
A Toolkit for Usability Testing

of Mobile Applications

Xiaoxiao Ma, Bo Yan, Guanling Chen, Chunhui Zhang,
Ke Huang, and Jill Drury

Computer Science Department, University of Massachusetts Lowell,
1 University Avenue, Lowell, Massachusetts, 01854

{xma,byan,glchen,czhang,khuang,jdrury}@cs.uml.edu

Abstract. The usability of mobile applications is critical for their adop-
tion particularly because of the relatively small screen and awkward
(sometimes virtual) keyboard, despite the recent advances of smart-
phones. Traditional laboratory-based usability testing is often tedious,
expensive, and does not reflect real use cases. In this paper, we propose a
toolkit that embeds into mobile applications the ability to automatically
collect user interface (UI) events as the user interacts with the appli-
cations. The events are fine-grained and useful for quantified usability
analysis. We have implemented the toolkit on Android devices and we
evaluated the toolkit with a real deployed Android application by com-
paring event analysis (state-machine based) with traditional laboratory
testing (expert based). The results show that our toolkit is effective at
capturing detailed UI events for accurate usability analysis.

Keywords: Toolkit, Usability Testing, Mobile Application, Automated,
Logging method.

1 Introduction

Led by the rapid growth of the smartphone market, mobile Internet usage in
the US is expected to approach 100% penetration and to reach 50% total usage
by 2013 [1]. The usability of the mobile applications, however, remains a thorny
issue. A recent study shows that the task completion rate using mobile Web
ranges from 38% to 75% on different phones [2]. The average success rate was
only 59%, substantially lower than the roughly 80% success rate when testing
websites on a regular PC today. Another study shows that 73% of users experi-
enced the slow-to-load problem when using the mobile Web, and 48% of users
found mobile Web applications difficult to read and use [3].

In this paper, we focus on the usability testing of mobile applications, par-
ticularly native (instead of Web based) applications. We envision a system that
can automatically collect user interface (UI) events as the user interacts with
the mobile application. The collected UI data will then be uploaded to a remote
server for either automated or manual usability analysis. This kind of system can
complement traditional laboratory testing, and we believe it will be particularly

J.Y. Zhang et al. (Eds.): MobiCASE 2011, LNICST 95, pp. 226–245, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



A Toolkit for Usability Testing of Mobile Applications 227

useful to deploy for field-based usability testing. For many mobile application
developers, it is often too costly to conduct extensive laboratory-based usability
testing and we anticipate that the system described in this paper will be an
indispensable toolkit for low-cost usability analysis. We have implemented an
Android-based automatic usability toolkit. To use our usability testing system,
the Android developer needs to modify the application source code by inserting
statements calling our library, which captures UI events and uploads them to a
central server. We have designed the system to minimize the amount of required
code modification and the impact of event-uploading overhead. To evaluate this
system, we conducted a traditional laboratory-based usability testing on a home-
built Android application, and compared it with state-machine based usability
analysis using collected UI events. The results show that our usability toolkit
can effectively capture most of the usability problems, some of which were not
even discovered by traditional laboratory testing.

In the rest of this paper, we first discuss related work in Section 2. Section 3
describes the details of the design and implementation of our toolkit. Then we
discuss the user study and present the usability analysis results in Sections 4
and 5, respectively. Last we talk about some potential issues in Section 6 and
conclude in Section 7.

2 Related Work

Many studies have been done with event logging methods, which are compared
to traditional laboratory testing methods in terms of usability problems iden-
tified. Tullis et al. [4] presented results that showed high correlations between
laboratory and remote tests for task completion data and time-on-task data. The
most critical usability issues with web sites were identified by both techniques,
although each technique also uniquely uncovered other issues [5]. Another study
by West and Lehman [6] was conducted to evaluate a method for usability test-
ing with an automated data collection system. They found it to be an effective
alternative to a laboratory-based test [5], but these studies were conducted on
desktop machines instead of mobile devices.

Waterson et al. [7] conducted a remote usability study on mobile devices.
They asked participants to find some information on a web site with wireless
Internet-enabled digital assistants. Half of the participants ran the test in a tradi-
tional laboratory set-up while the other half performed the task with an observer
present, but with an event logging tool to collect clickstream data remotely. They
revealed that the event logging and analysis tool can easily gather many of the
content-related usability issues, but had difficulty in capturing device-related
usability problems. However, their study focused on the mobile websites rather
than the mobile applications.

There have been few usability tools developed especially for mobile applica-
tions. Flurry Analytics1 was developed to provide accurate, real time data to
developers about how consumers use their mobile applications, as well as how

1 http://www.flurry.com/

http://www.flurry.com/


228 X. Ma et al.

applications are performing across different handsets. Application developers re-
ceive anonymous, aggregated usage and performance data, as well as the use
of robust reporting and analysis tools. However, this tool focuses on statistical
information instead of identifying usability problems.

3 Design and Implementation

In this section, we first provide an overview of the Android UI framework, which
forms the foundation for our event logging system. Then we discuss the details
of its implementation and how it can be integrated with Android applications.

3.1 Android UI Framework

To set up the event logging system and integrate it with developers’ applica-
tions, we need to have a comprehensive understanding on Android system’s UI
components, as well as how these components communicate with users’ interac-
tion. So here we give a brief introduction of this knowledge. The user interface
of an Android application consists of Activity classes (terms with itatic font in-
dicates they are classes of Android Library; we use this convention throughout
this paper, unless specially stated). Each screen in an Android application is
a Java class that extends the Activity class, and activities use Views to form
graphical user interfaces that display information and respond to user actions.
An activity itself can be considered to be the root View for a screen and it is
composed of smaller Views, which are interaction components like controls or
widgets. Also, there might be other components attached to an activity, such as
Dialogs or Menus, which are usually small windows that may appear in front
of an activity. The top-most window in the foreground (View, Dialog or Menu)
will always intercept and handle user inputs, whether it occupies a full or only
partial screen.

To allow an application to react to user events such as a key press, screen
touch and button click, developers have to utilize either event handlers or event
listeners to accept user inputs and respond to them. An event handler is usually
implemented by overriding some callback function while an event listener is a
programming interface that contains a single callback method. As both event
handlers and event listeners are constructed through calling underlying Android
callback functions and they have the same functionality, for convenience we will
use the term “Event Listener” to stand for both of them in the rest of this paper.

Usually an Event Listener is only attached to the window that registers it,
and it will “consume” the events captured by it. This means if a button registers
an onClickListener and then is clicked, the Event Listener of the button would
intercept and handle the click, while the screen activity that owns the button
has no idea that there was ever a click. Hence, if we want to log every single
movement of users’ interaction, for each Event Listener that handles an user
input, we need to trace into the innermost level of the window that possesses it,
and acquire our desired information that is intercepted by it.



A Toolkit for Usability Testing of Mobile Applications 229

3.2 Event Logging System

For usability studies of websites, it is possible to build an instrumented Web
browser which allows the users’ interactions with the websites to be automat-
ically logged in a fashion that is transparent to the website developer. On
the other hand, this is not feasible for Android applications because the UI
interactions cannot be automatically captured. Application developers must get
involved in modifying the source code and capturing UI events explicitly. To min-
imize developers’ effort, we provide an event logging toolkit that takes care of
most of the work of event capturing, formatting and packing, and transmission.

Our event logging system works as follows. The developers make small mod-
ifications to the source code of their applications adding API calls and recom-
piling the source code with the Software Development Kit (SDK) we provide.
The SDK contains the APIs for each Event Listener and the developers call the
corresponding API in their own listener code. The functionality of the Appli-
cation Programming Interface (API) is to log ongoing user interaction events,
its timestamp and properties of the relevant windows. For example, by inserting
one statement in a View’s onClickListener, the library can retrieve information
such as the View’s identifier, size, owner activity, and so on.

The recompiled applications now can automatically record the users’ UI events,
and transmit the captured interaction data periodically to a central server. These
events are then used for usability analysis by the evaluators. Instead of trans-
mitting the events immediately to the remote server, the logger runs in the
background as a service and puts the captured events in a memory queue. When
the number of events accumulates to a predetermined amount, they are trans-
ferred to our remote server through the 3G or WiFi network. If there is no
available network at the time of transmission, these events will be stored on
the device’s Secure Digital(SD) card or hard disk sequentially according to their
availability. In every event uploading cycle, these two places will be examined,
and all existing data stored there will be transmitted if the network allows. The
event transmitter creates a new thread for the transporting module so that this
process is separated from the UI process.

The remote receiver module simply provides a relational database, as all the
UI events are saved into different tables depending on their type. Usability anal-
ysis can then be conducted either manually or automatically (see Section 5).

3.3 The Logger Implementation

Android has many Event Listeners, and one listener can be attached to a View,
a Dialog or a Menu. As Views, Dialogs and Menus have different appearances
and functionalities, they have different sets of listeners. For instance, clicking
on a Menu may trigger onMenuItemClickListener while clicking on a View may
trigger onViewClickListener, though both of the interactions are click events.
Moreover, even if two subclasses inherit from the same parent, they may not have
the same sets of listeners. Take View for example, the subclass AbsListView nests
the interface component onScrollListener, which will handle the user’s scrolling



230 X. Ma et al.

on this view. In comparison, most subclasses of View do not support scroll events
(they discard these events) if they do not implement onScrollListener. Indeed,
the View class hierarchy is quite complex, as it has 8 direct subclasses and dozens
of indirect subclasses. To assure we log user interaction events as completely as
possible, we performed a thorough survey of the class hierarchy of View, Dialog
and Menu, and only extracted those listeners that are related to user interaction.
We then consolidated the listeners in the following ways.

View Events. Some listeners differ in their names or adhering classes, but they
take care of the same user interaction, e.g. onOptionItemSelectedListener, on-
MenuItemClickListener and onMenuItemSelectedListener may all be responsible
for selecting one item in an Option Menu. More interestingly, the three listeners
can be registered at the same time, which means that they can all be triggered
upon one click. Since we are interested in the user’s interaction type rather
than listeners’ name, we decided to combine these sorts of similar listeners into
one event type to avoid redundancy. Some listeners were distinguished by the
type of user event they can handle but take identical parameters, such as the
View’s onClickListener and onLongClickListener, which deal with View’s short
click and long click events, respectively. For the simplicity of the logging library
and back-end database design, we treated them as the same events as well, but
differentiated them by adding a flag parameter. Thus the View’s events were
consolidated into view click, view key press, view scroll and AdapterView item
click (note the terms for event types are also italicized). An AdapterView is a
View whose children are determined by an Adapter object acting as a bridge
between the AdapterView and its underlying data, e.g. an ArrayAdapter allows
an array of objects to reside in the AdapterView.

Dialog and Menu. Events triggered by Dialog and Menu are harder to capture.
Dialogs and Menus are usually managed by their adhering activities, and they
may not have an identifier (anonymous). Thus in order to locate which Dialog or
Menu was fired, we need to infer it from the users’ action sequence, by looking
at which activity, through which action a Dialog or Menu, was initiated and
how a Dialog or Menu was dismissed. It is not difficult to record the initiation
event, but some attention needs to be paid to the dismiss event. Dialog has an
onDismissListener but we cannot rely on it because it does not provide any
information about how a Dialog was dismissed. Even worse, no matter how a
dialog disappeared, this listener would always be triggered. For instance, if a
user presses the OK button in a dialog, Android will first call Dialog’s onClick-
Listener, and then call onDismissListener as the dialog will disappear after the
action. This will cause a double counting problem because the single event fires
two listeners. Fortunately, we found that if a dialog was not dismissed by hitting
the BACK key on the hard keyboard, at least one of the Dialog’s onClickListener
methods will be called, and it tells us which button was clicked that caused the
dialog to be dismissed.



A Toolkit for Usability Testing of Mobile Applications 231

We have a different solution for Menu’s dismiss event. An onOptionMenu-
Closed or onContextMenuClosed method will be toggled when a menu is closed,
depending on the menu type. We can monitor onMenuItemSelectedListener to
judge whether a menu was closed by selecting an item or by other means. Over-
all, we included dialog key press and dialog button clicked events for Dialog and
menu item select and menu close events for Menu to our logging library.

System Keys. Android devices have BACK, MENU, HOME and SEARCH hard
keys, and we name them system keys collectively as these keys function for all
applications in general. Since an Android application is composed of activities,
we can override onKeyDown listener in each activity to intercept these system
keys. However, Android disabled HOME key interception to preserve its system’s
running state. If the developers can intercept all key events, they can easily make
the system malfunction, such as preventing users from quitting their applications
by intercepting the HOME key press. Thus, we have to find other ways to detect
that a user clicked the HOME key. Through a class named ActivityManager, we
can acquire the currently running tasks as well as the top activity of each task.
Then we can override each activity’s onStop method to check if its top activity
equals to com.android.launcher, which is the activity name of the Android home
screen, to decide if the activity is stopped by clicking the HOME button.

Unhandled Events. We believe that the above effort can already help us to record
those events whose listeners were registered by the developers. This, however,
is not enough. We want to collect a comprehensive set of the user’s interaction
behaviors, but the developers will most likely only register listeners in which they
are interested. Suppose a developer does not register an onKeyDownListener
method in one activity, and a user tried to click a button that belongs to this
activity. If, for some reason, this user missed clicking on the button but happened
to click on the activity itself (recall an activity is also a view), the application
will still run well because that activity will discard this mis-click by default.
The developers may not care about this kind of event, but these events can be
important to discover usability issues. For example, if we detected many clicks
around the button, we can infer that the button is hard to click for some reason.
Thus we would like to capture such events as much as possible, and we name
them unhandled events in general.

In summary, the events we captured were classified by their adhering class and
are listed in the Table 1. For different events, we obtained different attributes ac-
cording to their own available properties. From an event that occurred in a View,
we can retrieve its ID, width, height and its parent class etc., while for events that
happened in a menu or dialog, they may not have such information. But for what-
ever window, we tried to retrieve as many event attributes as possible.

3.4 Code Revision

The extent of the revision that needs to be done in the developers’ code greatly
depends on the hierarchical organization of the source code. Thus here we only



232 X. Ma et al.

Table 1. Event Type Summary

Event Type

View click, key press, adapter item click, scroll

Dialog key press, button click

Menu item select, close

Other unhandled motion event, unhandled key event,
home key click, system key click, preference
click

discuss the best and the worst cases in terms of the code modification workload.
In the best case, all activities in an application extend from a single root ac-
tivity, so the developer just needs to insert one event recording statement (by
calling our API) into the onTouchEvent, onKeyUp, onStop methods of that root
activity. Meanwhile, the event listeners were implemented uniformly rather than
redefined in each View/Dialog/Menu, so that only one recording statement in
the implemented View/Dialog/Menu event listeners needs to be inserted.

In the worst case, the activities in the application have no hierarchical struc-
ture at all and the event listeners were implemented separately from each
View/Dialog/Menu. Then the developers have to insert the recording statement
into the onTouchEvent, onKeyUp, onStop methods in each of their activities, and
insert the recording statement into each View/Dialog/Menu Event Listener.

In both cases, we require that the application classes extend the application
class of our own library so that our library can make use of the static memory
space allocated to the application.

There are two additional challenges. First, the Android framework has already
implemented some event listeners by default, such as the onKeyDownListener
for an edit box. In this way, an edit box can accept key presses even without
developers registering this listener explicitly. For such cases, we have to override
the related listeners and register them so as not to miss recording the user’s
input. Second, the hierarchical relationship between classes can be troublesome
for counting the user’s interaction events accurately. While usually the user’s
interaction in one window will not be passed to its parent, the developers can
call the super method to allow this to happen. If we add the logging function
in both super and subclasses, one event that happened in the subclass may be
recorded twice. Thus to avoid this double counting problem, we have to examine
the application’s class hierarchy and check whether at some point the developers
called the super method.

In the future, we plan to provide a tool that can automatically inspect an ap-
plication’s source code and make appropriate changes for event logging, without
the developers’ involvement.

3.5 Events Not Captured

So far, our logging system is able to capture all the events that the developers
have already set to listen as well as those unhandled events at the activity



A Toolkit for Usability Testing of Mobile Applications 233

level. But there still remain some events that are not being captured. First,
we cannot log events that occurred in Android native activities, such as the
Android Settings. We do not, however, really need these events as the goal of
our system is to identify usability issues of the third-party applications, rather
than the Android native screens. Second, we have not found any feasible way to
trace keystrokes on the Android soft keyboard. Finally, we did not capture the
unhandled events occurring in child Views, Dialogs and Menus of an activity.
Although this is doable by registering listeners in each View/Dialog/Menu, we
do not think it deserves so much effort (which involves changing source code)
compared to its usefulness and potential event logging overhead.

Despite missing these events, the current system can already capture a com-
prehensive set of interaction events that can be used for usability analysis, as
demonstrated in the next section.

4 User Studies

We conducted a user study to evaluate whether the proposed event logging
toolkit is effective and helpful in identifying usability problems. One Android
application called AppJoy [8], which has been deployed to the Google Market,
was used as our subject application. It was developed by our group; we have the
source code so it is convenient for us to integrate it with our logging library. We
recruited participants to use this application and asked them to execute certain
tasks assigned by us. Afterwards, we examined the logged events for usability
analysis.

4.1 AppJoy Overview

The explosive growth of the mobile application market has made it a significant
challenge for users to find interesting applications in crowded App Stores. While
the application stores allow the users to search for applications by keywords or
browse top applications in different categories, it is still difficult for the users
to find interesting applications that they like. In light of this problem, existing
industry solutions often use users’ application download history or their ratings
on some applications to predict users’ preferences, such as Amazon’s book rec-
ommendations. However, “downloading” is actually a weak indicator of users’
fondness for an application, particularly if the application is free and users just
want to try it out. Using application ratings, on the other hand, suffers from
tedious manual input and potential data sparsity problems.

AppJoy makes personalized application recommendations by analyzing users’
statistical usage of their installed applications. It can also allow users to browse
popular applications according to their location, and track their application usage.

4.2 Participant Briefing

Participants were recruited through posters. We recruited 12 participants in
total, all of them were undergraduate or graduate students of our school. We



234 X. Ma et al.

asked the participants to fill in a demographic information survey before the
study. The questions included gender, major, own cellphone platform, familiarity
with Android platform and previous experience in usability testing, and so on.

Among the participants, 7 were from the Computer Science department while
5 were not, 7 were male and the other 5 were female. All of them were between 20
and 35 years old. 2 participants owned an Android phone, 3 participants owned
an iPhone and 7 participants did not have a smartphone. One iPhone user and
one non-smartphone user also used an Android phone before, so in addition to
the two participants who owned an Android phone, we had 4 Android phone
users, but none of them were Android developers. 4 participants had previous
experience with usability tests. None of the participants had used AppJoy before.

4.3 AppJoy Tasks

All participants were given the same Android device – Motorola Droid with
Android version 2.2.2. AppJoy was preloaded onto the device and the device
was connected to a university WiFi network. Every participant was assigned the
following tasks one by one in the same order:

1. Browse recommended applications in AppJoy and “dislike” the first applica-
tion the user is not interested in.
2. Browse the newest applications in AppJoy and install the first one whose rat-
ing is greater than 4 stars and the number of downloads is greater than 50,000.
3. Clear search history in AppJoy settings.
4. Search applications used by people in Boston, and point out the first applica-
tion that was installed on this device.
5. Use AppJoy to uninstall the application that has been installed in task 2.
6. In AppJoy, look up the usage time of AppJoy.

As we did not code a special function to indicate the completion of a task, we
used Android’s SCREEN ON and SCREEN OFF broadcasting events as the
separator between tasks during the test. Participants were asked to give the
device back to one of the evaluators after completing each task, and the evalu-
ator turned off and turned on the screen twice and reset the application to its
homepage before the next task.

5 Evaluation Results

In this section we answer the question of whether the UI events collected via the
Android UI framework can indeed be used for usability analysis. The laboratory-
based usability testing method known as formal usability testing is one of the
most widely used approaches by usability practitioners for performing usability
analysis [9, 10]. Thus we performed a laboratory-based usability test and com-
pared it to a quantified state-machine based analysis using the collected events.

When the participants were executing tasks, we asked them to “think aloud”
[11] and had several evaluators sitting beside them to take notes. At the same



A Toolkit for Usability Testing of Mobile Applications 235

Table 2. Usability Problems Identified by Laboratory Testing

AppJoy Problem Android Convention

Cosmetic 5 2
Minor 4 2
Major 4 2

Catastrophe 1 0

time, all of the user’s interaction events with the AppJoy were simultaneously
logged and the data was transmitted to our server. In this way, we were able to
get a fair comparison for the two different methods, since they were compared
using the same participants, the same Android device, at the same time, within
the same testing environment and the same user behaviors.

During the test, we lost two participants’ data due to the misconfiguration of
the event logging system. So when comparing the two methods, we only consid-
ered information collected from the remaining 10 participants. The two people
we lost data from were participant 4 and 5, one of them is male and the other is
female. Neither of them majored in computer science and neither of them had
prior Android experience. When presenting the evaluation in this section, we do
use all 12 participants’ data except for the comparison results.

5.1 Traditional Laboratory-Based Usability Testing Results

When the participants were executing tasks, we asked them to “think aloud”
and had 3 evaluators taking notes beside them. The evaluators were all very
familiar with AppJoy and one of them is the lead developer. In order to get
a better understanding of wrong moves the participants made when executing
specific tasks, we talked with them about the difficulties they encountered during
the test, and what caused their confusion. We found that these conversations
with participants were indeed valuable for us to judge the exact cause of a
usability problem. After the experiment was over, the evaluators discussed and
consolidated usability problems identified based on their notes, the participants’
survey and their verbal feedback. Then we rated the severity of each usability
problem according to Nielsen’s severity rating criteria [12], and summarized
them in Table 2.

Some of the problems were apparently caused by the AppJoy design, which
we call AppJoy problems. Some of the other issues could not be categorized as
AppJoy problems because AppJoy just leveraged some components of the An-
droid framework that caused the user confusion. For instance, some participants
did not know how to view the notifications on Android, as they tapped on the
notification bar instead of dragging. Also, there was one participant who said
that he/she did not know how to scroll the view on the screen, and he/she moved
his/her finger in the opposite direction. For these problems, we say that they
were generated by the users’ unfamiliarity with some of the Android conventions.



236 X. Ma et al.

In addition, we have two problems not included in Table 2. One problem
was that the participants had trouble finding the AppJoy setting. The reason
for this problem was unclear, and we could not arbitrarily say whether this was
because the participants did not know that pressing the Menu button can trigger
application settings as an Android convention or they did not believe that the
Menu is the right place to find the AppJoy settings. Although the confusion was
mostly from the Non-Android participants, one Android participant also spent
a lot of effort before getting to the right place. The other problem was that the
participants frequently touched the AppJoy’s caption bar by tapping, dragging
or scrolling. This problem is not negligible as 5 participants had this issue in 6
tasks. However, we cannot simply blame either AppJoy or Android for this as
we do not see that any application or the Android framework itself defined the
functionality of the caption bar. Thus we left the two problems described above
uncategorized.

5.2 Event Logging Method Result

Hilbert and Redmiles described the sequence comparison technique as the pro-
cess of comparing a target sequence against source sequences and producing
measures of correspondence [13]. Here we leveraged the Finite State Machine
(FSM) approach as our sequence comparison method for data collected from the
event logging toolkit. We believe that FSM can maximumly make use of these
data because the experiment was task-based: we can identify the baseline (cor-
rect) sequence for each task; and we have the participants’ entire clickstreams
so we can examine how users’ interaction sequences deviated from the baseline
sequence.

First we draw finite state machines with a baseline sequence for each task.
These state machines only involve indispensable steps from the AppJoy home
page to the destination state of task completion. Each step here is a state in the
finite state machines, and the user actions are represented as transition functions
between states. Figure 1 shows the baseline finite state machine for task 1, and
Table 3 lists the associated activities corresponding to the states, and the user
actions corresponding to the transition functions. As we can see, there are four
states in this state machine with state 0 being the initial state and state 3 being
the final state. Because this state machine represents the baseline sequence, we
name the states in the state machine as fundamental states. Events e1, e3, e5
are the three imperative actions to complete this task, while e2 and e4, though
not required, are also considered to be “correct” actions. Recall the task was
asking the participants to dislike one application they were not interested in, so
the participants may freely browse the applications by scrolling in the activity,
or by checking the detailed information of an application and then going back.
Events e2 and e4 correspond to these two actions, respectively.

Clearly not all participants will follow this baseline sequence, and they may
enter many activities or states that are not shown in Figure 1. We call those
states mistake states. We analyzed these mistake states and counted two kinds
of behaviors that can, to some extent, indicate participants’ confusion. One is



A Toolkit for Usability Testing of Mobile Applications 237

Fig. 1. Task 1 Baseline State Machine

Table 3. States and Transitions for Baseline State Machine of Task 1

Activity Event

a0 Home Page e1 Click My Recommendations
a1 My Recommendation e2 Scroll in My Recommendations
a2 Application Detail e3 Click in an Application
a3 Dislike Dialog e4 Click Back Button

e5 Click Dislike Button

backtracking (sometimes called ”regressive behavior” by usability evaluators),
and the other is engaging in unhandled events as we mentioned before.

Here we define backtracking as redundantly returning to the state that has
already been traversed. We use “redundant” only to exclude situations where
backward transitions are also considered to be appropriate responses, such as e4
in task 1. Basically if a user goes back to a state which he/she has visited before,
that is backtracking, no matter whether he/she traces back from a baseline state
or a mistake state. Additionally, if a user goes back from one activity to another,
then immediately back to an even earlier state, we count this circumstance as
two backtracking events rather than one. Usually backtracking reflects a user’s
confusion. When a backtracking event happens [14], it means that the user has
picked the option that he/she thought to be most probably right, but apparently
he/she did not reach the desired state via that option. For example, to find the
usage time of AppJoy, many participants went to AppJoy settings first. After
realizing there is no such information, they stepped back to the home page of
AppJoy.

Similarly, unhandled events are user behaviors that occurred beyond the de-
velopers’ expectations, since the developers did not even register listeners for
those events. Although some events were triggered by the users’ unintentional
touches, most of these events reflected the users’ intentional purpose. If a user
performed a lot of such actions, we can infer that this user might not know
where to navigate to the next step, as he/she was trying actions either randomly
or exhaustively, hoping to hit something correct by chance or by systematically
attempting to activate all plausible interface actions in turn. We list the number
of instances that occurred for the above two behaviors by task in Table 4.

Simply from these numbers, we can infer that task 3 and task 6 were the two
most difficult jobs for the participants, and tasks 1 and 2 were relatively easy.
However, having only these numbers is insufficient for us to analyze usability
problems; thus we examined these events more closely.



238 X. Ma et al.

Table 4. Backtracking and Unhandled Events in Each Task

T1 T2 T3 T4 T5 T6

Backtracking 14 13 36 35 14 70
Unhandled Motion 1 4 11 1 1 21
Unhandled Key 7 3 4 1 30 4

Fig. 2. Task 1 Traffic Flow Chart

Table 5. States and Transitions for All User Actions of Task 1

Activity Event

a4 Most Recent e6 Click Most Recent
a5 My Downloads e7 Click My Downloads
a6 Location-based Search e8 Click Location-based Search
a7 Top-Rated e9 Click Top-Rated

As we recorded the participants’ every single move from one activity to an-
other, we represent these transitions as well as the volume of these transitions
graphically, in a form of traffic flow chart. We present task 1’s traffic flow chart
in Figure 2 and list its states and transition functions in Table 5. Note here we
only show those states and transition functions that were not included in Table 3
(in other words, mistake states and transition functions).

We use the width of an edge to represent the volume of the transitions. Blue
edges represent incoming flows, while green edges and orange edges represent
outgoing flows to a baseline state or a mistake state accordingly. Additionally,
we use dashed red edges to indicate backtracking flows. The volume of traverses
along with each transition function is marked above each edge. Note that the
number of correct outgoing flows from one baseline state and the number of
incoming flows to the next baseline state have different implications. The former
means how many times the participants made the right choices from one state,
and the latter means how many situations occurred in which the participants
were asked to make a choice. For example, if one participant went to some
mistake state from state 1, and then returned back to state 1, the number of
incoming flows to state 1 would be greater than the number of correct outgoing
flows from state 0. Thus we have two figures above every baseline transition
function, with the first one representing correct outgoing flows from one state



A Toolkit for Usability Testing of Mobile Applications 239

and the second one representing incoming flows to the next state. Coincidently,
the two figures for all baseline transitions turn out to be equal in this task.

As shown in Figure 2, the participants traversed to the home page of AppJoy
24 times, of which they went to state 1 12 times, while they went to different
mistake states another 12 times. Comparatively speaking, from state 1 to state 2,
among the 12 incoming flows, 9 times the participants progressed immediately to
state 2, backtracking occurred two times during this stage, and one participant
failed to find the next move. From state 2 to state 3, all of the 9 incoming flows
traveled to the correct state. The correct flow ratios for the three stages were
50%, 75% and 100%, respectively. Clearly the users were less confused at state
2 than at state 0. We calculated the success ratio of flows in each step as a
measurement for detecting usability problems, becaus this can be considered to
be a measure of the users’ confusion at each step. Also, the amount of flow that
entered the final state is actually the number of participants who successfully
completed a task. On the other hand, the number of participants who failed
to complete a step is also an important indicator of usability problems. We
calculated these metrics for each task and summarized them in Table 6.

Note that the step in which backtracking occurred is determined by the next
baseline state rather than the current baseline state, as we think users’ diffi-
culties in locating the next baseline state is the main reason that causes back-
tracking in the current baseline state. For instance, the 12 backtracking events
that happened during the transition between state 0 and state 1 were counted
as backtracking events that occurred at state 1.

Many usability problems can be discovered by reviewing Table 6. Too much
backtracking, such as the amount that occurred at step 1 of task 6, indicates
that the desired information is located at a different place than anticipated by
participants, or it was not visible to users. Low correct flow ratio, in our case
less than 50%, is another sign of potential usability problems. For instance, the
ratio of correct flows for step 1 of task 3 was only 28.6%, which is congruent with
our previous discussion regarding participants having problems finding AppJoy
settings. Also, if the number of participants who cannot complete a step exceeded
a certain threshold, there is possibly a usability problem. For instance, 4 out of
10 participants failed to find the usage time at step 2 of task 6. Although we
are unaware of the cause, we would strongly recommend that the developer of
AppJoy inspect that component to show usage time clearer more clearly.

By taking a step further to examine which mistake state attracted most of
the incorrect traffic, we may possibly predict the reason for that problem. If
many participants went often to the same mistake state, that state must be very
confusing to the participants. Hence we call that state the ”most misleading
state”. For example, at step 3 of task 4, 18 out of the 20 incorrect flows went
to the detailed page of location-based applications; obviously this is the most
misleading state. We guess the underlying reason of this problem is that the
users sought to find something at the summary screen of the location-based
applications, but that information was not sufficiently visible.



240 X. Ma et al.

Table 6. Traffic Flow Metrics Based on Number of Mistakes

Metrics
Step 1

T1 T2 T3 T4 T5 T6

No. of Backtracks (*) 12 10 29 11 11 61
Mistake State No. 4 3 12 6 4 8

Correct/Incorrect Flows 12/12 12/10 16/40 12/7 9/12 14/58
Correct Flow Ratio 50% 54.5% 28.6% 63.2% 42.9% 24.1%
Fail to Pass No. 1 0 1 1 3 0

Metrics
Step 2

T1 T2 T3 T4 T5 T6

No. of Backtracks 2 3 7 5 2 9
Mistake State No. 0 0 1 2 1 3

Correct/Incorrect Flows 9/3 13/3 9/7 11/6 11/2 6/8
Correct Flow Ratio 75% 81.3% 56.3% 64.7% 84.6% 42.9%
Fail to Pass No. 0 0 0 1 0 4

Metrics
Step 3

T1 T2 T3 T4 T5 T6

No. of Backtracks 0 0 0 19 1 N/A
Mistake State No. 0 0 0 2 0 N/A

Correct/Incorrect Flows 9/0 10/0 9/0 8/20 10/1 N/A
Correct Flow Ratio 100% 100% 100% 28.6% 90.9% N/A
Fail to Pass No. 0 0 0 0 0 N/A

Metrics
Step 4

T1 T2 T3 T4 T5 T6

No. of Backtracks N/A N/A 0 N/A N/A N/A
Mistake State No. N/A N/A 0 N/A N/A N/A

Correct/Incorrect Flows N/A N/A 9/0 N/A N/A N/A
Correct Flow Ratio N/A N/A 100% N/A N/A N/A
Fail to Pass No. N/A N/A 0 N/A N/A N/A

* No. of Backtracks = number of backtracking incidents

Table 7. Traffic Flow Metrics Based on Number of Participants Making Mistakes

Metrics
Step 1 Step 2

T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6

No. of Backtracks 4 6 4 2 6 8 0 0 2 1 2 3
No. to the MMS (*) 3 2 5 2 7 8 0 0 0 2 1 2

Metrics
Step 3 Step 4

T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6

No. of Backtracks 0 0 0 4 1 N/A N/A N/A 0 N/A N/A N/A
No. to the MMS 0 0 0 4 0 N/A N/A N/A 0 N/A N/A N/A

* MMS = Most Misleading State

An interesting phenomenon emerged in task 5. Three participants failed to
progress through step 1 but surprisingly all of the participants successfully com-
pleted this task. This means that some participants avoided one fundamental



A Toolkit for Usability Testing of Mobile Applications 241

state and reached the objective state through another route. We provided this
information to the developer of AppJoy who confirmed that the way it was
designed had some problems.

For unhandled motion events, we inspected the activities in which unhandled
motion events occurred and their physical positions on the screen. Among 39
unhandled motion events across all tasks, 30 of them (76.9%) were clicks or
moves at the caption bar in different activities; this was the case for all 11
events in task 3 and 17 out of 21 events in task 6. Although we didn’t classify
it as a usability problem, this phenomenon reflects the participants’ frustration.
As these behaviors happened frequently in the two tasks that participants had
trouble dealing with. Maybe only when the users could not find other ways to
complete a task, they touched the caption bar as a last resort. For the remaining
9 unhandled events, 8 of them were clicks or moves on blank pages between two
activities; these actions were not noticed in laboratory-based usability testing.
Even though we cannot conclude that lengthy loading time between two pages
caused the users to perform such actions, at least this is an interesting finding
that we did not expect: that such events can be captured by the event logging
library. The last unhandled motion event was a mis-click on the side of one
button that one participant intended to click, but this was a rare case.

For unhandled key events, we inspected the key code for each click and its
related activity. Our library does not log the key code for keystrokes on the An-
droid keyboard except for the delete key out of concern for the users’ privacy.
However, none of these unhandled key events were from keystrokes on the An-
droid keyboard. Actually, only four keys were pressed: the volume down, volume
up and camera focus keys on the right side of the device, and the search key be-
low the screen (we did not classify the search key as a system key because most
third party applications do not respond to this key). Except for the search key
presses, other unhandled key events were not observed by the evaluators during
the experiment. We speculate that these keys were probably pressed without
the users’ conscious purpose as these keys can be easily touched by mistake in
daily usage. However, the search key presses constitute a different case, as 36
out of 49 unhandled key events are from search key presses, including all of the
30 unhandled key events in task 5. Recall that in task 5 we asked participants
to uninstall the application they just installed in task 2; we can infer that in
task 5, the users were trying to search the application directly with the search
key because they knew the application name, but apparently AppJoy did not
handle this key event. This confirms a usability problem identified in laboratory
testing that AppJoy should add some mechanisms to search or at least sort the
recommended applications. Furthermore, 3 search key presses were from task 3
and 3 were from task 6, yet these two tasks did not involve looking for a special
application. We guess that the participants intended to search the functionalities
of AppJoy setting and usage time by doing so.

The above statistics only dealt with the number of total occurrences of each
event but ignored the differences between the participants. The number may
be difficult to interpret if a minority of the participants made a large number



242 X. Ma et al.

Table 8. Usability Problems Identified by Auto Logging Method

AppJoy Problem Android Convention

Cosmetic 0(5) 1(2)
Minor 4(4) 1(2)
Major 5(4) 1(2)

Catastrophe 1(1) 0(0)

of mistakes. In fact, if only a few people had problems with a user interface
component, this component’s design is probably satisfactory. To avoid the diffi-
culties of interpretation, we calculated how many participants backtracked and
how many participants entered the most misleading state in each step of a task.
In this way, we can alleviate the above issue: if the backtracking number for all
participants was large but the number of participants who experienced back-
tracking was small, it means that a few participants were confused. Similarly,
only if many participants backtracked from a particular state can we conclude
that the state was really misleading. The two metrics related to the number of
participants are summarized in the Table 7.

Regarding backtracking, the data in Table 6 and Table 7 shows fairly uniform
behavior across participants, because more backtracking across all participants
corresponds to more participants navigating with backtracking. Regarding the
correct flow ratio and most misleading state, while the data again shows fairly
uniform behavior, there are some minor differences that can be observed. For
instance, at step 3 of task 4, the number of incorrect flows was higher across
all users, compared to that at step 1 of task 5, but fewer participants went to
the most misleading state. This means the problem in task 5 is more general
across the users, hence that problem should be considered to be more critical.
In summary, we can look at the data in both of the tables to rate the severity
level of usability problems.

Besides the above measurements, developers or evaluators can almost “re-
play” the users’ behaviors if they have time to manually review the logged
events. Though time-consuming, this approach can help to detect additional
usability problems, even for some subtle issues that were overlooked during the
laboratory-based usability testing. For example, there was a button that over-
lapped with recommended applications which made it hard to be seen, so that
only one participant clicked that button and none of the evaluators observed this
phenomenon during the experiment. But by examining the logged sequence, we
noticed this event and confirmed that this was a usability problem.

5.3 Comparison Results

Finally, we summed up all usability problems identified through the event logging
toolkit, and compared the number with that discovered by laboratory-based
usability testing in Table 8. Note that in this comparison we excluded the two
participants’ data that was lost with the event logging method.



A Toolkit for Usability Testing of Mobile Applications 243

Usability problems identified by laboratory-based usability testing are shown
in parentheses here for comparison. From the rest of the 10 participants, we iden-
tified exactly the same number of usability problems as from all 12 participants in
laboratory-based usability testing. We can easily see that the laboratory-based
testing method can identify more cosmetic problems. All 5 cosmetic usability
issues observed through laboratory testing were not discovered by the event log-
ging method. But the event logging method is effective for identifying critical
usability issues, including major and catastrophic usability problems. All criti-
cal usability problems discovered through laboratory testing were found by the
event logging method, and by manually reviewing the participants’ behavior
sequences, we found out one more major problem that was overlooked in the ex-
periment. However, the shortcoming of the event logging method is, for most of
the issues it identified, that although it can point out the location of a problem,
it cannot tell the cause of that problem. This is an issue common to all event
logging methods because they lack the information that can be gleaned from
listening to participants’ verbalized thoughts and observing participants’ facial
expressions and other nonverbal signals.

Compared to laboratory testing, the event logging method found fewer prob-
lems that were introduced by the users’ unfamiliarity with Android conventions.
We expected this because the library cannot record the users’ interactions outside
of AppJoy. But because the objective of this library is to find usability problems
in third-party applications rather than in the Android framework itself, we do
not consider this to be a big issue.

6 Discussion

We have only tested the event logging toolkit on one application, which is of
course far from enough to conclude that it can be effective to help evaluators,
developers and designers identify usability issues on all Android applications.
We will integrate this library into more Android applications to validate its
usefulness in the future. One thing to note is that our toolkit does not help
applications developed without the Android UI framework, such as games based
on OpenGL.

On the other hand, even after conducting just one test, we can already demon-
strate that the proposed event logging toolkit can detect some subtle actions that
are difficult to observe in laboratory testing, such as some quick moves and the
unhandled events discussed above. Meanwhile, it can provide strong quantitative
measurement and lots of statistical data describing users’ interactions with the
application. So it can at least complement traditional laboratory-based usability
testing.

We tested the application in a WiFi network environment, which neglects
possible networking problems that could happen under poor network conditions.
Although we know that AppJoy sometimes has trouble connecting to the server
under the 3G network, we did not identify this problem through this experiment.
Hence we can see context information is needed to locate usability issues under



244 X. Ma et al.

some conditions, and this is precisely the weak point of laboratory-based usabil-
ity testing. We will include context information retrieved from sensors of the
Android device in the next version of the event logging toolkit. Because we can
collect the users’ interaction data in a real world environment, we can determine
usability problems under different conditions through the toolkit. We anticipate
that this approach will be a big advantage for an event logging method as it is
more suitable for field-based usability testing.

7 Conclusion

It is challenging to conduct usability testing for mobile applications. In this pa-
per, we present a UI event logging toolkit that can be embedded into Android
applications. The toolkit requires minimum source code modification by the de-
velopers and automatically uploads fine-grained UI events to a central server. By
testing a deployed Android application, a state-machine based sequence analysis
is evaluated using the logged events and compared to traditional laboratory-
based usability testing. The results show that the proposed toolkit is effectively
capturing detailed interaction events, which can provide accurate and quantita-
tive analysis of usability problems. In summary, the event logging toolkit can
discover most usability problems comparable to those uncovered by the labora-
tory method, and also reveal some unexpected issues. In future work, we will
extend the toolkit so it can be deployed for field-based journal usability testing.

Acknowledgment. This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1016823. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foun-
dation.

References

1. Kerr, R.: Us mobile internet usage to near 50% in 2013. Vator News (August 2009)
2. Budiu, R., Nielsen, J.: Usability of mobile websites: 85 design guidelines for im-

proving access to web-based content and services through mobile devices. Nielsen
Norman Group Research Report (July 2009)

3. Why the mobile web is disappointing end-users. Equation Research Report (Octo-
ber 2009)

4. Tullis, T., Fleischman, S., McNulty, M., Cianchette, C., Bergel, M.: An empirical
comparison of lab and remote usability testing of web sites. In: Usability Profes-
sional Association Conference, Orlando (2002)

5. Bastien, J.M.C.: Usability testing: a review of some methodological and technical
aspects of the method. Computing Research Repository 79, 18–23 (2010)

6. West, R., Lehman, K.: Automated summative usability studies: an empirical evalu-
ation. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI 2006, pp. 631–639. ACM, New York (2006)



A Toolkit for Usability Testing of Mobile Applications 245

7. Waterson, S., James, A.L.: In the lab and out in the wild: remote web usability test-
ing for mobile devices. In: Conference on Human Factors in Computing Systems,
pp. 296–297 (2002)

8. Yan, B., Chen, G.: Appjoy: personalized mobile application discovery. In: Pro-
ceedings of the 9th International Conference on Mobile Systems, Applications, and
Services, MobiSys 2011, pp. 113–126. ACM, New York (2011),
http://doi.acm.org/10.1145/1999995.2000007

9. Rosenbaum, S., Rohn, J.A., Humburg, J.: A toolkit for strategic usability: results
from workshops, panels, and surveys. In: Proceedings of the ACM CHI 2000 Con-
ference on Human Factors in Computing Systems, New York, pp. 337–344 (2000)

10. Upa 2007 salary survey, Usability Professionals’ Association (2008)
11. Ericsson, K.A., Simon, H.A.: Verbal reports as data. Psychological Review 87,

215–251 (1980)
12. Nieslen, J.: Severity ratings for usability problems, in Retrieved June 4th from

UseIt (2007), http://www.useit.com/papers/heuristic/severityrating.html
13. Hilbert, D.M., Redmiles, D.F.: Extracting usability information from user interface

events. ACM Comput. Surv. 32, 384–421 (2000)
14. Akers, D.: Backtracking events as indicators of software usability problems. Ph.D.

dissertation (2009)

http://doi.acm.org/10.1145/1999995.2000007
http://www.useit.com/papers/heuristic/severityrating.html

	A Toolkit for Usability Testing of Mobile Applications
	Introduction
	Related Work
	Design and Implementation
	Android UI Framework
	Event Logging System
	The Logger Implementation
	Code Revision
	Events Not Captured

	User Studies
	AppJoy Overview
	Participant Briefing
	AppJoy Tasks

	Evaluation Results
	Traditional Laboratory-Based Usability Testing Results
	Event Logging Method Result
	Comparison Results

	Discussion
	Conclusion
	References




