomorrow I will go shopping”, “Morn-
ing T will go shopping”, “Tomorrow I go buy”, “Morning I go buy”, etc. In a
real natural language, each word can have 10 translations (including different
variations). A typical sentence size is around 10 to 15 words. In that case, the
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number of hypotheses can grow to 10'°. Therefore, it is computationally infea-
sible to search the complete hypothesis space for the global optimal trajectory,
especially in case of high N.

On the other hand, a greedy search of keeping only one best hypothesis at time
t is likely to end up in a local optimum. In order to approximate the globally
optimal translation, we use a multi-stack based decoding technique |10]. The
multiple stack data structure stores multiple partial hypotheses that have the
highest probabilities up to time ¢. Thus, not the whole hypotheses space needs to
be explored. On the other hand, the number of analyzed hypothesis is sufficient
high for finding a translation close to the globally optimum.

The above-described optimization causes that the hypotheses stored in the
stack tend to be similar to each other. Therefore, the decoder applies additionally
the hypotheses recombination technique to merge hypotheses that have the same
trajectory model endings and thus cannot be distinguished by future hypothesis
expansion. For those partial hypotheses that have the same trajectory model
endings, only the one with highest probability will survive |17].

5 Training the Statistical Model

In the previous section we described how the statistical model of ProbIN could
be used for estimating a user’s current position. This model is created in advance
based on the training data set. We assume that the model can be trained based
on the user’s past trajectory data, in order to deliver the high accurate position
estimation. Thus, each user would train his or her own model, which captures
the motion patterns of the specific person. However, the initial model can be
also created from the trajectory data of different persons in order to capture
characteristics common for all users. Once the initial model is created, a user
would be able to use the system for the positioning purposes. While the system
is used, the data from a specific user can be collected in order to adapt the
model to the particular person. In the following we will present the approach of
creating the model based on an available training data set.

5.1 Training the Translation and Trajectory Model

In order to extract the translation model probability P(M|D) we need a training
data set where correspondences between motion labels and their displacement
label are known. To estimate the trajectory model probability P(D), we need
a training data with known trajectories of a user in the form of sequences of
displacement labels.

Table [1l shows an example of the training data. The training data set should
contain sequences of (motion label, displacement label)-pairs. These pairs pro-
vide information about the correspondences between motion labels and their
reference displacement label. To train the trajectory model, we use just the dis-
placement part from the training data, for example, sequence (d54, d67, d45,
di2, ...).
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Table 1. Example of sequences of training data,which consist of (motion label, dis-
placement label)-pairs

# Sequence of training data

1 (m3, d54), (m2, d67) (m4, d45), (m7, d12) ...
2 (ml15, d13), (m6, d45) (m10, d43), (m30, d11) ...

Based on the frequency of (motion label, displacement label)-pairs, the trans-
lation probability can be estimated through the Maximum Likelihood Estima-
tion (MLE) [5]:

count(m, d)

Przp(mld) = count(d)

(4)

where count(x) returns a number of occurrences of the given x.
The maximum likelihood estimation of the n-gram trajectory model is based
on the displacement label only:

Pyre(dildi—ny1,dinyo, ... dim1) =
count(di,nﬂ, d¢,n+27 N 7di,l7 dl)
count(d;—p41,di—pt2,...,di—1)

5.2 Expectation Maximization Algorithm

Motivation In practice, obtaining data in the format illustrated in Table [l is
infeasible. Getting the accurate displacement for each motion label would require
for example high speed motion capturing devices. These devices would capture
very fine-granular movements and transform them into reference displacements.
Since the sampling rate of inertial sensors in mobile phones is 50-100 Hz, the
motion capture device needs to record the motions at similar high sampling rate.

Since our work is intended for daily applications, we can not assume users
have access to such devices to collect data for training. However, it is reasonable
to assume that we can obtain less detailed reference displacement information
either from GPS (Table[2)) during outdoor training sessions or from user’s input
overlaid on floor plans. ProbIN uses this coarse-grained data to “estimate” the
reference displacement for each sensor reading.

In Table 2 the data is collected during several walks. Besides the sequence
of motion labels, each walk also contains information of the GPS coordinates
of the starting and the ending positions for the whole walk. However, the ref-
erence displacements for each motion label cannot be collected (Figure B]). In
ProbIN we apply the Expectation Maximization (EM) to estimate this reference
displacement information.
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Table 2. Information available for training the models

Walks Sequence of motion labels Start End

Walk 1 m3, m2, m4, m7, ... (0,0) (4,10)
Walk 2 m15, m6, m10, m30, ... (4,10) (7,15)
m3 m2

m4
N 7

111,

%

Start 3> a7 a2
Fig. 3. Missing displacement information

EM Algorithm Expectation Maximization (EM) algorithm [7] is an iterative
method for finding hidden parameters of a statistical model. In ProbIN the
displacement label is considered as the hidden information. Therefore, the EM
algorithm is applied in order to iteratively estimate the hidden displacements
for sequences of motion labels. Each EM iteration consists of two steps: Esti-
mation and Maximization. The goal of the estimation step is to estimate the
hidden displacement using the current statistical model. Based on the estima-
tion the mazimization step updates the statistical model. In the first iteration
the statistical model has not been created yet. Therefore, for the estimation we
use the traditional inertial positioning technique based on the laws of physics to
bootstrap the model (Figure M.

The training input contains K instances of “walks”:Wy, W, ... Wk shown
in the Table 2l Each walk W}, has a sequence of motion label My, the reference
starting position s and the reference ending position e. In the estimation step of
each iteration, we use the current model to find the estimated hidden trajectory
Dy, for each walk Wp.

In the first iteration the trajectory is estimated by using a traditional physics-
based positioning technique. First, the orientation of the phone is calculated
by fusing the inertial measurements with magnetic sensor readings through a
Kalman filter. This orientation is then used for rotating the raw acceleration
readings from the device frame into the global frame. By applying double inte-
gral on acceleration readings in the global frame we obtain a user’s estimated
trajectory.

Since the phone is not mounted on a foot, the Zero Velocity Update (ZUPT)
cannot be applied. This is the main concern for the traditional physics-based
positioning approaches. Without being able to reset the velocity after each step
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Fig. 4. The EM Algorithm starts with trajectory estimation based on the basic physics
and in each iteration updates the statistical model

the error accumulates rapidly over the time. In ProbIN we address this issue
by using only the walks with short distances and short time durations in the
training process. Thus, the error rate of the trajectory estimates for these walks
are minimal.

In the next EM iterations, the physics-based positioning is replaced by the
statistical model created at the first iteration. Thus, the statistical model is used
to decode the motion label sequence M}, to get the estimated trajectory Dj.

Most likely Dy is incorrect and does not end at e,. We assume that the correct
trajectory has the similar “shape” as Dj. Thus, we can stretch and rotate D}
such that it ends at e as shown in Figure Bl The resulting trajectory Dy, is the
newly estimated trajectory for M) in this iteration. In other words when Dy
does not end up at e, we know this trajectory is incorrect. Since we do not
know which segments caused the error, we distribute the error to each of the ¢
segments in Dy through the stretch and rotation operations.

The stretching factor is calculated as:

distance(sy, ex)

()

Fotreten = distance(sy, ej))
where sy, is the starting position of walk W, and e, is the ending position. e}, is
the ending position based on the estimated trajectory Dj. distance(x,y) returns
a Euclidean distance between two points.

The rotation angle is calculated as:

€}, e

llex ! llexl

frotate = 60371( ) (6)
where o represents scalar product and ||z|| represents Euclidean norm.

In order to correct the estimated trajectory we correct each d; by stretching
it with the fsretcn and rotating it by angle frotate. The trajectory calculated
from the corrected d§°" should end in the position ey.
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coimateg 454" 067" G4~
trajectory Dy, x .
k

sc 8
rotate and stretch
the trajectory
Corrected ﬁ\.,/’* ey
trajectoryDy g, ”

d54’ d67’ d4%’

Fig. 5. Correcting the estimated trajectory

In the maximization step the translation and trajectory models are updated
based on the corrected estimation of the underlining trajectories Dj,. Thus, the
probability of the entire training data can be maximized. The pseudo code of
the EM algorithm is described in Algorithm [II

6 Experiments

Our approach is evaluated on the iPhone 4, the first phone on the market
equipped with an additional gyroscope besides an accelerometer and a mag-
netometer. The gyroscope provides information about the rotation rate of the
phone. This information allows our system to accurately calculate the phone’s
orientation even when the phone is in motion. This is necessary for the process
of position estimation in ProbIN and also in any state-of-the-art physics-based
positioning system.

In order to evaluate ProbIN approach we conducted experiments on a square-
shaped basketball court. For training the statistical model we used sensor read-
ings of straight walks with a length of 4 meters as shown in Figure For
testing the statistical model we use two types of trajectories. The first type
has an L-shape (shown in Figure and the second type has a square-shape
(shown in Figure [6(c)]). Since each side of the basketball court was 15 meters
long, the walks used for testing were 30 meters resp. 60 meters long.

We conducted experiments to evaluate whether the accuracy of the estima-
tions are dependent on the way the user holds the phone. We collect sensor data
while the phone is in one of three different settings. First, the user holds the
phone in the hand in front of him as if he would be looking to the display. Sec-
ond, the user is holding the phone loosely in the hand, but he is not looking at
the display during the walk. Finally, the phone is carried in the pocket.
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Data: Training data: a set of K walks: W1, Wa, ..., Wg. Wi, = (M, Sk, ex)
iteration <« 0;
while not converge do
for k <+ 1 to K do
(Estimation step for walk W) ;
if iteration==0 then
Use basic physics (double integral of acceleration) to estimate Dj,
end
else
Find Dj, for M, given the current statistical models
end
if Dj, does not end at e then
stretch and rotate Dj to create D) such that D} ends in e
end
else
D;, + Dj
end
foreach (m,d) pairs in (M, D},) do increase the count of (m,d) ;
foreach n-gram in D), do increase the count of the trajectory n-gram ;
end
(Maximization step);
Update the translation model from counts of (m,d);
Update the trajectory model from counts of trajectory n-grams;
iteration++;
end
Algorithm 1: EM algorithm used to training the statistical model.

For evaluating our approach we used the relative error rate as the evalua-
tion metric. The relative error of an estimation is calculated for 2 dimensional
trajectory, i.e., the altitude is omitted in our experiment:

erToTaps
erToT o] = . (7)
trajectoryrey

The absolute error erroryys corresponds to the distance between the user’s po-
sition estimated by a positioning system e* and the user’s true position e:

erroreps = distance(e, e) (8)

The trajectory,.s is length of the reference trajectory. Thus, the relative error
grows with the increasing absolute error. However, the relative error is addition-
ally normalized by the length of the reference trajectory in order to be able to
compare the results of different experiments with different length of walks.

In the first experiment we focus on the cases when the user holds the phone in
the hand in front of him or her as if she would be looking to the display. The re-
sults (shown in Table[3]) are grouped based on the type of the test data: L-shape
and Square-shape. We also evaluate the estimation accuracy for different speed
of the walks: slow, normal and fast. In our experiments we use the traditional
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Fig. 6. Basketball court used for the experiments. The figures show the walks used for
training the model (a) and evaluating ProbIN approach (b), (c)

(a) (b)

Fig. 7. The phone can be carried in the hand or in a pocket. While carrying the phone
in the hand the user can be occasionally looking at the display.

physics-based positioning system (described in Section[5.2]) as a baseline. The er-
ror rate of this system is displayed in the column Physics. The following columns
contain results of the estimations using ProbIN’s statistical model generated in
the EM iterations 1, 2 and 3.

For training ProbIN’s statistical model we used sensor data from 60 straight
walks. Each walk was 4-meters long. For testing of each configuration (e.g.,
square-shape fast walk) we used 5 long walks and calculate an average error rate
over 5 estimated trajectories.
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Table 3. Average error rate of estimated position of the physics-based approach vs.
ProbIN using models trained after EM iteration 1, 2 and 3. The phone is carried in
the hand in front the body.

Type Speed Physics EM1 EM2 EMS3

L slow 348.7% 18.3% 17.2% 16.3%
L normal 194.6% 23.0% 22.1% 22.3%
L fast 118.2% 26.7% 24.1% 25.6%

S slow 2158.3% 4.0% 3.9% 4.4%
S normal 800.3% 3.6% 3.6% 4.4%
S fast 463.9% 1.8% 1.9% 2.0%

As the results show the error rate of the physics-based positioning approach is
significantly higher than the error rate of ProbIN’s approach. The reason is that
the mobile phone is held in the hand and not mounted on the foot. Therefore,
ZUPT cannot be applied. Thus, errors in the physics-based approach rapidly
accumulate over time whereas ProbIN bypasses the step of double integrating
the acceleration and is, therefore, more robust against sensor noise.

Similar to the findings reported by |9], the main source of error in ProbIN
comes from the incorrect heading information. The low-cost sensors from the
mobile phone are less stable and they are more likely to be interfered by local
magnetic fields. Therefore, the magnetometer readings are easily biased from
their true headings. In our experiments, the basketball court seems to have a
stable local magnetic field which gives the magnetometer a constant bias. For
example, reporting 12 degree north-east while the phone is heading north and
always have +12 degrees to the true headings later on. This explains why the
error rates of the square-shaped walks are lower than the error rates of L-shaped
walks. In L-shaped walks a bias in the heading causes that the distance between
the user’s estimated ending point and the user’s reference ending point increases.
Thus, the error rate for L-shaped walks also increases. In square-shaped walks,
the user travels in a close loop round trip which results in canceling out the
error caused by the magnetometer bias. This finding applies to all round trip
trajectories which are usually used for evaluating positioning systems as reported
in the literature. Based on our analysis, we strongly argue against evaluating a
self-contained positioning system only with round trip trajectories as this design
might be blind of heading errors and can be misleading.

Table 4. The phone is carried loosely in the hand and in the pocket

Type Position Physics EM1 EM2 EM3

L hand  4435.3% 25.1% 25.4% 34.9%
pocket  2900.0% 30.6% 25.2% 21.9%

L
S hand 19993.5% 16.5% 34.4% 25.5%
S pocket 13435.8% 8.1% 9.4% 13.4%
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Fig. 8. The trajectories calculated based on the physics-based positioning (a) and on
ProbIN statistical model in EM iteration 1 (b), 2 (c) and 3 (d)

Figure shows trajectories estimated by the physics-based approach on
square-shaped walks in normal speed. It differs notably from the true trajectory
shown in Figure On the other hand, the trajectories in Figures -
confirmed our expectation that the error rate can be significantly reduced by
utilizing ProbIN statistical model.

In the second experiment we explore the remaining two settings of the phone
(Table H)). First, the user holds the phone loosely in the hand and is not look-
ing at the display. Second, the phone resides in the pocket. In both cases the
sensors of the phone sense the oscillating motions during a walk as shown in
Figure This motion generates additional noise which causes the increase of
the estimation error.

7 Conclusion

In this paper we introduce ProbIN, a novel statistical dead-reckoning approach
of mapping sensor readings to user’s position for indoor positioning applica-
tions. Our approach relies solely on the sensors provided by the consumer mo-
bile devices. Thus, our positioning system can be deployed in any environment.
Furthermore, ProbIN adapts its statistical models to the characteristics of the
sensor and the user’s walking patterns. Thus, even with the noisy sensor readings
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the estimated position can be relatively accurate. In addition, ProbIN does not
require the phone to be mounted to the body. Users can just hold the phone in
the hand or put it in the pocket which is more casual for real life applications.

For future work, we plan to conduct experiments with different type of move-
ments (e.g., running, jumping, crawling, etc.) and with longer distances. This
will allow the usage of the system in more challenging scenarios such as running
in a forest or crawling in a tunnel. Moreover, the calculated error will also in-
clude the altitude in order to optimize the system for trajectories taking place
on different floors.

Additionally, our system will be extended by utilizing external infrastructures
such as GPS or Wi-Fi when they available. The existing indoor maps can be used
for implementing the point-to-point navigation will be implemented. Moreover,
the estimated trajectories can be corrected by employing state-of-the-art map-
matching techniques.
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